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Topological Solitons

» Topological Solitons are classical solutions of equations of
field theory — usually time-independent, localised, smooth
and stable, with finite energy. They model a type of
particle.

» Their stability relies on nonlinearity — multiple vacua,
symmetry and spontaneous symmetry breaking,
nonlinearity of fundamental field.

» Soliton character depends on the spatial dimension.

» 1d solitons are kinks — become domain walls in 3d.
2d solitons are o-model lumps, magnetic flux vortices, and
magnetic Skyrmions — become string-like in 3d.
3d solitons are magnetic monopoles, and baryonic
Skyrmions.

» BPS (Bogomolny—Prasad—Sommerfield) solitons satisfy

first-order field equations, as well as second-order E-L
equations.



Baryon number B = 1 Skyrmion (two orientations). They attract
and partly merge into larger-B Skyrmions.



B = 4 Skyrmion
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B = 16 Skyrmion dynamics — via tetrahedron, square, and dual
tetrahedron




Sphalerons

» Sphaleron is an unstable analogue of a soliton — a
finite-energy saddle-point of field theory. Usually has a
single mode of instability.

» Sphalerons depend on topological structure of field
configuration landscape. A non-contractible path: Vacuum
— Sphaleron — Vacuum has sphaleron as “mountain
pass”.

» Sphalerons in 1d resemble kink-antikink pairs. Pair can
annihilate or split up.

» Standard Electroweak theory (Gauge + Higgs Fields) has

sphaleron but no monopole. Vacuum to vacuum tunnelling,
via sphaleron, changes baryon and lepton numbers.



Scalar Field Theory in 1d

» Scalar field ¢(x, t). Potential U(¢) provides nonlinearity,
e.g. multiple minima (vacua).

» Lagrangian:
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» Classical Euler—Lagrange equation:

P¢ 0% 1dU
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Time-independent Fields

» Energy:
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» E-L equation reduces to

?o _1dU
dx2  2d¢’

with first integral

(3;?)2 =U(¢)+C.

» Absorb constant C into U(¢) and take square root.



Constructing Solutions

» Obtain autonomous first-order ODE as field equation:

% - VUG,
» Formal solution is
X = do
VU@)

generally, a contour integral on the branched double-cover
of the ¢-plane (Semi-BPS case).

» |f U only has zeros of even order (e.g. double zeros), then
U has explicit square root. Integral then on ¢-plane (BPS
case) and simpler.



Canonical Example — ¢* Kink
» Double-well ¢*-theory potential
U(g) = (1 - ¢%) = (1 - 9)*(1 + 9)%,

has double zeros at +1. v/U has no branch points.
Solution of field equation,

do
1-g2°

» Method of partial fractions gives

2/{1— 1+¢} d¢_ (ﬁi)

Invert to obtain explicit BPS kink solution

X =

QZ)(X) = m = tanh)(7

connecting ¢p_ = —11t0 ¢4 = 1.
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A Mechanical Analogue

» Solution ¢(x) is analogous to frictionless point-particle
motion y(t) in a potential V(y).

» Conservation of energy for point-particle:

;(Z{): V(y)=E¢€.

» Set & = 0. Analogue of U(¢) is —2V(y).

» Kink profile ¢(x) is equivalent to particle motion y(¢) in
upside-down potential. Particle takes infinite time to roll
between stationary points of potential.



Simplest Potential with Quartic Zeros

» For potential
U@9) = (1-¢*)*,

field equation has formal solution

do
XZ/U—&F‘

» Using partial fractions,

1 1 1 1 1
X = 4/{0«—w2+1—¢+(«+w2+1+¢}d¢

1 9 1 1+0¢
B 21_&*1ﬂ%<1¢)’

an implicit BPS kink ¢(x) connecting —1 to 1, with
long-range, power-law tails.




An Algebraic Kink with Long-range Tails

> Rational potential

1— 2\4
= E1 +§2§2

again has quartic zeros at ¢ = +1, elsewhere U > 0.
» Partial fraction solution

B 1+¢°
= [t

1 1 1

- 2/{(1—¢)2+(1+¢)2}d¢

_ 1 1 1 B ¢

- 2{1—¢_1+¢}_1—¢2’

V1+4x2 -1

¢(X):T’

an explicit BPS kink with long-range tails. Note, integrand
has no simple pole terms.

SO



U(9)
A






Semi-BPS Kink — U with Simple Zeros

» Christ—Lee potential

U(6) = 51— P01 + )

has double zeros at +1 and simple zeros at +i. Need to
work on double-cover of ¢-plane.

» Kink solution connecting —11to 1 is

_ do
a \@/(1—&)@
1 g<¢f¢2+2¢>
2 7 \va(l +¢?) - 2¢

Invert to obtain explicit kink

sinh x

Px) = Vsinh® x + 2 '



Bogomolny Argument

» Complete square in energy integral. Rederive first-order
field equation, and obtain formula for kink energy:

- AL {() o) o

_ 1/°°{<d¢ m)erZWZf}dx

2/ ) \dx
() s [ s

Energy E is minimised provided

d¢
SN0

Then E “topological’ — only depends on U and endpoints

G-



» Define
W) = [ VU@ do.
Then
E=W(¢:)— W(o-).
» Ex. 1. BPS ¢*-kink energy:
’
VU@)=1-9¢" = W()=¢-30°

Kink energy E = W(1) — W(-1) = 3.
» Ex. 2. Semi-BPS Christ-Lee kink energy:

W(g) = /(1—¢2N1+¢>2d¢>
_ (3, 1.3 -
- <8¢ 4¢> 1+¢2+85|nh .
E = W(1)—W(—1)=%f2+§sinh*11.



Cubic Sphaleron
» Cubic potential U(¢) = ¢?(1 — ¢). Sphaleron solution

_d¢
VT =6
¢ runs from double zero at ¢ = 0 to simple zero at ¢ = 1

and back to ¢ = 0 on second sheet. Sphaleron is
semi-BPS.

» Parametrisation ¢ = 1 — {2 gives

it »

X =

so t = tanh 3, and

X 1
x)=1—tanh®Z = .
¢(x) "2 coshzg




» Sphaleron energy given by Bogomolny formula. Find
integral of /U and integrate over complete ¢-contour.
t-integral is from —1to 1. E= & > 0.

» Solitons and sphalerons have translation zero modes —
energy unchanged. Sphaleron translation zero mode has a
zero (a node). Therefore, sphaleron’s second-variation
operator has a nodeless eigenfunction with negative
squared frequency — the unstable mode.
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Kink chains

» If U(¢) has adjacent simple zeros (with U > 0 between),
then field equation has semi-BPS solution. x increases
over finite range between zeros. x continues increasing on
second sheet of /U, then on first sheet, etc.

> ¢(x) is spatially periodic. It is a chain of alternating kinks
and antikinks. Like a sphaleron, a kink chain is unstable.
» Simplest example has U(¢) = 1 — ¢2. Kink chain
¢(x) = sin x oscillates between —1 and 1 with period 2.
More realistic kink chain occurs for

U(g) = (1 — ¢°)(1 — k2¢?)

with 0 < k < 1. Solution is Jacobi function ¢(x) = sn x,
oscillating between +1.



Trigonometric Potential U = cos"(¢)

» For n =1, U has simple zeros. Semi-BPS kink chain
solution
do

Vcosp

Use t = tan % to convert to elliptic integral. Kink chain is
Jacobi-type function.

» For n =2, U has double zeros. BPS kink solution

X:/cgib'

Invert to obtain (variant of) sine-Gordon kink

X =

tan ¢ = sinh x .

» Further solutions for other n.



Summary

» We have found a broad range of static solutions in 1d
scalar field theories — kinks, sphalerons, kink chains —
some stable, others unstable.

» Solution and its energy are

d¢ /¢+
X=[| —, E= Vv U(¢p)do.
VU(9) b
» If integrals on ¢-plane, then solution is BPS; if on
double-cover then solution is semi-BPS, and calculations
trickier.

» Static solutions are part of a dynamical story — moving
kinks and sphalerons, forces, oscillatory shape modes,
instabilities, quantization, physical applications.
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