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Topological Solitons
I Topological Solitons are classical solutions of equations of

field theory – usually time-independent, localised, smooth
and stable, with finite energy. They model a type of
particle.

I Their stability relies on nonlinearity – multiple vacua,
symmetry and spontaneous symmetry breaking,
nonlinearity of fundamental field.

I Soliton character depends on the spatial dimension.
I 1d solitons are kinks – become domain walls in 3d.

2d solitons are σ-model lumps, magnetic flux vortices, and
magnetic Skyrmions – become string-like in 3d.
3d solitons are magnetic monopoles, and baryonic
Skyrmions.

I BPS (Bogomolny–Prasad–Sommerfield) solitons satisfy
first-order field equations, as well as second-order E–L
equations.



Baryon number B = 1 Skyrmion (two orientations). They attract
and partly merge into larger-B Skyrmions.



B = 4 Skyrmion



B = 16 Skyrmion dynamics – via tetrahedron, square, and dual
tetrahedron



Sphalerons

I Sphaleron is an unstable analogue of a soliton – a
finite-energy saddle-point of field theory. Usually has a
single mode of instability.

I Sphalerons depend on topological structure of field
configuration landscape. A non-contractible path: Vacuum
→ Sphaleron→ Vacuum has sphaleron as “mountain
pass”.

I Sphalerons in 1d resemble kink-antikink pairs. Pair can
annihilate or split up.

I Standard Electroweak theory (Gauge + Higgs Fields) has
sphaleron but no monopole. Vacuum to vacuum tunnelling,
via sphaleron, changes baryon and lepton numbers.



Scalar Field Theory in 1d

I Scalar field φ(x , t). Potential U(φ) provides nonlinearity,
e.g. multiple minima (vacua).

I Lagrangian:

L =
1
2

∫ ∞
−∞

{(
∂φ

∂t

)2

−
(
∂φ

∂x

)2

− U(φ)

}
dx .

I Classical Euler–Lagrange equation:

∂2φ

∂t2 −
∂2φ

∂x2 +
1
2

dU
dφ

= 0 .



Time-independent Fields

I Energy:

E =
1
2

∫ ∞
−∞

{(
∂φ

∂x

)2

+ U(φ)

}
dx .

I E–L equation reduces to

d2φ

dx2 =
1
2

dU
dφ

,

with first integral (
dφ
dx

)2

= U(φ) + C .

I Absorb constant C into U(φ) and take square root.



Constructing Solutions

I Obtain autonomous first-order ODE as field equation:

dφ
dx

=
√

U(φ) .

I Formal solution is

x =

∫
dφ√
U(φ)

,

generally, a contour integral on the branched double-cover
of the φ-plane (Semi-BPS case).

I If U only has zeros of even order (e.g. double zeros), then
U has explicit square root. Integral then on φ-plane (BPS
case) and simpler.



Canonical Example – φ4 Kink
I Double-well φ4-theory potential

U(φ) = (1− φ2)2 = (1− φ)2(1 + φ)2 ,

has double zeros at ±1.
√

U has no branch points.
Solution of field equation,

x =

∫
dφ

1− φ2 .

I Method of partial fractions gives

x =
1
2

∫ {
1

1− φ
+

1
1 + φ

}
dφ =

1
2
log

(
1 + φ

1− φ

)
.

Invert to obtain explicit BPS kink solution

φ(x) =
e2x − 1
e2x + 1

= tanh x ,

connecting φ− = −1 to φ+ = 1.
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−1 1



x

φ
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A Mechanical Analogue

I Solution φ(x) is analogous to frictionless point-particle
motion y(t) in a potential V (y).

I Conservation of energy for point-particle:

1
2

(
dy
dt

)2

+ V (y) = E .

I Set E = 0. Analogue of U(φ) is −2V (y).
I Kink profile φ(x) is equivalent to particle motion y(t) in

upside-down potential. Particle takes infinite time to roll
between stationary points of potential.



Simplest Potential with Quartic Zeros

I For potential
U(φ) = (1− φ2)4 ,

field equation has formal solution

x =

∫
dφ

(1− φ2)2 .

I Using partial fractions,

x =
1
4

∫ {
1

(1− φ)2 +
1

1− φ
+

1
(1 + φ)2 +

1
1 + φ

}
dφ

=
1
2

φ

1− φ2 +
1
4
log

(
1 + φ

1− φ

)
,

an implicit BPS kink φ(x) connecting −1 to 1, with
long-range, power-law tails.



An Algebraic Kink with Long-range Tails
I Rational potential

U(φ) =
(1− φ2)4

(1 + φ2)2

again has quartic zeros at φ = ±1, elsewhere U > 0.
I Partial fraction solution

x =

∫
1 + φ2

(1− φ2)2 dφ ,

=
1
2

∫ {
1

(1− φ)2 +
1

(1 + φ)2

}
dφ

=
1
2

{
1

1− φ
− 1

1 + φ

}
=

φ

1− φ2 ,

so

φ(x) =
√

1 + 4x2 − 1
2x

,

an explicit BPS kink with long-range tails. Note, integrand
has no simple pole terms.
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Semi-BPS Kink – U with Simple Zeros
I Christ–Lee potential

U(φ) =
1
2
(1− φ2)2(1 + φ2)

has double zeros at ±1 and simple zeros at ±i . Need to
work on double-cover of φ-plane.

I Kink solution connecting −1 to 1 is

x =
√

2
∫

dφ

(1− φ2)
√

1 + φ2

=
1
2
log

(√
2(1 + φ2) + 2φ√
2(1 + φ2)− 2φ

)
.

Invert to obtain explicit kink

φ(x) =
sinh x√

sinh2 x + 2
.



Bogomolny Argument
I Complete square in energy integral. Rederive first-order

field equation, and obtain formula for kink energy:

E =
1
2

∫ ∞
−∞

{(
dφ
dx

)2

+ U(φ)

}
dx

=
1
2

∫ ∞
−∞

{(
dφ
dx
−
√

U(φ)

)2

+ 2
√

U(φ)
dφ
dx

}
dx

=
1
2

∫ ∞
−∞

(
dφ
dx
−
√

U(φ)

)2

dx +

∫ φ+

φ−

√
U(φ)dφ .

Energy E is minimised provided

dφ
dx

=
√

U(φ) .

Then E “topological” – only depends on U and endpoints
φ±.



I Define
W (φ) =

∫ √
U(φ)dφ .

Then
E = W (φ+)−W (φ−) .

I Ex. 1. BPS φ4-kink energy:√
U(φ) = 1− φ2 =⇒ W (φ) = φ− 1

3
φ3

Kink energy E = W (1)−W (−1) = 4
3 .

I Ex. 2. Semi-BPS Christ–Lee kink energy:

W (φ) =

∫
(1− φ2)

√
1 + φ2 dφ

=

(
3
8
φ− 1

4
φ3
)√

1 + φ2 +
5
8
sinh−1 φ .

E = W (1)−W (−1) =
1
4

√
2 +

5
4
sinh−1 1 .



Cubic Sphaleron
I Cubic potential U(φ) = φ2(1− φ). Sphaleron solution

x =

∫
dφ

φ
√

1− φ
.

φ runs from double zero at φ = 0 to simple zero at φ = 1
and back to φ = 0 on second sheet. Sphaleron is
semi-BPS.

I Parametrisation φ = 1− t2 gives

x = 2
∫

dt
1− t2 = 2 tanh−1 t .

so t = tanh x
2 , and

φ(x) = 1− tanh2 x
2
=

1
cosh2 x

2

.



I Sphaleron energy given by Bogomolny formula. Find
integral of

√
U and integrate over complete φ-contour.

t-integral is from −1 to 1. E = 8
15 > 0.

I Solitons and sphalerons have translation zero modes –
energy unchanged. Sphaleron translation zero mode has a
zero (a node). Therefore, sphaleron’s second-variation
operator has a nodeless eigenfunction with negative
squared frequency – the unstable mode.
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Kink chains

I If U(φ) has adjacent simple zeros (with U > 0 between),
then field equation has semi-BPS solution. x increases
over finite range between zeros. x continues increasing on
second sheet of

√
U, then on first sheet, etc.

I φ(x) is spatially periodic. It is a chain of alternating kinks
and antikinks. Like a sphaleron, a kink chain is unstable.

I Simplest example has U(φ) = 1− φ2. Kink chain
φ(x) = sin x oscillates between −1 and 1 with period 2π.
More realistic kink chain occurs for

U(φ) = (1− φ2)(1− k2φ2)

with 0 < k < 1. Solution is Jacobi function φ(x) = sn x ,
oscillating between ±1.



Trigonometric Potential U = cosn(φ)

I For n = 1, U has simple zeros. Semi-BPS kink chain
solution

x =

∫
dφ√
cosφ

.

Use t = tan φ
2 to convert to elliptic integral. Kink chain is

Jacobi-type function.
I For n = 2, U has double zeros. BPS kink solution

x =

∫
dφ
cosφ

.

Invert to obtain (variant of) sine-Gordon kink

tanφ = sinh x .

I Further solutions for other n.



Summary

I We have found a broad range of static solutions in 1d
scalar field theories – kinks, sphalerons, kink chains –
some stable, others unstable.

I Solution and its energy are

x =

∫
dφ√
U(φ)

, E =

∫ φ+

φ−

√
U(φ)dφ .

I If integrals on φ-plane, then solution is BPS; if on
double-cover then solution is semi-BPS, and calculations
trickier.

I Static solutions are part of a dynamical story – moving
kinks and sphalerons, forces, oscillatory shape modes,
instabilities, quantization, physical applications.
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