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Recap of the kinks (refer to Manton&Sutcliffe’s 
book Topological Solitons, chapter 5)
In one space dimension, consider the Lagrangian density


 


We call the scalar field  the meson field.

The Euler-Lagrange equation is


 


The presence of topological solitons relies on the existence of multiple vacua.


Solutions that interpolate between different vacua are generally termed kinks, a 
nomenclature inspired by the shape the scalar field takes when plotted against x.
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Example 1.  kinksϕ4
Consider a potential of this form


 


The full Lagrangian density is 


 


The Euler-Lagrange equation is

 


The  kink solution


 


The energy density of the kink is 


 


The energy (also the rest mass) of the  kink is 
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from the book Topological Solitons



Example 2. Sine-Gordon Solitons
Consider the Lagrangian density


 


The potential is periodic with degenerate minima at 


The Euler-Lagrange equation is


 


The sine-Gordon kink solution interpolating between the vacua at  and  is


 


The energy (also the rest mass) of the sine-Gordon kink is 
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Linearized Soliton Perturbation Theory
• A new formalism developed in recent years by Evslin and Guo [1908.06710, 2012.04912]


• A simple approach to dealing with the problems related to a single kink (+ any number of 
mesons and impurities), e.g., kink form factors, quantum corrections to the mass of the 
kink, the quantum state of an excited kink, etc.


• One-kink sector: the Fock space that contains one kink and any number of mesons 

• Vacuum sector: the Fock space of mesons without kinks 

• Approach: The one-kink sector corresponds intuitively to classical field configurations that 
closely resemble the classical kink solution .ϕ(x) = f(x)
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• We expect to obtain states in the one-kink sector by handling the difference 
 perturbatively.


• In QFT, the transformation of the corresponding Schrodinger picture fields 
 is achieved with the unitary displacement operator


• Seen as an active transformation,   adds a kink to a vacuum sector state 


 

η(x) = ϕ(x) − f(x)

ϕ(x) → η(x)

Df |Ω⟩

⟨Ω |ϕ(x) |Ω⟩ = 0 ⇒ ⟨Ω |D†
f ϕ(x)Df |Ω⟩ = f(x)
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• We instead choose to apply it as a passive transformation, renaming the 
coordinate system of the Hilbert space and transforming the operators 
that act on them:


We define the kink frame as the coordinate system on the Hilbert space in 
which the ket  represents the state  as defined in the usual, 
defining frame. 

• What have we gained?

In the kink frame, states don’t have the nonperturbative operator 

|ψ⟩ Df |ψ⟩

Df
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• The price is that we must transform the operators

• Kink Hamiltonian 


 


• Kink momentum 

 


The full quantum-corrected stationary kink states are the eigenvectors of . 
These can be constructed in perturbation theory!

H′ 

H′ = D†
f HDf

P′ 

P′ = D†
f PDf

H′ 



We may expand  into terms  which have  factors of  and  
when normal-ordered.

H′ H′ n n ϕ(x) π(x)
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The miracle: The leading order kink Hamiltonian is a sum of QHOs for the normal modes + a free 
QM particle Hamiltonian for the center of mass.

We decompose the fields into creation/annihilation operators for normal modes



• The spectrum of  is constructed from the harmonic oscillator spectra

•  is the vacuum of 


• Starting with these, the full kink Hamiltonian  spectrum can be obtained 
using the standard perturbation theory using the interactions 

H′ 2
|0⟩0 H′ 2

H′ 

H′ n
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Remarks on Linearized Soliton Perturbation Theory

• A base point must be chosen in the moduli space of classical solutions


• So we will lose manifest translation invariance


• However, we can define the reduced inner product [1] for kink states to 
restore the translation invariance


• Less powerful when dealing with problems with more than one kink


• So in the rest of the talk, we are going to treat the scattering of one kink 
and one meson

[1] Evslin, J., Liu, H. A reduced inner product for kink states. J. High Energ. Phys. 2023, 70 (2023). https://doi.org/10.1007/JHEP03(2023)070 [arXiv:2212.10344] 
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Kink-Meson Scattering: At order λ0

• Only , ,  need to be considered at this order.


• When a meson hits a kink, it can either go through the kink or be reflected by 
the kink.


• According to our calculation, the probabilities of the meson being reflected by 
the kink or going through the kink correspond to the reflection coefficient and 
the transmission coefficient when a particle scatters through a symmetric 
barrier or well in QM.

H′ 0 H′ 1 H′ 2
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Kink-Meson Scattering: At order λ
• Now  needs to be considered


 


and it leads us to the more interesting inelastic scattering situations.


1. meson splitting (at tree level, one meson scatters off a kink and splits into two mesons, we call this 
process “meson multiplication”)


2. excite the kink’s shape modes and Raman spectroscopy can be performed (at tree level, one meson 
scatters off a kink and then kink’s shape modes are excited, we call this process “Stokes scattering”)


3. de-excite the shape modes (at tree level, one meson scatters off an excited kink and then the kink is 
de-excited, we call this process “anti-Stokes scattering”)

H′ 3

H′ 3 = λ ∫ dx
V(3)( λf(x))

3!
: ϕ3(x) :a
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meson multiplication


Stokes scattering


anti-Stokes scattering
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outgoing mesons can also go backwards for all the processesmeson (yellow) kink (blue)



Meson Multiplication

Wave packet description of the initial state
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Steps
• 1. Evolve the wave packet with , this is at order 


• 2. Project the state at large times  to a two-meson state


• 3. Integrate over the momenta of the final mesons to get the total 
probability of meson multiplication.

H′ λ

t
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Remember the leading order interaction is  

At order , the only term in  that contributes to meson multiplication is 

converts a one-meson state into a two-meson state

H′ 3 = λ ∫ dx
V(3)( λf(x))

3!
: ϕ3(x) :a

λ H′ 3
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Meson Multiplication in the case of Sine-Gordon Soliton

• This implies that the differential probability (and so total probability) vanishes.


• This is to be expected, the integrability of the sine-Gordon model implies that the 
number of mesons is conserved and so meson multiplication does not occur.
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Let’s see the nontrivial case of the  kink 
The analytical results can be found in our papers 
Here I just show the plots with numerical results

ϕ4
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The probability of Meson Multiplication 
kink + meson —> kink + 2 mesons
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The probability of Stokes Scattering
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Anti-Stokes Scattering
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All the three kink-meson inelastic scattering 
processes at leading order
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Meson multiplication dominates at 
high energies, while (anti-)Stokes 
scattering probabilities become 
very large at low energies.



Remarks
• At order , the inelastic scattering of a quantum kink and fundamental meson is now fully 

understood.

• First, in meson multiplication, the meson may split in two.

• Second, if the kink is in its ground state, then when the meson interacts it may excite a 

shape mode.

• Finally, if a shape mode is initially excited, then when the meson interacts it may de-excite 

the shape mode.

λ
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What’s next?
• We would like to study kink-meson elastic scattering


• This process is of order 


• Here we hope to discover an unstable resonance corresponding to the twice-
excited shape mode


• Also higher order corrections of the initial and final states must be considered.


λ
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Thank you for your listening!
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