Breaking Instantons to Monopoles

- Kimyeong Lee **KIAS**
- International Seminars on Topological Solitons Nagoya University September 25, 2023
 - **KL and P.Yi, 9706023** Zhihao Duan, KL, June Nahmgoong, Xin Wang 2103.06003 Hee-Cheol Kim, KL, Kaiwen Sun, Xin Wang to appear

D0 on D4 branes

KL and P.Yi, 9706023

Instantons on R⁴

- Anti self dual F + *F = 0
 - **ADHM construction**
- $[B_1, B_1^{\dagger}] + [B_2, B_2^{\dagger}] + qq^{\dagger} \tilde{q}^{\dagger}\tilde{q} = \zeta$
 - $[B_1, B_2] + q\tilde{q} = 0$
- Instanton moduli space = hyper Kahler space
- For SU(2) gauge group with single instanton, dim = 8 = 4+4
 - center of mass motion + relative motion $\mathbb{C}^2/\mathbb{Z}_2$

Instantons of group G

- dual Coxeter number h_G^{\vee}
- k instanton zero mode $4kh_G^{\vee} = 4 + 4(kh_G^{\vee} 1)$

Rank r_G , dimension d_G

Dynkin diagram G

$G^{(1)}$	h_G^{\vee}
A_r	r+1
B_r	2r -
C_r	r+1
D_r	2r -
E_6	12
E_7	18
E_8	30
G_2	4
F_4	9

D0-D4 branes

- K D0 branes in N D4 branes
- 5d $\mathcal{N} = 2$ SYM with SU(N) gauge group
 - (A_{μ}, ϕ, A_{μ})
 - Instanton currer
- Kaluza-Klein modes on a circle of radius R_5

$$\lambda$$
) + (Φ_a , Ψ)

$$\operatorname{nt} J = \frac{1}{32\pi^2} * \operatorname{Tr}(F \wedge F)$$

Instanton of mass $8\pi^2/g_5^2 = 1/R_5$

6d (2,0) SCFTs for N M5 branes on a circle $x_5 \sim x_5 + 2\pi R_5$

6d (2,0) SCFTs

- 6d (2,0) SCFTs on $N\,\rm M5$ branes
- Tensor theory: $(B, \phi, \lambda) + (\Phi_a, \Psi)$ such that H=dB=*H
 - M2 branes between 2 M5 branes =self-dual strings
 - 6d (2,0) SCFTs= A,D,E types (type II on $\mathbb{C}^2/\Gamma_{A,D,E}$
 - Degrees of freedom: $h_G^{\vee} d_G$

D0-D4 branes on a circle

- 4d $\mathcal{N} = 4$ SYM with SU(N) gauge group + KK modes
 - Coupling constant: $\tau = \theta/2\pi + 4\pi i/g_4^2$

$$1/g_4^2 = 2\pi R_4/g_5^2$$
, $\alpha_4 =$

 $x_4 \sim x_4 + 2\pi R_4$

- $= g_4^2 / 4\pi = g_5^2 / 8\pi^2 R_4 = R_5 / R_4$
- S-duality: $\tau \leftrightarrow -1/\tau$ $R_{4} \leftrightarrow R_{5}$

D0-D4 branes on S^1

- Gauge holonomy $\langle A_4 \rangle = (v_1, v_2)$

For each simple root α

a fundamental mon

$$\mathbf{a}_{i} = e_{i} - e_{i+1}, (i = 1, ..., N - 1), \text{ and } \mathbf{a}_{0} = e_{N} - e_{1}$$

nopole of charge $\mathbf{a}_{i}^{\vee} = 2\alpha_{i}/\alpha_{i}^{2} = \alpha_{i}$ and mass
$$\frac{4\pi}{g_{4}^{2}}\mathbf{a}_{i} \cdot \mathbf{v} = \frac{4\pi}{g_{4}^{2}}(v_{i} - v_{i+1})$$

 4π 1 1 g_{4}^{2} $R_4 R_5$

$$v_2, \dots, v_N$$
) $v_1 \ge v_2 \ge \cdots v_N \ge v_{N+1} = v_1 + 1/R_4$

T-duality: D1-D3 branes with D3 branes position v_i on the dual circle

The comarks are $a_i = 1$ and so the total magnetic charge =0 and total mass is

-- = -- is the instanton mass

Dynkin diagram G

$G^{(1)}$	h_G^{\vee}
A_r	r+1
B_r	2r -
C_r	r+1
D_r	2r -
E_6	12
E_7	18
E_8	30
G_2	4
F_4	9

Comarks
$$a_i^{\vee}$$
: $\sum_{i=0}^r a_i^{\vee} \boldsymbol{\alpha}_i^{\vee} = 0$ and a_i^{\vee}

k instanton zero mod

Instanton mass

5d theory of $G^{(1)}$ on S^1

- Gauge holonomy $\langle A_4 \rangle = \mathbf{v} \cdot \mathbf{H}, \ \alpha_i^{\vee} \cdot \mathbf{v} \ge 0, \ 1/R_4 + \alpha_0^{\vee} \cdot \mathbf{v} \ge 0$
 - A fundamental monopole for each roots α_i , i = 0, 1, ..., r
 - $a_0^{\vee} = 1$, dual Coxeter number $h_G^{\vee} = \sum a_i$ i=0

de
$$4kh_G^{\vee} = 4 + 4(kh_G^{\vee} - 1)$$

S= $\frac{4\pi}{g_4^2} \sum_i a_i \alpha_i^{\vee} \cdot \mathbf{v} = \frac{1}{R_5}$

Different Fractionalization

- Consider a single fundamental string wrapping on a circle N times
 - Effective circle circumference is $2\pi RN$
- Allowed KK momentum is $\frac{1}{NR}$ with total KK momentum being the integer multiple of 1/R.
- Similarly, one can imagine N M5 branes on a circle, regarded as a single M5 brane wrapping the circle N times, would lead to 1/NR KK momentum.
 - 5=3+2, leading to KK momentum 1/3R or 1/2R, for example.

D0+D4+F1(Supertube)

- KK momentum on selfdual strings in (2,0) theory = a wave on a circle
- Supertube: D2 brane circle connecting two D4 branes (Meyer's effect)
 - D0 on D2=magnetic field, F1 on D2=electric field
 - Poyinting vector: angular momenta J_1, J_2
 - Nekrasov partition function

Dyonic Instantons

Wave carrying J_1 : (x_1, x_2) , J_2 : (x_3, x_4) angular momentum

Solve the Laplacian for adjoint scalar in the instanton background For SU(2) gauge group, the dyonic instanton is characterized by $D^{\mu}D_{\mu}\Phi = 0, \ \langle \Phi^a \rangle_{\infty} = v\delta^{a3}.$

Two D4 branes meet at the curves defined by $\Phi(x_{\mu}) = 0$.

Seok Kim, KL 20xx

Zhihao Duan, KL, June Nahmgoong, Xin Wang 2103.06003

Twisting (2,0) SCFTs

5d theory of $G^{(n)}$ on S^1 with Twist

Outer-automorphism

$A_{2r}^{(2)}: \ {f adj} \ { m of} \ A_{2r}$	\rightarrow
$A_{2r-1}^{(2)}: extbf{adj} extbf{ of } A_{2r-1}$	\rightarrow
$D_{r+1}^{(2)}$: adj of D_{r+1}	\rightarrow
$E_6^{(2)}$: adj of E_6	\rightarrow
$D_4^{(3)}$: adj of D_4	\rightarrow

$$\phi(x_4 + 2\pi R_4) = \sigma(\phi(x_4))$$

Twisted affine algebra with twisted Dynkin diagram

 $\log_k \oplus \operatorname{short}_{\frac{k}{2}} \oplus \operatorname{special}_{k \pm \frac{1}{4}} \oplus 1_{k + \frac{1}{2}}$ of C'_r $long_k \oplus short_{\frac{k}{2}}$ of C_r $long_k \oplus short_{\frac{k}{2}}$ of B_r $long_k \oplus short_{\frac{k}{2}}$ of F_4 $\operatorname{long}_k \oplus \operatorname{short}_{\frac{k}{3}}$ of G_2 ,

The simple roots are

$$\beta_j, j = 0, 1, ..., r'$$

Comarks $\sum_{j=0}^{r'} b_j^{\vee} \beta_j^{\vee} = 0$
 β_0 is a short root and $b_0 = 1$
Dual Coxeter number
 $h_G^{\vee} = \sum_i a_i^{\vee} = \sum_j b_j^{\vee}$

 h_G^{\vee} does not change under twist

5d N=2 SYM of B,C,C',G,F types

S-dual in 4-dim = the change of the compactification

S-dual of Twisted Dynkin diagram

5d N = 2 theories of B, C, C', G, Fon a circle

$G^{(n)}$ (4	d G')	G^{\setminus}	/(1)		5 d $~G^{\vee}$
$A_{2r}^{(2)}$ (4d C'_r)		$(C_r^{(1)})_\pi$			$(C_r)_{\pi}$
o ≺● ● ●		⊶∙∙		α ₁ ●	$\alpha_2 \alpha_{r-}$
Õ3–	$\widetilde{\mathrm{O3}^+}$	$O3^+$	$\widetilde{\mathrm{O3}}^+$		$\widetilde{\mathrm{O4}^+}$
$A_{2r-1}^{(2)}$ (4d C_r)	B_{i}	$r^{(1)}$		B_r
}⊷-		}	- + >-	α1 •	α ₂ α _τ -
O3-	O3 ⁺	O3-	$\widetilde{\mathrm{O3}}^-$		$\widetilde{O4}^-$
$D_{r+1}^{(2)}$ (4)	$\operatorname{Ad}B_r$)	$(C_r^{(}$	¹⁾)0		$(C_r)_0$
œ ≑ ∎⊸	·_ 	⊶•-		α ₁ •	α ₂ α _{r-}
Õ3-	$\widetilde{O3}^-$	$O3^+$	$O3^+$		$O4^+$
$D_4^{(3)}$ (4)	d G_2)	G_{i}	$^{(1)}_{2}$		G_2
°∎⊊≢∎		0€∋			$\alpha_1 \alpha_2$
$E_6^{(2)}$ (4d F_4)		$F_4^{(1)}$		F_4	
∘ • •≺• •		∘ ● ●>● ●		α ₁	$\alpha_2 \alpha_3$
-	$\begin{array}{c} G^{(n)} (4) \\ A^{(2)}_{2r} (4) \\ \bullet $	$\begin{array}{c} G^{(n)} (4d \ G' \) \\ A^{(2)}_{2r} (4d \ C'_{r} \) \\ \circ & \bullet & \bullet \\ \widetilde{O3}^{-} \qquad \widetilde{O3}^{+} \\ A^{(2)}_{2r-1} (4d \ C_{r} \) \\ \circ & \bullet & \bullet \\ O3^{-} \qquad O3^{+} \\ D^{(2)}_{r+1} (4d \ B_{r} \) \\ \circ & \bullet & \bullet \\ \widetilde{O3}^{-} \qquad \widetilde{O3}^{-} \\ D^{(3)}_{4} (4d \ G_{2} \) \\ \circ & \bullet & \bullet \\ \end{array}$	$G^{(n)}$ (4d G') G' $A_{2r}^{(2)}$ (4d C'_r) (C'_r) $\widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^+$ $O3^ O3^ O3^+$ $O3^ O3^ O3^+$ $O3^ O3^ O3^+$ $O3^ \widetilde{O3}^ \widetilde{O3}^ O3^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^-$ </th <th>$G^{(n)}$ (4d G') $G^{\vee(1)}$ $A_{2r}^{(2)}$ (4d C'_r) $(C_r^{(1)})_{\pi}$ \sim \sim \sim $\widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $\widetilde{O3}^+$ $A_{2r-1}^{(2)}$ (4d C_r) $B_r^{(1)}$ \sim γ \sim \sim \sim $O3^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^+$ $O3^ \widetilde{O3}^ D_{r+1}^{(2)}$ (4d B_r) $(C_r^{(1)})_0$ \sim $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$</th> <th>$G^{(n)}$ (4d G') $G^{\vee(1)}$ $A_{2r}^{(2)}$ (4d C'_r) $(C_r^{(1)})_{\pi}$ α_1 α_1 $\widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $\widetilde{O3}^+$ $A_{2r-1}^{(2)}$ (4d C_r) $B_r^{(1)}$ α_1 $\widehat{O3}^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $O3^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ O</th>	$G^{(n)}$ (4d G') $G^{\vee(1)}$ $A_{2r}^{(2)}$ (4d C'_r) $(C_r^{(1)})_{\pi}$ \sim \sim \sim $\widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $\widetilde{O3}^+$ $A_{2r-1}^{(2)}$ (4d C_r) $B_r^{(1)}$ \sim γ \sim \sim \sim $O3^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^+$ $O3^ \widetilde{O3}^ D_{r+1}^{(2)}$ (4d B_r) $(C_r^{(1)})_0$ \sim $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$	$G^{(n)}$ (4d G') $G^{\vee(1)}$ $A_{2r}^{(2)}$ (4d C'_r) $(C_r^{(1)})_{\pi}$ α_1 α_1 $\widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $\widetilde{O3}^+$ $A_{2r-1}^{(2)}$ (4d C_r) $B_r^{(1)}$ α_1 $\widehat{O3}^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^+$ $O3^ \widetilde{O3}^ O3^ O3^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ O3^+$ $O3^+$ $O3^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $O3^+$ $O3^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^ \widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ $\widetilde{O3}^+$ O

Twisting (2,0) Theories

S-dual in 4-dim = the change of the compactification

S-dual of Twisted Dynkin diagram

5d N = 2 theories of B, C, C', G, F on a circle

Preservation of DOF

$$\frac{h_G^{\vee} \cdot d_G}{n_G} = h_{H^{\vee}}^{\vee} d_{H^{\vee}}$$

SU(6) 6*35: SO(7) 5*21

	d_G	h_G^{ee}	$ert ec ho ert^2$
A_r	$(r+1)^2 - 1$	r+1	$\frac{1}{12}r^3 + \frac{1}{4}r^2 + \frac{1}{6}r^2$
B_r	$2r^2 + r$	2r-1	$rac{1}{3}r^3-rac{1}{12}r$
C_r	$2r^2 + r$	r+1	$\frac{1}{6}r^3 + \frac{1}{4}r^2 + \frac{1}{12}r^2$
D_r	$2r^2 - r$	2r-2	$\frac{1}{3}r^3 - \frac{1}{2}r^2 + \frac{1}{6}r$
G_2	14	4	$\frac{14}{3}$
F_4	52	9	39
E_6	78	12	78
E_7	133	18	$\frac{399}{2}$
E_8	248	30	620

(2,0) and (1,1) LSTs

Hee-Cheol Kim, KL, Kaiwen Sun, Xin Wang to appear soon

T-duality between (2,0) and (1,1) LSTs

- (2,0) A-type LST: N NS5 branes of type IIA= N M5 branes on M-circle
 - F1= M2 on M-circle= N fundamental self-dual strings
 - (1,1) A-type LST: N NS5 branes in type IIB
 - 6d (1,1) SYM of gauge group SU(N)
 - Instanton strings = F1

A,D,E types

$$\sum_{i=0}^{N-1} \alpha_i = 0$$

T-duality between (2,0) and (1,1) LSTs

- (2,0) LST on a circle of radius R_5
- =(1,1) LST on a circle of radius $\tilde{R}_5 = \ell_s^2/R_5$
- instanton string of (1,1) LST on a circle =compost of 5d magnetic monopole strings
 - T-duality: KK momentum modes <-> winding modes
 - (2,0) wrapped self-dual string<-> (1,1) fractional momentum
 - (2,0) integer KK modes <-> (1,1) instanton strings wapping the circle

T-duality with twist

Lessions from twisting of (2,0) SCFTs

(1,1) LSTs for B,C,C',G,F SYM

Twisting of (1,1) LSTs for A,D,E SYM

(1,1)

(2,0)

Conclusion

Instanton can be fractionalized to magnetic monopoles It appears in 4d YM on a circle or 5d YM on a circle Instanton strings can be broken to monopole strings in 6d (1,1) LST on a

- circle
- Partition functions involving monopoles and instants are considered.

Questions

- Massless monopoles and monopole bubbling
 - Monopole walls and Fermions
- Monopole string junction=self-dual string junctions
- 3d magnetic monopole operators as hyper-multiplets

4d BPS quiver of LSTs on $R^{1+3} \times T^2$