Breaking Instantons to Monopoles

Kimyeong Lee
KIAS
International Seminars on Topological Solitons
Nagoya University
September 25, 2023
KL and P.Yi, 9706023
Zhihao Duan, KL, June Nahmgoong, Xin Wang 2103.06003
Hee-Cheol Kim, KL, Kaiwen Sun, Xin Wang to appear

D0 on D4 branes

KL and P.Yi, 9706023

Instantons on R ${ }^{4}$

$$
\begin{gathered}
\text { Anti self dual } F+* F=0 \\
\text { ADHM construction } \\
{\left[B_{1}, B_{1}^{\dagger}\right]+\left[B_{2}, B_{2}^{\dagger}\right]+q q^{\dagger}-\tilde{q}^{\dagger} \tilde{q}=\zeta} \\
{\left[B_{1}, B_{2}\right]+q \tilde{q}=0}
\end{gathered}
$$

Instanton moduli space $=$ hyper Kahler space
For $S U(2)$ gauge group with single instanton, $\mathrm{dim}=8=4+4$ center of mass motion + relative motion $\mathbb{C}^{2} / \mathbb{Z}_{2}$

Instantons of group G

Rank r_{G}, dimension d_{G} dual Coxeter number h_{G}^{\vee}

k instanton zero mode $4 k h_{G}^{\vee}=4+4\left(k h_{G}^{\vee}-1\right)$

Dynkin diagram G

$G^{(1)}$	h_{G}^{\vee}	dynkin
A_{r}	$r+1$	$\therefore \circ$
B_{r}	$2 r-1$	$\} \cdots \cdots$
C_{r}	$r+1$	* . . -
D_{r}	$2 r-2$	$\ldots \ldots$
E_{6}	12	
E_{7}	18	\ldots. ${ }^{\text {a }}$
E_{8}	30	$\ldots \vdots$
G_{2}	4	0
F_{4}	9	$\cdots \cdot$

D0-D4 branes

K D0 branes in N D4 branes
5d $\mathscr{N}=2$ SYM with $\operatorname{SU}(\mathrm{N})$ gauge group

$$
\left(A_{\mu}, \phi, \lambda\right)+\left(\Phi_{a}, \Psi\right)
$$

$$
\text { Instanton current } J=\frac{1}{32 \pi^{2}} * \operatorname{Tr}(F \wedge F)
$$

$$
\text { Instanton of mass } 8 \pi^{2} / g_{5}^{2}=1 / R_{5}
$$

Kaluza-Klein modes on a circle of radius R_{5}
$6 \mathrm{~d}(2,0)$ SCFTs for N M5 branes on a circle $x_{5} \sim x_{5}+2 \pi R_{5}$

6d (2,0) SCFTs

6d $(2,0)$ SCFTs on N M5 branes

Tensor theory: $(B, \phi, \lambda)+\left(\Phi_{a}, \Psi\right)$ such that $\mathrm{H}=\mathrm{dB}={ }^{*} \mathrm{H}$
M2 branes between 2 M5 branes =self-dual strings 6d $(2,0)$ SCFTs=A,D,E types (type II on $\mathbb{C}^{2} / \Gamma_{A, D, E}$

Degrees of freedom: $h_{G}^{\vee} d_{G}$

D0-D4 branes on a circle

$$
x_{4} \sim x_{4}+2 \pi R_{4}
$$

$4 d \mathscr{N}=4$ SYM with $\operatorname{SU}(\mathrm{N})$ gauge group + KK modes
Coupling constant: $\tau=\theta / 2 \pi+4 \pi i / g_{4}^{2}$

$$
1 / g_{4}^{2}=2 \pi R_{4} / g_{5}^{2}, \alpha_{4}=g_{4}^{2} / 4 \pi=g_{5}^{2} / 8 \pi^{2} R_{4}=R_{5} / R_{4}
$$

$$
\text { S-duality: } \tau \leftrightarrow-1 / \tau
$$

$$
R_{4} \leftrightarrow R_{5}
$$

D0-D4 branes on S^{1}

Gauge holonomy $\left\langle A_{4}\right\rangle=\left(v_{1}, v_{2}, \cdots, v_{N}\right) v_{1} \geq v_{2} \geq \cdots v_{N} \geq v_{N+1}=v_{1}+1 / R_{4}$
T-duality: D1-D3 branes with D3 branes position v_{i} on the dual circle
For each simple root $\boldsymbol{\alpha}_{i}=e_{i}-e_{i+1},(i=1, \ldots, N-1)$, and $\boldsymbol{\alpha}_{0}=e_{N}-e_{1}$ a fundamental monopole of charge $\boldsymbol{\alpha}_{i}^{\vee}=2 \alpha_{i} / \alpha_{i}^{2}=\alpha_{i}$ and mass

$$
\frac{4 \pi}{g_{4}^{2}} \boldsymbol{\alpha}_{i} \cdot \mathbf{v}=\frac{4 \pi}{g_{4}^{2}}\left(v_{i}-v_{i+1}\right)
$$

The comarks are $a_{i}=1$ and so the total magnetic charge $=0$ and total mass is

$$
\frac{4 \pi}{g_{4}^{2}} \cdot \frac{1}{R_{4}}=\frac{1}{R_{5}} \text { is the instanton mass }
$$

Dynkin diagram G

$G^{(1)}$	h_{G}^{\vee}	dynkin
A_{r}	$r+1$	$\therefore \circ$
B_{r}	$2 r-1$	$\} \cdots \cdots$
C_{r}	$r+1$	* . . -
D_{r}	$2 r-2$	$\ldots \ldots$
E_{6}	12	
E_{7}	18	\ldots. ${ }^{\text {a }}$
E_{8}	30	$\ldots \vdots$
G_{2}	4	0
F_{4}	9	$\cdots \cdot$

5 d theory of $G^{(1)}$ on S^{1}

Gauge holonomy $\left\langle A_{4}\right\rangle=\mathbf{v} \cdot \mathbf{H}, \alpha_{i}^{\vee} \cdot \mathbf{v} \geq 0,1 / R_{4}+\alpha_{0}^{\vee} \cdot \mathbf{v} \geq 0$
A fundamental monopole for each roots $\alpha_{i}, i=0,1, \ldots, r$
Comarks $a_{i}^{\vee}: \sum_{i=0}^{r} a_{i}^{\vee} \boldsymbol{\alpha}_{i}^{\vee}=0$ and $a_{0}^{\vee}=1$, dual Coxeter number $h_{G}^{\vee}=\sum_{i=0}^{r} a_{i}$
k instanton zero mode $4 k h_{G}^{\vee}=4+4\left(k h_{G}^{\vee}-1\right)$

$$
\text { Instanton mass }=\frac{4 \pi}{g_{4}^{2}} \sum_{i} a_{i} \alpha_{i}^{\vee} \cdot \mathbf{v}=\frac{1}{R_{5}}
$$

Different Fractionalization

Consider a single fundamental string wrapping on a circle N times Effective circle circumference is $2 \pi R N$

Allowed KK momentum is $\frac{1}{N R}$ with total KK momentum being the integer multiple of $1 / R$.

Similarly, one can imagine N M5 branes on a circle, regarded as a single M5 brane wrapping the circle N times, would lead to $1 / \mathrm{NR}$ KK momentum.
$5=3+2$, leading to $K K$ momentum $1 / 3 R$ or $1 / 2 R$, for example.

D0+D4+F1(Supertube)

> Dyonic Instantons

KK momentum on selfdual strings in $(2,0)$ theory $=$ a wave on a circle
Wave carrying $J_{1}:\left(x_{1}, x_{2}\right), J_{2}:\left(x_{3}, x_{4}\right)$ angular momentum
Supertube: D2 brane circle connecting two D4 branes (Meyer's effect)
D0 on D2=magnetic field, F1 on D2=electric field
Poyinting vector: angular momenta J_{1}, J_{2}
Nekrasov partition function

D0+D4+F1(Supertube)

Solve the Laplacian for adjoint scalar in the instanton background For $\operatorname{SU}(2)$ gauge group, the dyonic instanton is characterized by

$$
D^{\mu} D_{\mu} \Phi=0,\left\langle\Phi^{a}\right\rangle_{\infty}=v \delta^{a 3}
$$

Two D4 branes meet at the curves defined by $\Phi\left(x_{\mu}\right)=0$.

Twisting (2,0) SCFTs

Zhihao Duan, KL, June Nahmgoong, Xin Wang 2103.06003

5d theory of $G^{(n)}$ on S^{1} with Twist

Outer-automorphism $\phi\left(x_{4}+2 \pi R_{4}\right)=\sigma\left(\phi\left(x_{4}\right)\right)$
Twisted affine algebra with twisted Dynkin diagram

$$
\begin{array}{lll}
A_{2 r}^{(2)}: \text { adj of } A_{2 r} & \longrightarrow & \operatorname{long}_{k} \oplus \operatorname{short}_{\frac{k}{2}} \oplus \operatorname{special}_{k \pm \frac{1}{4}} \oplus 1_{k+\frac{1}{2}} \text { of } C_{r}^{\prime} \\
A_{2 r-1}^{(2)}: \text { adj of } A_{2 r-1} & \longrightarrow & \operatorname{long}_{k} \oplus \operatorname{short}_{\frac{k}{2}} \text { of } C_{r} \\
D_{r+1}^{(2)}: \text { adj of } D_{r+1} & \longrightarrow & \operatorname{long}_{k} \oplus \operatorname{short}_{\frac{k}{2}} \text { of } B_{r} \\
E_{6}^{(2)}: \text { adj of } E_{6} & \longrightarrow & \operatorname{long}_{k} \oplus \operatorname{short}_{\frac{k}{2}} \text { of } F_{4} \\
D_{4}^{(3)}: \text { adj of } D_{4} & \longrightarrow & \operatorname{long}_{k} \oplus \operatorname{short}_{\frac{k}{3}} \text { of } G_{2}
\end{array}
$$

The simple roots are

$$
\beta_{j}, j=0,1, \ldots, r^{\prime}
$$

Comarks $\sum_{j=0}^{r^{\prime}} b_{j}^{\vee} \beta_{j}^{\vee}=0$
β_{0} is a short root and $b_{0}=1$

> Dual Coxeter number

$$
h_{G}^{\vee}=\sum_{i} a_{i}^{\vee}=\sum_{j} b_{j}^{\vee}
$$

h_{G}^{\vee} does not change under twist

5d N=2 SYM of B,C,C',G,F types

S-dual in 4-dim = the change of the compactification

S-dual of Twisted Dynkin diagram
$5 \mathrm{~d} N=2$ theories of B, C, C^{\prime}, G, F on a circle

$G / \mathrm{Out}(G)$	$G^{(n)}\left(4 \mathrm{~d} G^{\prime}\right)$	$G^{v(1)}$	${ }^{5 d} G^{V}$
$\stackrel{a_{1}}{\substack{A_{2 r} / \mathbb{Z}_{2} \\ a_{1} \\ a_{r} \\ a_{r+1}+a_{t+2}}}$	$\begin{gathered} A_{2 r}^{(2)}\left(4 \mathrm{~d} C_{r}^{\prime}\right) \\ \cdots \cdots \\ \widetilde{O^{-}} \quad \widetilde{\mathrm{O}}^{+} \\ \\ \hline \end{gathered}$	$\begin{gathered} \left(C_{r}^{(1)}\right)_{\pi} \\ \cdots \cdots \\ \mathrm{O}^{+} \quad \widetilde{\mathrm{OB}^{+}} \end{gathered}$	
	$\begin{aligned} & A_{2_{2-1}^{(2)}\left(4 \mathrm{~d} C_{r}\right)}^{2} \\ & \cdots \cdots \cdots \\ & \mathrm{O3}^{-} \end{aligned}$	$\begin{gathered} B_{r}^{B_{r}^{(1)}} \\ \therefore \cdot \cdots \\ \mathrm{O3}^{-} \quad \widetilde{\mathrm{OB}^{-}} \end{gathered}$	
	$\begin{gathered} D_{r+1}^{(2)}\left(4 \mathrm{~d} B_{r}\right) \\ \ldots \\ \widetilde{\mathrm{OB}}^{-} \quad \widetilde{\mathrm{O}}^{-} \end{gathered}$	$\begin{gathered} \left(C_{r}^{(1)}\right)_{0} \\ \ldots \ldots \\ \mathrm{O}^{+} \quad \mathrm{OB}^{+} \end{gathered}$	$\begin{gathered} \left(C_{r}\right)_{0} \\ \stackrel{\alpha_{1}}{\sim} \quad \stackrel{a_{2}}{\bullet} \stackrel{\alpha_{r-1}, \alpha_{r}}{\bullet} \\ \mathrm{O}^{+} \end{gathered}$
	$D_{4}^{(3)}\left(4 \mathrm{~d} G_{2}\right)$	$\begin{aligned} & G_{2}^{(1)} \\ & 0 . \end{aligned}$	$$
	$E_{6}^{(2)}\left(4 \mathrm{~d} F_{4}\right)$	$F_{4}^{(1)}$ 。.... .	

Twisting (2,0) Theories

S-dual in 4-dim = the change of the compactification

S-dual of Twisted Dynkin diagram
$5 \mathrm{~d} N=2$ theories of B, C, C^{\prime}, G, F on a circle

Preservation of DOF

$$
\frac{h_{G}^{\vee} \cdot d_{G}}{n_{G}}=h_{H^{\vee}}^{\vee} d_{H^{\vee}}
$$

SU(6) 6*35: SO(7) 5*21

	d_{G}	h_{G}^{\vee}	$\|\vec{\rho}\|^{2}$
A_{r}	$(r+1)^{2}-1$	$r+1$	$\frac{1}{12} r^{3}+\frac{1}{4} r^{2}+\frac{1}{6} r$
B_{r}	$2 r^{2}+r$	$2 r-1$	$\frac{1}{3} r^{3}-\frac{1}{12} r$
C_{r}	$2 r^{2}+r$	$r+1$	$\frac{1}{6} r^{3}+\frac{1}{4} r^{2}+\frac{1}{12} r$
D_{r}	$2 r^{2}-r$	$2 r-2$	$\frac{1}{3} r^{3}-\frac{1}{2} r^{2}+\frac{1}{6} r$
G_{2}	14	4	$\frac{14}{3}$
F_{4}	52	9	39
E_{6}	78	12	78
E_{7}	133	18	$\frac{399}{2}$
E_{8}	248	30	620

(2,0) and (1,1) LSTs

Hee-Cheol Kim, KL, Kaiwen Sun, Xin Wang to appear soon

T-duality between $(2,0)$ and $(1,1)$ LSTs

A,D,E types

$(2,0)$ A-type LST: N NS5 branes of type IIA= N M5 branes on M-circle

$$
\mathrm{F} 1=\mathrm{M} 2 \text { on } \mathrm{M} \text {-circle }=\mathrm{N} \text { fundamental self-dual strings } \sum_{i=0}^{N-1} \alpha_{i}=0
$$

$(1,1)$ A-type LST: N NS5 branes in type IIB
6d (1,1) SYM of gauge group SU(N)
Instanton strings = F1

T-duality between $(2,0)$ and $(1,1)$ LSTs

$(2,0)$ LST on a circle of radius R_{5}

$$
=(1,1) \mathrm{LST} \text { on a circle of radius } \tilde{R}_{5}=\ell_{s}^{2} / R_{5}
$$

instanton string of $(1,1)$ LST on a circle $=$ compost of 5 d magnetic monopole strings

T-duality: KK momentum modes <-> winding modes
$(2,0)$ wrapped self-dual string<-> $(1,1)$ fractional momentum
$(2,0)$ integer KK modes <-> $(1,1)$ instanton strings wapping the circle

T-duality with twist

Lessions from twisting of $(2,0)$ SCFTs

(1,1) LSTs for B,C,C',G,F SYM

$(1,1)$	$(2,0)$	
$B_{r}^{(1)} \quad(2 \mathrm{r}-1)$	$\widetilde{\mathrm{OS}}^{-}$ $O 4^{-}+\widetilde{O 4}^{-}$	
$\left(C_{r}^{(1)}\right)_{0}(\mathrm{r}+1)$	$\begin{gathered} \mathrm{O}^{+} \\ O 4^{+}+O 4^{+} \end{gathered}$	
$\begin{array}{r} \left(C_{r}^{(1)}\right)_{0} \quad(\mathrm{r}+1) \\ \Rightarrow \bullet \bullet \quad \pi, \pi \end{array}$	$\begin{gathered} \mathrm{O}^{+} \\ \widetilde{O 4}^{+}+\widetilde{O 4}^{+} \end{gathered}$	
$\left(C_{r}^{(1)}\right)_{\pi}(\mathrm{r}+1)$	$\widetilde{\mathrm{O} 5}^{+}$ $O 4^{+}+\widetilde{O 4}{ }^{+}$	

Twisting of $(1,1)$ LSTs for A,D,E SYM

Conclusion

Instanton can be fractionalized to magnetic monopoles
It appears in 4d YM on a circle or 5d YM on a circle
Instanton strings can be broken to monopole strings in $6 d(1,1)$ LST on a circle

Partition functions involving monopoles and instants are considered.

Questions

4d BPS quiver of LSTs on $R^{1+3} \times T^{2}$
Massless monopoles and monopole bubbling
Monopole walls and Fermions
Monopole string junction=self-dual string junctions
3d magnetic monopole operators as hyper-multiplets

