$K P$ solitons and
the Riemann theta furctions
Muji Kodama (SDUST 2 OSU)
Nagoya, July 20-2023.

(a)

(b)

(c)

Fig. 7. Level lines for the solutions of the KP-II equation for (a) $\varepsilon=10^{-2}$, (b) $\varepsilon=10^{-10}$, and (c) $\varepsilon=10^{-18}$. The horizontal axis is $-60 \leq x \leq 60$, and the vertical axis is $0 \leq y \leq 120 ; t=0$. The light color corresponds to the lowest values of u, and the dark color, to the highest values of u.

Abenda-Grinevich 2017

$$
\left(-4 u_{t}+6 u u_{x}+u_{x \lambda x}\right)_{x}+3 u_{y y}=0
$$

1. Basic Information of $K P$ solitons

One soliton has a form,

$$
\begin{aligned}
& u(x, y, t)=\frac{\left(k_{i}-k_{j}\right)^{2}}{2} \operatorname{sech}^{2} \frac{1}{2}\left(\xi_{i}-\xi_{j}\right) \\
& \xi_{i}(x, y, t)=k_{i} x+k_{i}^{2} y+k_{i}^{3} t+\xi_{i}^{0}
\end{aligned}
$$

where $k_{i} \& k_{j}$ are arbitruy real courts. We call is [i,j]-soliton, repent $\binom{i, j}{j, i}$

Any KP soliton can be written in

$$
\begin{aligned}
& u(x, y, t)=2 \partial_{x}^{2} \ln \tau(x, y, t) \\
& \tau(x, y, t)=\operatorname{det}(A E(x, t)) \\
& A \in G_{r}^{N M}(N, M): N \times M \text { mdrix of full rank. } \\
& E(x, y, t)=\left[\begin{array}{cccc}
e^{\xi_{1}} & k_{1} e^{\xi_{1}} & \cdots & k_{1}^{N_{-1}} e^{\xi_{1}} \\
\vdots & \vdots & & \vdots \\
e^{\xi_{M}} & k_{M} e^{\xi_{H}} & \cdots & k_{M}^{N_{M}-1} e^{\xi_{M}}
\end{array}\right]
\end{aligned}
$$

Lemma: Each $A \in G_{r}^{T N N}(N, M)$ can be parametrized by a derangement $\pi \in S_{M}$
Theorem: Each KP soliton has the follain properties: Let π be a de rangerment of S_{M}.

- if $\pi(i)>i \quad$ (excedence), \exists a solition of type $[i, \pi(i)]$ in $y \gg 0$
- i $\pi(i)<i$ (anti-excedere), \exists a solifon of type $[\pi(i), i]$ in $y \ll 0$

Interaction patterns consist of
X and Y shapes.

Examples $\operatorname{Gr}(\mathrm{N} .4)$

- $N=1 \quad A=(1 * * * *), \quad \operatorname{dim}=3$

$$
\begin{gathered}
\pi=(4 \mid 23) \\
(g=3)
\end{gathered}
$$

- $N=2$
(a) $A=\left(\begin{array}{lll}1 & 0 & * * \\ 0 & 1 & *\end{array}\right) \quad \operatorname{dim}=4$

$$
\begin{gathered}
\pi=(3412) \\
(g=3) .
\end{gathered}
$$

(b)

$A=\left(\begin{array}{llll}1 & * & 0 & * \\ 0 & 0 & 1 & *\end{array}\right)$
$\operatorname{dim}=3$

$$
\begin{aligned}
& (g=3) \\
& \pi=(3142)
\end{aligned}
$$

(c)

$\pi=(2413)$
dim $=3 \quad(g=3)$
$\sum(d) \circledast \pi=(4312), \quad(g=3)$
$X_{(e)}^{(d)} \pi=(3421) \quad(g=3)$
$X(f) \bigcirc \bigcirc \pi=(2143) \quad(g=2)$
$\psi(g)<\pi=(4321) \quad(g=2)$
$\therefore N=3 \leadsto \pi=(2341) \quad(g=3)$

(a)

(b)

(c)

Fig. 7. Level lines for the solutions of the KP-II equation for (a) $\varepsilon=10^{-2}$, (b) $\varepsilon=10^{-10}$, and (c) $\varepsilon=10^{-18}$. The horizontal axis is $-60 \leq x \leq 60$, and the vertical axis is $0 \leq y \leq 120 ; t=0$. The light color corresponds to the lowest values of u, and the dark color, to the highest values of u.

(a)

(b)

(c)

Fig. 8. 3D plots for the solutions of the KP-II equation. The parameters and colors are the same as in Fig. 7.

Note:
Each KP soliton can be also obtained by a certain limit of Riemann θ-function. (cf. Mumonorl, Abenda-Grinovid)

$$
u(x, y, t)=2 \partial_{x}^{2} \ln \theta(x, y, t)+C
$$

Tropical limit of θ-function
(Mumford, 84 , Agostini etal 23)

$$
\frac{\theta(z: \Omega)=\sum_{m \in \mathbb{Z}^{g}} \exp 2 \pi i\left[\frac{m^{\top} \Omega m}{2}+m^{\top} z\right]}{z \in \mathbb{C}^{g} g: \text { genus. }}
$$

$\Omega: g \times g$. Symmetric In $\Omega>0$
period matrix $\Omega=A^{-1} B, \quad A=\left(\oint_{0_{i}} \omega_{j}\right), B=\left(\oint_{\alpha_{i}} \omega_{j}\right)$

Expornent

$$
\frac{1}{2} m^{\top} \Omega m+m^{\top} z=\frac{1}{2} \sum_{i=1}^{g} m_{i}^{2} \Omega_{i i}+\sum_{i c j} m_{i} w_{j} \Omega_{i j}+\sum_{i=1}^{g} m_{i} z_{i}
$$

Shift $\quad z_{i} \rightarrow z_{i}-\frac{1}{2} \Omega_{i i} \quad(1 \leq i \leq g)$
Then

$$
\frac{1}{2} \sum_{i=1}^{g} m_{i}\left(m_{i}-1\right) \Omega_{i i}+\sum_{i<j} m_{i} m_{j} \Omega_{i j}+\sum_{i=1}^{g} m_{i} z_{i}
$$

Now take the limits $\Omega_{i i} \rightarrow+i \infty$
Then only the terms with $m_{i} \in\{0,1\}$ remain nonzero
Thus ∞-sum of exponential terns in θ becomes a finite sum of 2^{g} terms $\Rightarrow K P$ soliton (with some conditions)

Examples

- $g=1, \quad \theta(z, \Omega)=1+e^{2 \pi i z_{1}} \quad\left\{\begin{array}{l}m_{1}=0 \\ m_{1}=1\end{array}\right.$

Take $2 \pi_{i} z_{1}=\varphi_{1}=\xi_{2}-\xi_{1}$
where $\xi_{i}=k_{i} x+k_{i}^{2} y+k_{i}^{3} t+\xi_{i}^{0}$
cf. $\frac{\tau_{k p}=e^{\xi_{1}}+e^{\xi_{2}}=e^{\xi_{1}}\left(1+e^{\varphi_{1}}\right)}{\text { One -kp soliton. }}$

- $g=2 . \quad \theta(z, \Omega)=1+e^{\varphi_{1}}+e^{\varphi_{2}}+e^{2 \pi i \Omega_{12}} e^{\varphi_{1}+\varphi_{2}}$

$$
\begin{aligned}
& \text { (b) } e^{2 \pi i \Omega_{12}}=\frac{\left(k_{1}-k_{2}\right)\left(k_{3}-k_{4}\right)}{\left(k_{1}-k_{3}\right)\left(k_{2}-k_{*}\right)},<\text { (日) } \\
& \tau_{k p}=\left(k_{1}-k_{2}\right) e^{\xi_{1}+\xi_{2}} \theta(z, \otimes) \overbrace{}^{\pi=(4321)} \begin{array}{l}
G_{r}(2.4)
\end{array}
\end{aligned}
$$

(C) further limit $\Omega_{12} \rightarrow+i \infty$

Remank: Dullgaph of soliton gaph (Voronoi polptope):

$$
\text { Forg=2. } \Delta \text { or }
$$

\square (Agostini et al 23)

In general, genus g-fiction has the limit after taking $\Omega_{i i} \rightarrow+i \infty$ limits,

$$
\left.\begin{array}{rl}
\theta(z, \Omega) \rightarrow & \sum_{m \in\{0,1\}^{g}} \exp 2 \pi_{i}\left[\sum_{i c j} m_{i} m_{j} \Omega_{i j}+\sum_{i=1}^{g} m_{i} z_{i}\right] \\
=1 & +\sum_{k=1}^{g} e^{\varphi_{n}}+\sum_{k<l} e^{2 \pi_{i} \Omega_{k l}} e^{\varphi_{k}+\varphi_{l}} \\
& +\cdots \cdots+e^{2 \pi i \sum_{k<l} \Omega_{k l}} e^{\sum_{k=1}^{\delta} \varphi_{k}}
\end{array}\right]
$$

$K P \tau$-function for $A \in \operatorname{Gr}(N, M)$

$$
\tau_{k p}(x, y, t)=\sum_{I \in \mu(A)} \Delta_{I}(A) E_{I}(x, y, t)
$$

where $M(A):=\left\{I=\left(i, i, i_{N}\right) \mid \Delta_{2}(A) \neq 0\right\}$
$\Delta_{T}(A): N \times N$ ming of A

$$
E_{I}(A)=\prod_{k<l}\left(k_{i_{k}}-k_{i_{l}}\right) \cdot e^{\xi_{i}+\cdots+\xi_{i l}}
$$

Proposition: $\tau_{k p}$ can be written in

$$
\tau_{k \rho} \equiv 1+\sum_{k=1}^{N(M-N)} \widetilde{\Delta}_{k} e^{\widetilde{\Phi}_{k}}+\cdots
$$

when $\quad \hat{\varphi}_{k}=\xi_{j_{k}}-\xi_{i_{k}}\left\{\begin{array}{l}j_{k}=J \backslash I_{0} \\ i_{k}=I_{0} \backslash J\end{array}\right.$
I_{0} : Lexicog paphos min l pivot set $=\left\{i_{1} \cdot i_{k}\right\}$ $\left|J \cap I_{0}\right|=N-1$.

Theorem:
$\tau_{k p}$ can be expressed by the θ-function with appropriate limits, $\theta\left(z, \Omega_{k p}\right)$, and $2 \pi i z_{k}=\xi_{i_{k}}-\xi_{j k}$.

Examples: $\quad A=\left(\begin{array}{ccc}10 & -c-d \\ 01 & a b\end{array}\right) \in G_{V}^{T N N}(2,4)$

$$
\begin{aligned}
\tau_{k p}= & \left(k_{1}-k_{2}\right) e^{\xi_{1}+\xi_{2}}+a\left(k_{1}-k_{3}\right) e^{\xi_{1}+\xi_{3}}+b\left(k_{1}-k_{4}\right) e^{\xi_{1}+\xi_{4}} \\
& +c\left(k_{2}-k_{3}\right)^{\xi_{2}+\xi_{3}}+d\left(k_{2}-k_{4}\right) e^{\xi_{2}+\xi_{4}}+\Delta_{34}\left(k_{2}-k_{4}\right) e^{\xi_{2}+\frac{\xi}{4}} \\
\equiv & 1+\frac{a\left(k_{1}-k_{2}\right)}{k_{1}-k_{2}} e^{\xi_{3}-\xi_{2}}+\frac{b\left(k_{1}-k_{4}\right)}{k_{1}-k_{2}} e^{\xi_{4}-\xi_{2}}+\frac{c\left(k_{2}-k_{3}\right)}{k_{1}-k_{2}} e^{\xi_{9}-\xi_{1}} \\
& +d \frac{k_{2}-k_{4}}{k_{1}-k_{2}} e^{\xi_{4}-\xi_{1}}+\Delta_{24} \frac{k_{3}-k_{4}}{k_{1}-k_{2}} e^{\xi_{4}-\xi_{1}+\xi_{3}-\xi_{2}}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left\{\begin{array}{ll}
\varphi_{1}= & \xi_{3}-\xi_{2}+\varphi_{1}^{0}
\end{array} \quad \varphi_{2}=\xi_{4}-\xi_{2}+\varphi_{2}^{0}\right. \\
\varphi_{3}= & \xi_{3}-\xi_{1}+\varphi_{2}^{0} \quad \bar{\varphi}_{4}=\xi_{4}-\xi_{1}+\varphi_{4}^{0}
\end{array}\right\} \begin{aligned}
\tau_{k p}= & 1+e^{\varphi_{1}}+e^{\varphi_{2}}+e^{\varphi_{3}}+e^{\varphi_{4}} \\
& +\tilde{\Delta}_{4} e^{\varphi_{1}+\varphi_{4}}
\end{aligned}
$$

with $\varphi_{1}+\varphi_{4}=\varphi_{2}+\varphi_{3}$
This is a limit of θ of genus 3.

Consider $g=4 \quad \theta$-factions and take limits $\Omega_{i i} \rightarrow+i \infty \quad i=1, \cdots, 4$.
Then we have

$$
\begin{aligned}
\hat{\theta}= & 1+e^{\varphi_{1}}+\cdots+e^{\varphi_{4}} \\
& +e^{2 \pi i \Omega_{12}} e^{\varphi_{1}+\varphi_{2}}+\cdots+e^{2 \pi i \Omega_{34}} e^{\varphi_{3}+\varphi_{4}} \\
& +e^{2 \pi i \Omega_{12} \Omega_{13} \Omega_{13}} e^{\varphi_{1}+\varphi_{2}+\varphi_{3}} \\
& +\cdots+e^{2 \pi i \varphi_{12}+\cdots+\varphi_{34}} e^{\varphi_{1}+\cdots \varphi_{4}}
\end{aligned}
$$

Then take $\Omega_{12}, \Omega_{13}, \Omega_{24}, \Omega_{34} \rightarrow$ tim and $\varphi_{1}+\varphi_{4}=\varphi_{2}+\varphi_{3}$.
Remark:
$\tau_{k P}$ can be written in the form of Gramian, $\quad \tau_{k p}=\left|\delta_{i j}+a_{i} b_{j} \frac{e^{P_{i}-Q_{j}}}{p_{i}-q_{i}}\right|$

$$
P_{i}=p_{i} x+p_{i}^{2} y+p_{i}^{3} t, \quad Q_{j}=q_{j} x+q_{j}^{2} y+q_{j}^{3} t .
$$

Possible models of KP soliton gas.
Recall that the limits $\Omega_{i i} \rightarrow+i \infty$ gives

$$
\begin{aligned}
\tau_{k p}=1 & +\sum e^{\varphi_{k}}+\sum_{k<l} e^{2 \pi i Q_{k l}} e^{\varphi_{k}+\varphi_{l}} \\
& +\cdots+e^{2 \pi i \sum_{k+1} \Omega_{k l}} e^{\sum_{1} \varphi_{k}}
\end{aligned}
$$

The corresponding KP soliton consists of g line selitons without resonances, ire.
 Those interaction pts have "phaseshipts". which are determined by $\Omega_{i j}$

- Then considering $\Omega_{i j}$ to be random variables, this KP soliton may be considered to be a KP soliton gas with random phase shifts. (similar to th KdV solitan gas)
- Also taking random choice of $\Omega_{i j} \rightarrow+i \infty$, one can have random pattern including resonant interaction (Y-shape) in addition to random phases.
- A quasi-periodic (QP) solution gives a set of KP solitons (flag structure). Since each KP soliton can be prarauni njed by a permutation, one can (?) consider a probabilistic measure of random permutation (like Schar measure) and find the most likely KP soliton in the solution, (wave timulure?)

