Calogero Model from Real Symmetric Φ^{4} Matrix Model as a Noncommutative Scalar Field Theory

Naoyuki Kanomata

Tokyo University of Science

$$
\text { March 15, } 2024
$$

Collaborative work with Professor Harald Grosse, Professor Akifumi Sako, and Professor Raimar Wulkenhaar

Letters in Mathematical Physics 114 (2024) 1-16, arXiv:2311.10974 [hep-th]

International Seminar-Type Online Workshop on Noncommutative Integrable Systems

Introduction

- Quantum field theories on noncommutative spaces such as Moyal spaces have given a new perspective to matrix models.
Matrix Model on Noncommutative Spaces (Grosse-Wulkenhaar model)
- It corresponds to scalar field theories on noncommutative spaces, which is renormalizable by adding a harmonic oscillator potential to the action.
- Φ^{3} matrix model[Grosse-Steinacker ('05), Grosse-Sako-Wulkenhaar ('17)]
- ϕ^{4} matrix model[Grosse-Sako ('23), arXiv:2308.11523]

It has recently been shown that the partition function of a certain Hermitian Φ^{4}-matrix model corresponds to a zero-energy solution of a Schrödinger equation for the Hamiltonian of N -body harmonic oscillator system.

Introduction

Real Symmetric Φ^{4} Matrix Model [Grosse-N.K-Sako-Wulkenhaar ('24)]

- We study a real symmetric Φ^{4}-matrix model whose kinetic term is given by $\operatorname{Tr}\left(E \Phi^{2}\right)$, where E is a positive diagonal matrix without degenerate eigenvalues.
- We show that the partition function of this matrix model corresponds to a zero-energy solution of a Schödinger type equation with Calogero-Moser Hamiltonian.
- A family of differential equations satisfied by the partition function is also obtained from the Virasoro algebra (Witt Algebra).
The discussion [Awata-Matsuo-Odake-Shiraishi ('94)] on an arbitrary polynomial-type potential $V(\Phi)=\sum_{n=0}^{\infty} \eta_{n} \Phi^{n}$ with a coupling constant η_{n} is quite different from the discussion [Grosse-Sako ('23), Grosse-N.K-Sako-Wulkenhaar ('24)] in this study, where the potential $V(\Phi)=\frac{\eta}{4} \Phi^{4}$ is fixed.

Φ^{4} Matrix Model

Definition(Action of ϕ^{4} Matrix Model)

$$
S_{E}[\Phi]=N \operatorname{Tr}\left\{E \Phi^{2}+\frac{\eta}{4} \Phi^{4}\right\}
$$

- $\Phi=\left(\Phi_{i j}\right), \quad i, j=1, \cdots, N$:
real symmetric matrix $(\beta=1)$, Hermitian matrix $(\beta=2)$
- $E=\left(E_{k} \delta_{k m}\right), \quad k, m=1, \cdots, N$: diagonal matrix
- $\eta \in \mathbb{R}$

Definition(Partition Function)

$$
Z(E, \eta):=\int d \Phi e^{-S_{E}[\Phi]}
$$

Main Theorem
 [Grosse-Sako ('23), Grosse-N.K-Sako-Wulkenhaar ('24)]

Let $\Delta(E)$ be the Vandermonde determinant $\Delta(E):=\prod_{k<1}\left(E_{I}-E_{k}\right)$.
Then the function

$$
\Psi(E, \eta):=e^{-\frac{N}{\beta \eta} \sum_{i=1}^{N} E_{i}^{2}} \Delta(E)^{\frac{\beta}{2}} Z(E, \eta)
$$

is a zero-energy solution of the Schrödinger type equation

$$
\mathcal{H} \Psi(E, \eta)=0
$$

- \mathcal{H} is the Hamiltonian for the N-body harmonic oscillator system

$$
(\beta=2)
$$

- \mathcal{H} is the Hamiltonian for Calogero-Moser model $(\beta=1)$

$$
\begin{equation*}
\mathcal{H}:=\frac{-\eta}{2 N}\left(\beta \sum_{i=1}^{N} \frac{\partial^{2}}{\partial E_{i}^{2}}+\frac{2-\beta}{4} \sum_{i \neq j} \frac{1}{\left(E_{i}-E_{j}\right)^{2}}\right)+2 \frac{N}{\beta \eta} \sum_{i=1}^{N} E_{i}^{2} . \tag{1}
\end{equation*}
$$

In this sense, this matrix model is a solvable system.

Schwinger-Dyson Equation

First, a Schwinger-Dyson equation is derived from

$$
\int_{S_{N}} d \Phi \frac{\partial}{\partial \Phi_{t t}}\left(\Phi_{t t} e^{-S[\Phi]}\right)=0
$$

which is expressed as

$$
\begin{equation*}
Z(E, \eta)-2 N \sum_{i=1}^{N}\left\langle H_{i t} \Phi_{t t} \Phi_{t i}\right\rangle-\eta N \sum_{k, l=1}^{N}\left\langle\Phi_{t k} \Phi_{k l} \Phi_{l t} \Phi_{t t}\right\rangle=0 \tag{2}
\end{equation*}
$$

- S_{N} : the space of real symmetric $N \times N$-matrices
- $H=\left(H_{i j}\right), \quad i, j=1, \cdots, N$: real symmetric matrix with nondegenerate eigenvalues $\left\{E_{1}, E_{2}, \cdots, E_{N} \mid E_{i} \neq E_{j}\right.$ for $\left.i \neq j\right\}$

Schwinger-Dyson Equation

Similarly, for $p \neq s$, from

$$
\int_{S_{N}} d \Phi \frac{\partial}{\partial \Phi_{p s}}\left(\Phi_{p s} e^{-S[\Phi]}\right)=0
$$

the following is obtained:

$$
\begin{align*}
& \quad Z(E, \eta)-2 N \sum_{i=1}^{N}\left(\left\langle H_{i p} \Phi_{p s} \Phi_{s i}\right\rangle+\left\langle H_{s i} \Phi_{i p} \Phi_{p s}\right\rangle\right) \\
& - \tag{3}\\
& -2 N \eta \sum_{k, l=1}^{N}\left\langle\Phi_{s k} \Phi_{k l} \Phi_{l p} \Phi_{p s}\right\rangle=0
\end{align*}
$$

From (2) and (3), after taking sum over the indices t, p, s, we get the follwing:

$$
\begin{aligned}
& \frac{N(N+1)}{2} Z(E, \eta)-2 N \sum_{i, p, s=1}^{N} H_{i p}\left\langle\Phi_{i s} \Phi_{s p}\right\rangle-\eta N \sum_{k, l, s, p=1}^{N}\left\langle\Phi_{p s} \Phi_{s k} \Phi_{k l} \Phi_{l p}\right\rangle \\
& =0
\end{aligned}
$$

By using

$$
\begin{aligned}
& \frac{\partial Z(E, \eta)}{\partial H_{p s}}=-2 N \sum_{k=1}^{N}\left\langle\Phi_{p k} \Phi_{k s}\right\rangle \text { for } p \neq s \\
& \frac{\partial Z(E, \eta)}{\partial H_{p p}}=-N \sum_{k=1}^{N}\left\langle\Phi_{p k} \Phi_{k p}\right\rangle \\
& \frac{\partial^{2} Z(E, \eta)}{\partial H_{p s} \partial H_{t u}}=4 N^{2} \sum_{k, l=1}^{N}\left\langle\Phi_{p k} \Phi_{k s} \Phi_{t \mid} \Phi_{l u}\right\rangle \text { for } p \neq s, t \neq u \\
& \frac{\partial^{2} Z(E, \eta)}{\partial H_{p p} \partial H_{p p}}=N^{2} \sum_{k, l=1}^{N}\left\langle\Phi_{p k} \Phi_{k p} \Phi_{p l} \Phi_{\mid p}\right\rangle
\end{aligned}
$$

a partial differential equation is obtained:

$$
\begin{align*}
& \frac{N(N+1)}{2} Z(E, \eta)+\sum_{i \neq p} H_{i p} \frac{\partial}{\partial H_{i p}} Z(E, \eta)+2 \sum_{p=1}^{N} H_{p p} \frac{\partial}{\partial H_{p p}} Z(E, \eta) \\
& -\frac{\eta}{N} \sum_{s=1}^{N} \frac{\partial^{2}}{\partial H_{s s} \partial H_{s s}} Z(E, \eta)-\frac{\eta}{4 N} \sum_{s \neq l} \frac{\partial^{2}}{\partial H_{s l} \partial H_{l s}} Z(E, \eta)=0, \tag{4}
\end{align*}
$$

where we denote $\sum_{p=1}^{N} \sum_{i=1, i \neq p}^{N}$ by $\sum_{i \neq p}$. We define $H_{i j}^{\prime}$ by $H_{i i}=\sqrt{2} H_{i i}^{\prime}$ for $i=1, \cdots, N$ and $H_{i j}=H_{i j}^{\prime}$ for $i, j=1, \cdots, N(i \neq j)$, and we use an indices set $U=\{(p, s) \mid p \leq s, p, s \in\{1,2, \cdots, N\}\}$, for convenience.

Proposition 1 [Grosse-N.K-Sako-Wulkenhaar ('24)]

The partition function $Z(E, \eta)$ satisfies the following partial differential equation:

$$
\mathcal{L}_{S D}^{H} Z(E, \eta)=0 .
$$

Here, $\mathcal{L}_{S D}^{H}$ is a second order differential operator defined by

$$
-\mathcal{L}_{S D}^{H}:=\frac{N(N+1)}{2}+2 \sum_{(p, s) \in U} H_{p s} \frac{\partial}{\partial H_{p s}}-\frac{\eta}{2 N} \sum_{(p, s) \in U} \frac{\partial^{2}}{\partial H_{p s}^{\prime} \partial H_{s p}^{\prime}} .
$$

We obtain the following.

Theorem 1 [Grosse-N.K-Sako-Wulkenhaar ('24)]

The partition function defined by $Z(E, \eta):=\int_{S_{N}} d \Phi \exp (-S[\Phi])$ satisfies the partial differential equation

$$
\mathcal{L}_{S D} Z(E, \eta)=0
$$

where
$\mathcal{L}_{S D}:=\left\{\frac{\eta}{2 N} \sum_{i=1}^{N} \frac{\partial^{2}}{\partial E_{i}^{2}}+\frac{\eta}{2 N} \sum_{l \neq i}^{N} \frac{1}{E_{i}-E_{l}} \frac{\partial}{\partial E_{i}}-2 \sum_{k=1}^{N} E_{k} \frac{\partial}{\partial E_{k}}-\frac{N(N+1)}{2}\right\}$

Diagonalization of $\mathcal{L}_{S D}$

Proposition 2 [Grosse-N.K-Sako-Wulkenhaar ('24)]

The differential operator $\mathcal{L}_{S D}$ defined in (5) is transformed as

$$
e^{-\frac{N}{\eta} \sum_{i=1}^{N} E_{i}^{2}} \Delta(E)^{\frac{1}{2}} \mathcal{L}_{S D} \Delta(E)^{-\frac{1}{2}} e^{\frac{N}{\eta} \sum_{i=1}^{N} E_{i}^{2}}=-\mathcal{H}_{C M}
$$

Here, we denote the Hamiltonian of the Calogero-Moser model by $\mathcal{H}_{C M}$:

$$
\begin{equation*}
\mathcal{H}_{C M}:=-\frac{\eta}{2 N}\left(\sum_{i=1}^{N} \frac{\partial^{2}}{\partial E_{i}^{2}}+\frac{1}{4} \sum_{i \neq j} \frac{1}{\left(E_{i}-E_{j}\right)^{2}}\right)+2 \frac{N}{\eta} \sum_{i=1}^{N} E_{i}^{2} . \tag{6}
\end{equation*}
$$

The Hamiltonian of the Calogero-Moser model is defined as follows:

$$
\begin{equation*}
H_{C_{\gamma}}:=\frac{1}{2} \sum_{j=1}^{N}\left(-\frac{\partial^{2}}{\partial y_{j}^{2}}+y_{j}^{2}\right)+\sum_{j>k} \frac{\gamma(\gamma-1)}{\left(y_{j}-y_{k}\right)^{2}} . \tag{7}
\end{equation*}
$$

After changing variable $\sqrt{\frac{2 N}{\eta}} E_{i}=y_{i}$, if $\gamma=\frac{1}{2}$, (6) is identified with (7) up to global factor $\frac{1}{2}$:

$$
H_{C_{\gamma=\frac{1}{2}}}=\frac{1}{2} \sum_{j=1}^{N}\left(-\frac{\partial^{2}}{\partial y_{j}^{2}}+y_{j}^{2}\right)-\frac{1}{4} \sum_{j>k} \frac{1}{\left(y_{j}-y_{k}\right)^{2}}=\frac{1}{2} \mathcal{H}_{C M} .
$$

In the following, we consider only the case $\gamma=\frac{1}{2}$.

Virasoro Algebra (Witt Algebra)

Using $y_{i}=\sqrt{\frac{2 N}{\eta}} E_{i}, \mathcal{L}_{S D}$ is expressed as

$$
\begin{aligned}
-\frac{1}{2} \mathcal{L}_{S D}= & \sum_{k=1}^{N} y_{k} \frac{\partial}{\partial y_{k}}-\frac{1}{2}\left\{\sum_{i=1}^{N} \frac{\partial^{2}}{\partial y_{i}^{2}}+\frac{1}{2} \sum_{l \neq i}^{N} \frac{1}{y_{i}-y_{l}}\left(\frac{\partial}{\partial y_{i}}-\frac{\partial}{\partial y_{l}}\right)\right\} \\
& +\frac{N(N+1)}{4}
\end{aligned}
$$

The Hamiltonian of Calogero-Moser model with $\gamma=\frac{1}{2}$ is given as

$$
\begin{equation*}
H_{C_{\gamma=\frac{1}{2}}}=g\left(-\frac{1}{2} \mathcal{L}_{S D}\right) g^{-1} \tag{8}
\end{equation*}
$$

Here $g=e^{-\frac{1}{2} \sum_{i} y_{i}^{2}} \prod_{j>k}\left(y_{j}-y_{k}\right)^{\frac{1}{2}}$.

In the following, we will proceed with the discussion with reference to [E. Bergshoeff and M. Vasiliev (1994)]. We define the creation, annihilation operators a_{i}^{\dagger}, a_{i}, and the coordinate swapping operator $K_{i j} \quad(i, j=1, \ldots, N)$ obeying the following relations:

$$
\begin{aligned}
{\left[a_{i}, a_{j}\right] } & =\left[a_{i}^{\dagger}, a_{j}^{\dagger}\right]=0, \quad\left[a_{i}, a_{j}^{\dagger}\right]=A_{i j}:=\delta_{i j}\left(1+\gamma \sum_{l=1}^{N} K_{i l}\right)-\gamma K_{i j}, \\
K_{i j} K_{j l} & =K_{j l} K_{i l}=K_{i l} K_{i j}, \quad \text { for all } i \neq j, i \neq I, j \neq I, \\
\left(K_{i j}\right)^{2} & =I, \quad K_{i j}=K_{j i}, \\
K_{i j} K_{m n} & =K_{m n} K_{i j}, \quad \text { if all indices } i, j, m, n \text { are different, } \\
K_{i j} a_{j}^{(\dagger)} & =a_{i}^{(\dagger)} K_{i j} .
\end{aligned}
$$

In our case $\gamma=\frac{1}{2}$,

- $K_{i j}$:elementary permutation operators of the symmetric group \mathfrak{S}_{N}
- $K_{i j}$ means the replacement of coordinates as $K_{i j} y_{i}=y_{j}$.

To make contact with the Calogero-Moser model, we chose these operators as

$$
a_{i}=\frac{1}{\sqrt{2}}\left(y_{i}+D_{i}\right), \quad a_{i}^{\dagger}=\frac{1}{\sqrt{2}}\left(y_{i}-D_{i}\right),
$$

with Dunkl derivatives

$$
D_{i}=\frac{\partial}{\partial y_{i}}+\gamma \sum_{j=1, j \neq i}^{N}\left(y_{i}-y_{j}\right)^{-1}\left(1-K_{i j}\right) .
$$

Dunkl derivatives satisfy the following commutation relations:

$$
\left[y_{i}, y_{j}\right]=\left[D_{i}, D_{j}\right]=0, \quad\left[D_{i}, y_{j}\right]=A_{i j}
$$

Let us introduce the following Hamiltonian like a harmonic oscillator system:

$$
H=\frac{1}{2} \sum_{i=1}^{N}\left\{a_{i}, a_{i}^{\dagger}\right\}
$$

This Hamiltonian and $H_{C_{\gamma=\frac{1}{2}}}$ are related as

$$
\begin{aligned}
\operatorname{Res}(H) & =\prod_{j>k}\left(y_{j}-y_{k}\right)^{-\frac{1}{2}} \cdot H_{C_{\gamma=\frac{1}{2}}} \cdot \prod_{j>k}\left(y_{j}-y_{k}\right)^{\frac{1}{2}} \\
& =\frac{1}{2} \sum_{j=1}^{N}\left(-\frac{\partial^{2}}{\partial y_{j}^{2}}+y_{j}^{2}\right)-\frac{1}{4} \sum_{j \neq k} \frac{1}{y_{j}-y_{k}}\left(\frac{\partial}{\partial y_{j}}-\frac{\partial}{\partial y_{k}}\right),
\end{aligned}
$$

- $\operatorname{Res}(H)$ means that operator H acts on symmetric function space.
- It is possible to represent any differential operator D including $K_{i j}$'s as placing the elements of S_{n} at the right end, i.e. $D=\sum_{\omega \in S_{N}} D_{\omega} \omega$.
- Res is defined as $\operatorname{Res}\left(\sum_{\omega \in S_{N}} D_{\omega} \omega\right)=\sum_{\omega \in S_{N}} D_{\omega}$.

Definition(Representation of Virasoro Generators using Dunkl Operators)

$$
L_{-n}=\sum_{i=1}^{N}\left(\alpha\left(a_{i}^{\dagger}\right)^{n+1} a_{i}+(1-\alpha) a_{i}\left(a_{i}^{\dagger}\right)^{n+1}+\left(\lambda-\frac{1}{2}\right)(n+1)\left(a_{i}^{\dagger}\right)^{n}\right)
$$

- α, λ : arbitrary parameters

For simplicity, we chose $\lambda=\frac{1}{2}$. Especially if
$L_{-n}=\sum_{i=1}^{N}\left(\alpha\left(a_{i}^{\dagger}\right)^{n+1} a_{i}+(1-\alpha) a_{i}\left(a_{i}^{\dagger}\right)^{n+1}\right)$, their commutators are given by the ones of the Virasoro algebra (Witt Algebra) with its central charge $c=0$:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}
$$

Virasoro Algebra Representation for Real Symmetric Φ^{4} Matrix Model

From $H=L_{0}-\left(\frac{1}{2}-\alpha\right) N+\frac{1}{2}\left(\alpha-\frac{1}{2}\right) \sum_{i \neq j} K_{i j}$, the commutator
[H, L_{-m}] is obtained as

$$
\left[H, L_{-m}\right]=m L_{-m} .
$$

From (8),

$$
-\frac{1}{2} \mathcal{L}_{S D}=e^{\frac{1}{2} \sum_{j} y_{j}^{2}} \operatorname{Res}(H) e^{-\frac{1}{2} \sum_{j} y_{j}^{2}}
$$

- $\widetilde{L}_{-m}:=e^{\frac{1}{2} \sum_{j} y_{j}^{2}} L_{-m} e^{-\frac{1}{2} \sum_{j} y_{j}^{2}}$.

The following is automatically satisfied:

$$
\left[\widetilde{L}_{n}, \widetilde{L}_{m}\right]=(n-m) \widetilde{L}_{n+m}
$$

$$
D_{i}^{E}:=\frac{\partial}{\partial E_{i}}+\frac{1}{2} \sum_{j=1, j \neq i}^{N} \frac{1}{\left(E_{i}-E_{j}\right)}\left(1-K_{i j}\right)=\sqrt{\frac{2 N}{\eta}} D_{i} .
$$

- $\left[D_{i}^{E}, E_{j}\right]=A_{i j}$
- $\left[D_{i}^{E}, D_{j}^{E}\right]=0$

Using this D_{i}^{E}, the operators $\widetilde{a}_{i}, \widetilde{a}_{i}^{\dagger}$ and \widetilde{L}_{-n} are written as

$$
\begin{aligned}
\widetilde{a}_{i}= & \frac{1}{2} \sqrt{\frac{\eta}{N}} D_{i}^{E}, \quad \widetilde{a}_{i}^{\dagger}=2 \sqrt{\frac{N}{\eta}} E_{i}-\frac{1}{2} \sqrt{\frac{\eta}{N}} D_{i}^{E} \\
\widetilde{L}_{-n}= & \sum_{i=1}^{N}\left\{\alpha\left(2 \sqrt{\frac{N}{\eta}} E_{i}-\frac{1}{2} \sqrt{\frac{\eta}{N}} D_{i}^{E}\right)^{n+1} \frac{1}{2} \sqrt{\frac{\eta}{N}} D_{i}^{E}\right. \\
& \left.+(1-\alpha) \frac{1}{2} \sqrt{\frac{\eta}{N}} D_{i}^{E}\left(2 \sqrt{\frac{N}{\eta}} E_{i}-\frac{1}{2} \sqrt{\frac{\eta}{N}} D_{i}^{E}\right)^{n+1}\right\} .
\end{aligned}
$$

Recall $\mathcal{L}_{S D}=-2 e^{\frac{1}{2} \sum_{j} y_{j}^{2}} \operatorname{Res}(H) e^{-\frac{1}{2} \sum_{j} y_{j}^{2}}$, then

$$
\begin{align*}
{\left[\mathcal{L}_{S D}, \tilde{L}_{-m}\right] } & =-2 e^{\frac{1}{2} \sum_{j} y_{j}^{2}}\left[\operatorname{Res}(H), L_{-m}\right] e^{-\frac{1}{2} \sum_{j} y_{j}^{2}} \\
& =-2 e^{\frac{1}{2} \sum_{j} y_{j}^{2}}\left[L_{0}, L_{-m}\right] e^{-\frac{1}{2} \sum_{j} y_{j}^{2}}=-2 m \widetilde{L}_{-m} . \tag{9}
\end{align*}
$$

From Theorem 1 and (9), finally we get the following theorem.

Theorem 2 [Grosse-N.K-Sako-Wulkenhaar ('24)]

The partition function defined by (4) satisfies

$$
\mathcal{L}_{S D}\left(\tilde{L}_{-m} Z(E, \eta)\right)=-2 m\left(\tilde{L}_{-m} Z(E, \eta)\right)
$$

This means that $\widetilde{L}_{-m} Z(E, \eta)$ is an eigenfunction of $\mathcal{L}_{S D}$ with the eigenvalue $-2 m$.

Overall Summary

- We studied a real symmetric Φ^{4}-matrix model whose kinetic term is given by $\operatorname{Tr}\left(E \Phi^{2}\right)$, where E is a positive diagonal matrix without degenerate eigenvalues.
- We showed that the partition function of this matrix model corresponds to a zero-energy solution of a Schödinger type equation with Calogero-Moser Hamiltonian.
- A family of differential equations satisfied by the partition function was also obtained from the Virasoro algebra (Witt Algebra).

