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Introduction

▶ Quantum field theories on noncommutative spaces such as Moyal
spaces have given a new perspective to matrix models.

Matrix Model on Noncommutative Spaces (Grosse-Wulkenhaar model)

▶ It corresponds to scalar field theories on noncommutative spaces,
which is renormalizable by adding a harmonic oscillator potential to
the action.

▶ Φ3 matrix model[Grosse-Steinacker (’05), Grosse-Sako-Wulkenhaar (’17)]

▶ Φ4 matrix model[Grosse-Sako (’23), arXiv:2308.11523]

It has recently been shown that the partition function of a certain
Hermitian Φ4-matrix model corresponds to a zero-energy solution of a
Schrödinger equation for the Hamiltonian of N-body harmonic
oscillator system.
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Introduction

Real Symmetric Φ4 Matrix Model [Grosse-N.K-Sako-Wulkenhaar (’24)]

▶ We study a real symmetric Φ4-matrix model whose kinetic term is
given by Tr(EΦ2), where E is a positive diagonal matrix without
degenerate eigenvalues.

▶ We show that the partition function of this matrix model corresponds
to a zero-energy solution of a Schödinger type equation with
Calogero-Moser Hamiltonian.

▶ A family of differential equations satisfied by the partition function is
also obtained from the Virasoro algebra (Witt Algebra).

The discussion [Awata-Matsuo-Odake-Shiraishi (’94)] on an arbitrary

polynomial-type potential V (Φ) =
∞∑
n=0

ηnΦ
n with a coupling constant ηn is

quite different from the discussion [Grosse-Sako (’23),
Grosse-N.K-Sako-Wulkenhaar (’24)] in this study, where the potential

V (Φ) =
η

4
Φ4 is fixed.
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Φ4 Matrix Model

Definition(Action of Φ4 Matrix Model)

SE [Φ] = N Tr
{
EΦ2 +

η

4
Φ4
}

▶ Φ = (Φij), i , j = 1, · · · ,N :
real symmetric matrix (β = 1), Hermitian matrix (β = 2)

▶ E = (Ekδkm), k ,m = 1, · · · ,N : diagonal matrix

▶ η ∈ R

Definition(Partition Function)

Z (E , η) :=

∫
dΦ e−SE [Φ]
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Main Theorem
[Grosse-Sako (’23), Grosse-N.K-Sako-Wulkenhaar (’24)]

Let ∆(E ) be the Vandermonde determinant ∆(E ) :=
∏

k<l(El − Ek).
Then the function

Ψ(E , η) := e−
N
βη

∑N
i=1 E

2
i ∆(E )

β
2 Z (E , η)

is a zero-energy solution of the Schrödinger type equation

HΨ(E , η) = 0,

▶ H is the Hamiltonian for the N-body harmonic oscillator system
(β = 2)

▶ H is the Hamiltonian for Calogero-Moser model (β = 1)

H :=
−η

2N

β

N∑
i=1

∂2

∂E 2
i

+
2− β

4

∑
i ̸=j

1

(Ei − Ej)2

+ 2
N

βη

N∑
i=1

E 2
i . (1)

In this sense, this matrix model is a solvable system.
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Schwinger-Dyson Equation

First, a Schwinger-Dyson equation is derived from∫
SN

dΦ
∂

∂Φtt

(
Φtte

−S[Φ]
)
= 0,

which is expressed as

Z (E , η)− 2N
N∑
i=1

⟨HitΦttΦti ⟩ − ηN
N∑

k,l=1

⟨ΦtkΦklΦltΦtt⟩ = 0 (2)

▶ SN : the space of real symmetric N × N-matrices

▶ H = (Hij), i , j = 1, · · · ,N : real symmetric matrix with
nondegenerate eigenvalues {E1,E2, · · · ,EN | Ei ̸= Ej for i ̸= j}
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Schwinger-Dyson Equation

Similarly, for p ̸= s, from∫
SN

dΦ
∂

∂Φps

(
Φpse

−S[Φ]
)
= 0,

the following is obtained:

Z (E , η)− 2N
N∑
i=1

(⟨HipΦpsΦsi ⟩+ ⟨HsiΦipΦps⟩)

−2Nη

N∑
k,l=1

⟨ΦskΦklΦlpΦps⟩ = 0. (3)
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From (2) and (3), after taking sum over the indices t, p, s, we get the
follwing:

N(N + 1)

2
Z (E , η)− 2N

N∑
i ,p,s=1

Hip ⟨ΦisΦsp⟩ − ηN
N∑

k,l ,s,p=1

⟨ΦpsΦskΦklΦlp⟩

= 0.

By using

∂Z (E , η)

∂Hps
= −2N

N∑
k=1

⟨ΦpkΦks⟩ for p ̸= s

∂Z (E , η)

∂Hpp
= −N

N∑
k=1

⟨ΦpkΦkp⟩

∂2Z (E , η)

∂Hps∂Htu
= 4N2

N∑
k,l=1

⟨ΦpkΦksΦtlΦlu⟩ for p ̸= s, t ̸= u

∂2Z (E , η)

∂Hpp∂Hpp
= N2

N∑
k,l=1

⟨ΦpkΦkpΦplΦlp⟩ ,
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a partial differential equation is obtained:

N(N + 1)

2
Z (E , η) +

∑
i ̸=p

Hip
∂

∂Hip
Z (E , η) + 2

N∑
p=1

Hpp
∂

∂Hpp
Z (E , η)

− η

N

N∑
s=1

∂2

∂Hss∂Hss
Z (E , η)− η

4N

∑
s ̸=l

∂2

∂Hsl∂Hls
Z (E , η) = 0, (4)

where we denote
∑N

p=1

∑N
i=1,i ̸=p by

∑
i ̸=p

. We define H ′
ij by Hii =

√
2H

′
ii

for i = 1, · · · ,N and Hij = H
′
ij for i , j = 1, · · · ,N (i ̸= j), and we use an

indices set U = {(p, s)| p ≤ s, p, s ∈ {1, 2, · · · ,N}}, for convenience.
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Proposition 1 [Grosse-N.K-Sako-Wulkenhaar (’24)]

The partition function Z (E , η) satisfies the following partial differential
equation:

LH
SDZ (E , η) = 0.

Here, LH
SD is a second order differential operator defined by

−LH
SD :=

N(N + 1)

2
+ 2

∑
(p,s)∈U

Hps
∂

∂Hps
− η

2N

∑
(p,s)∈U

∂2

∂H ′
ps∂H

′
sp

.
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We obtain the following.

Theorem 1 [Grosse-N.K-Sako-Wulkenhaar (’24)]

The partition function defined by Z (E , η) :=

∫
SN

dΦexp (−S [Φ]) satisfies

the partial differential equation

LSDZ (E , η) = 0,

where

LSD :=

 η

2N

N∑
i=1

∂2

∂E 2
i

+
η

2N

N∑
l ̸=i

1

Ei − El

∂

∂Ei
− 2

N∑
k=1

Ek
∂

∂Ek
− N(N + 1)

2


(5)
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Diagonalization of LSD

Proposition 2 [Grosse-N.K-Sako-Wulkenhaar (’24)]

The differential operator LSD defined in (5) is transformed as

e−
N
η

∑N
i=1 E

2
i ∆(E )

1
2LSD∆(E )−

1
2 e

N
η

∑N
i=1 E

2
i = −HCM .

Here, we denote the Hamiltonian of the Calogero-Moser model by HCM :

HCM := − η

2N

 N∑
i=1

∂2

∂E 2
i

+
1

4

∑
i ̸=j

1

(Ei − Ej)2

+ 2
N

η

N∑
i=1

E 2
i . (6)
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The Hamiltonian of the Calogero-Moser model is defined as follows:

HCγ :=
1

2

N∑
j=1

(
− ∂2

∂y2j
+ y2j

)
+
∑
j>k

γ(γ − 1)

(yj − yk)2
. (7)

After changing variable

√
2N

η
Ei = yi , if γ =

1

2
, (6) is identified with (7)

up to global factor
1

2
:

HC
γ=1

2

=
1

2

N∑
j=1

(
− ∂2

∂y2j
+ y2j

)
− 1

4

∑
j>k

1

(yj − yk)2
=

1

2
HCM .

In the following, we consider only the case γ =
1

2
.

13 / 22



Virasoro Algebra (Witt Algebra)

Using yi =

√
2N

η
Ei , LSD is expressed as

−1

2
LSD =

N∑
k=1

yk
∂

∂yk
− 1

2

{
N∑
i=1

∂2

∂y2i
+

1

2

N∑
l ̸=i

1

yi − yl

(
∂

∂yi
− ∂

∂yl

)}

+
N(N + 1)

4
.

The Hamiltonian of Calogero-Moser model with γ =
1

2
is given as

HC
γ=1

2

=g

(
−1

2
LSD

)
g−1. (8)

Here g = e−
1
2

∑
i y

2
i

∏
j>k

(yj − yk)
1
2 .
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In the following, we will proceed with the discussion with reference to
[E. Bergshoeff and M. Vasiliev (1994)]. We define the creation,

annihilation operators a†i , ai , and the coordinate swapping operator
Kij (i , j = 1, ...,N) obeying the following relations:

[ai , aj ] = [a†i , a
†
j ] = 0, [ai , a

†
j ] = Aij := δij

(
1 + γ

N∑
l=1

Kil

)
− γKij ,

KijKjl = KjlKil = KilKij , for all i ̸= j , i ̸= l , j ̸= l ,

(Kij)
2 = I , Kij = Kji ,

KijKmn = KmnKij , if all indices i , j ,m, n are different,

Kija
(†)
j = a

(†)
i Kij .

In our case γ =
1

2
,

▶ Kij :elementary permutation operators of the symmetric group SN

▶ Kij means the replacement of coordinates as Kijyi = yj .
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To make contact with the Calogero-Moser model, we chose these
operators as

ai =
1√
2
(yi + Di ) , a†i =

1√
2
(yi − Di ) ,

with Dunkl derivatives

Di =
∂

∂yi
+ γ

N∑
j=1,j ̸=i

(yi − yj)
−1(1− Kij) .

Dunkl derivatives satisfy the following commutation relations:

[yi , yj ] = [Di ,Dj ] = 0, [Di , yj ] = Aij .
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Let us introduce the following Hamiltonian like a harmonic oscillator
system:

H =
1

2

N∑
i=1

{ai , a†i } .

This Hamiltonian and HC
γ=1

2

are related as

Res(H) =
∏
j>k

(yj − yk)
− 1

2 · HC
γ=1

2

·
∏
j>k

(yj − yk)
1
2

=
1

2

N∑
j=1

(
− ∂2

∂y2j
+ y2j

)
− 1

4

∑
j ̸=k

1

yj − yk

(
∂

∂yj
− ∂

∂yk

)
,

▶ Res(H) means that operator H acts on symmetric function space.
▶ It is possible to represent any differential operator D including Kij ’s as

placing the elements of Sn at the right end, i.e. D =
∑

ω∈SN Dωω.

▶ Res is defined as Res

∑
ω∈SN

Dωω

 =
∑
ω∈SN

Dω.
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Definition(Representation of Virasoro Generators using Dunkl Operators)

L−n =
N∑
i=1

(
α(a†i )

n+1ai + (1− α)ai (a
†
i )

n+1 +

(
λ− 1

2

)
(n + 1)(a†i )

n

)

▶ α, λ : arbitrary parameters

For simplicity, we chose λ =
1

2
. Especially if

L−n =
N∑
i=1

(
α(a†i )

n+1ai + (1− α)ai (a
†
i )

n+1
)
, their commutators are given

by the ones of the Virasoro algebra (Witt Algebra) with its central charge
c = 0:

[Ln, Lm] = (n −m)Ln+m.
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Virasoro Algebra Representation for Real Symmetric Φ4

Matrix Model

From H = L0 −
(
1

2
− α

)
N +

1

2

(
α− 1

2

)∑
i ̸=j

Kij , the commutator

[H , L−m] is obtained as

[H , L−m] =mL−m.

From (8),

−1

2
LSD = e

1
2

∑
j y

2
j Res(H)e−

1
2

∑
j y

2
j .

▶ L̃−m := e
1
2

∑
j y

2
j L−me

− 1
2

∑
j y

2
j .

The following is automatically satisfied:

[L̃n , L̃m] = (n −m)L̃n+m.
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DE
i :=

∂

∂Ei
+

1

2

N∑
j=1,j ̸=i

1

(Ei − Ej)
(1− Kij) =

√
2N

η
Di .

▶ [DE
i ,Ej ] = Aij

▶ [DE
i ,D

E
j ] = 0

Using this DE
i , the operators ãi , ã

†
i and L̃−n are written as

ãi =
1

2

√
η

N
DE
i , ã†i = 2

√
N

η
Ei −

1

2

√
η

N
DE
i ,

L̃−n =
N∑
i=1

α

(
2

√
N

η
Ei −

1

2

√
η

N
DE
i

)n+1
1

2

√
η

N
DE
i

+ (1− α)
1

2

√
η

N
DE
i

(
2

√
N

η
Ei −

1

2

√
η

N
DE
i

)n+1
 .
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Recall LSD = −2e
1
2

∑
j y

2
j Res(H)e−

1
2

∑
j y

2
j , then[

LSD , L̃−m

]
=− 2e

1
2

∑
j y

2
j [Res(H) , L−m]e

− 1
2

∑
j y

2
j

=− 2e
1
2

∑
j y

2
j [L0 , L−m]e

− 1
2

∑
j y

2
j = −2mL̃−m. (9)

From Theorem 1 and (9), finally we get the following theorem.

Theorem 2 [Grosse-N.K-Sako-Wulkenhaar (’24)]

The partition function defined by (4) satisfies

LSD(L̃−mZ (E , η)) =− 2m(L̃−mZ (E , η)).

This means that L̃−mZ (E , η) is an eigenfunction of LSD with the
eigenvalue −2m.
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Overall Summary

▶ We studied a real symmetric Φ4-matrix model whose kinetic term is
given by Tr(EΦ2), where E is a positive diagonal matrix without
degenerate eigenvalues.

▶ We showed that the partition function of this matrix model
corresponds to a zero-energy solution of a Schödinger type equation
with Calogero-Moser Hamiltonian.

▶ A family of differential equations satisfied by the partition function
was also obtained from the Virasoro algebra (Witt Algebra).
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