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Tarasov.
Molev and Yakimova.

Definition of the quantum derivations

in coordinates.
by coproduct.
as the symmetrisation of the mapping exp(D).



Theorem of A. Mishchenko and A. Fomenko
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| will explain a quantum analogue of the theorem of A.
Mishchenko and A. Fomenko. Let g be a complex Lie algebra.

Theorem (A. Mishchenko and A. Fomenko, 1978)

Introduction

Suppose that O¢ is a constant vector field on the dual space g*.
We have

{08(x),0¢(y)} =0
for any m and n and for any Poisson central elements x and y
of the symmetric algebra S(g).



Argument Shift Operator O

Quantum M-F
Theorem

m The operator O is called the argument shift operator in
the direction &.

Introduction

m Why is it called the argument shift? Let e;,..., e4 be a
basis of the Lie algebra g and x = x(e1, ..., eq) be an
element of the symmetric algebra Sg = Cley, ..., eq]. We
have

x(e1+ té(er), ..., eq + té(eq))
dim x tnan

Z e1, ..,e,,)

= exp(tﬁg)x(el, ceey €d)-




Derivation on Sgl(d, C)
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s m Let
el ... e
e=\|........... € M(d,g[(d,C)),
Quantum M-F d d
ef ... €

where ej form a linear basis of gl(d,C) and satisfy the

: ; i ok oksi _ skei
commutation relation [e], ef|= /0] — dfe].

m Sgl(d,C) ~ (C[(ej)f’le].

m A constant vector field on the dual space is given by

i -

1

; 0
O = tr(£0), 0: = — € hom Sgl(d, C),
e = tr(£0) o gl(d,C)

where £ is a numerical matrix.
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The derivation

Quantum M- Sgl(d,C) — M(d, Sgl(d,C)), x> 0x = (9jx){j—1
is a unique linear mapping satisfying the following.
Ov = 0 for any scalar v. s
A Otr(¢e) = £ for any numerical matrix . &5 9(} L0

the Leibniz rule . ; Jz

® <
~ T

d(xy) = (9x)y + x(9y)

for any elements x and y of the symmetric algebra.


Mobile User


Quantum Derivation on Ugl(d, C)
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[Theorem Definition (Gurevich, Pyatov, and Saponov, 2012)
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S The quantum derivation

Ugl(d,C) — M(d, Ugl(d,C)),  x — dx = (3ix){,_1

Quantum M-F

is a unique linear mapping satisfying the following.
dv = 0 for any scalar v.
otr(£e) = & for any numerical matrix &.

the quantum Leibniz rule
A(xy) = (9x)y + (3}/) (GX)(é’y) ?

for any elements x and y of the umversal envelopmg
algebra.
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Theorem (I. and S., 2023)
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Suppose that £ is a numerical matrix and let Oz = tr(£0). We
have

[08(x),8¢(y)] =0
for any positive m and n and for any central elements x and y
of the universal enveloping algebra Ugl(d, C).
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m We may assume ¢ = diag(zi, . ..
distinct).

,z4) (z1, ..., zq are

Quantum M-F j
m The quantum M-F algebra in the direction & is the
centraliser of the set

(Vinberg and Rybnikov).
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We are reduced to proving ((ad x)(y) = [x,y])

lkeda and
Sharygin

(ad €])(9¢x) = (ad Z
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(35X) =0 (1)

Z_

for any positive n and for any central element x. It is sufficient
to show

)(Oex) = 0. (_E/ ]
[ad;ilﬁg]ZO- 7 D’,Dj e 1)
[[2d Z Ziej"_ef{zj 0|, 0] = o.

) H\l/ S‘zcaw’{ [na))e 1"\ O)
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Let us assume these three conditions and prove (1). Since x is
central, (ad e/)(x) = 0 and the first condition is equivalent to

[ad Z o 5] (x)=0.

J#

Quantum M-F

The second and the third conditions imply

) elel
(ad ef)(0x) = [ad 3 - _ez o) @)=0 (2
j#i

for any positive n.
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CELLNBE  \We prove the second half of (1)
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by induction. The first condition implies the case n = 1.
Suppose that n > 1. We have

i

e
+O¢(ad Y — _JZ,)(ag—lx) =0
! J

by the induction hypothesis.
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Now we are reduced to proving

adZZI — )(0ex) = 0.
ﬁfl /

Quantum M-F
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adz )(tr(&e™) ZZ ,—ZJ )ﬁ]

J#i zi J#i k=1

_Z ,ej—i—ef n)J)_ :

JF#i
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;766](X) = [eiijaéx] _85 [efivx]
= —W—tr(f[@e{,@x])
:Ziw_@%ﬁ) =0.
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since O g .
— Zi —Zj . Zi &
J#i J#
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[EDSEEARAIE
Y
Quantum M-F e’ eje’
= —tr(g[az . 'sz,aang + O tr(g[az = 'szj)xD

d o el o
+ Z (ZiIZIZ_ZlejZ)(a_;lla_};Z - J)(({){ll&ézx)v

i13j1502,j2=1 J#i

here (Zflziz - Zjlz.lz)aj’i ajj(efej’)

= (2.2, — ,2,) (0 €]) (02 &) + (92 €l) (Dl el)) = 0.

ST I\ Jo i



Application: Generators of Quantum M-F Algebras
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Let us define an increasing sequence of commutative algebras:

lkeda and

Sharygin n) C n = 0
C = n—1) .
€ C( [8gx:x is central] n>0
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The algebra C§(2) is generated by the center C and the elements

n

Jer(eem| 3 (e D (e)cem),

”’“ mn:0 _
(/f Z tr(ﬁ(e”ﬂ&"*m)(e) + e™1 ﬂ(rnfmfl)(e))gem) } ;
m=0 n=

n+1 n—m
where £{"(x) = Z L Gt 21) (n)xm.

m
m=0
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Application: Generators of Quantum M-F Algebras
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oo The generators are tr(fe), tr(§e2), ...and

e, I @ W0e7e)
tr(2¢%e? + gege), ) Rt wlo;’wwy
tr(¢%e® + gece?), 1’0 Colmim
tr(26%e* + 2¢efe’ + e?ee? + £2€7),
tr(¢%e® + Cece® + £’ + £2€%),
(
(

Quantum M-F

tr(262e® + 2¢ece® + 26e¢ce* + ce3¢ed +4§2e4+§e§e)
tr(€2e” + cecel + ce?ce® + cedcet +3§2e5+§e§e)

They are mutually commutative.
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