5d/6d exceptional instantons from trivalent gluing of web diagrams

Hirotaka Hayashi
(林 博貴)
(Tokai University)

Based on the collaboration with
- Kantaro Ohmori (IAS) [arXiv:1702.07263]

Seminar at Nagoya University on 17th of November
1. Introduction
• The topological vertex is a powerful tool to compute the all genus topological string amplitudes for toric Calabi-Yau threefolds.

• The full topological string partition function has a physical meaning as the Nekrasov partition function through M-theory on toric Calabi-Yau threefolds.

• We can compute a large class of Nekrasov partition functions regardless of whether the theories have a Lagrangian description or not.
• Toric Calabi-Yau threefolds engineer 5d SU(N) gauge theories including linear quivers with SU gauge nodes.

 Iqbal, Kashani-poor 02, 03
 Eguchi, Kanno 03

• Recently, the topological vertex technique had been extended to certain non-toric Calabi-Yau threefolds which engineer USp(2N) gauge theories for example.

 HH, Kim, Nishinaka 13
 HH, Zoccarato 14, 15

• We can also apply the technique to 5d theories with 6d UV completions.

 Haghight, Iqbal, Kozcaz, Lockhart, Vafa 13
 Kim, Taki, Yagi 15, HH, Kim, Lee, Yagi 16
However there are still many interesting 5d theories to which we had not known how to apply the topological vertex.

Ex.
(1) 5d pure SO(2N) gauge theory
(2) 5d pure E_6, E_7, E_8 gauge theories

ADHM construction is not known
(Nevertheless, some results are known)

Benvenuti, Hanany, Mekareeya 10, Keller, Mekareeya, Song, Tachikawa 11, Gaiotto, Razamat 12, Keller, Song 12, Hananay, Mekareeya, Razamat 12, Cremonesi, Hanany, Mekareeya, Zaffaroni 14, Zafrir 15
• In this talk, we will present a powerful prescription of using the topological vertex to compute the partition functions of 5d pure SO(2N), E₆, E₇, E₈ gauge theories by utilizing their dual descriptions.

• In fact, the technique can be also applied to 5d theories which arise from a circle compactification of 6d “pure” SU(3), SO(8), E₆, E₇, E₈ gauge theories with one tensor multiplet.
1. Introduction

2. 5d gauge theories from string theory

3. A dual description of 5d DE gauge theories

4. Trivalent gluing prescription

5. Applications to 5d theories from 6d

6. Conclusion
2. 5d gauge theories from string theory
• We construct 5d theories with eight supercharges from string theory.

• There are mainly two ways to construct such 5d theories.

1. M-theory compactification on a non-compact Calabi-Yau three-fold.

2. (p, q) 5-brane webs.

Witten 96, Morrison Seiberg 96, Douglas, Katz, Vafa 96

Aharony, Hanany 97, Aharony, Hanany, Kol 97
1. M-theory compactification on a non-compact Calabi-Yau three-fold.

- An ADE gauge symmetry is realized by an ADE singularity over a curve.
- The genus of the curve is related to the number of adjoint hypermultiplets. In this talk we only consider the genus zero case.
• Ex. 5d pure SU(2) gauge theory
 → A_1 singularities over a sphere

A_1 Dynkin diagram
• Ex. 5d pure SU(2) gauge theory
→ A_1 singularities over a sphere

A_1 Dynkin diagram

An M2-brane wrapping the fiber sphere gives a W-boson.
• Ex. 5d pure SU(2) gauge theory
 \(\rightarrow A_1 \) singularities over a sphere

Non-Abelian SU(2) gauge symmetry is recovered in a limit when the fiber sphere shrinks.
• Ex. 5d pure SU(2) gauge theory
 → A_1 singularities over a sphere

M2-branes wrapping the base sphere give instantons.
• Ex. 5d pure SU(2) gauge theory
 $\rightarrow A_1$ singularities over a sphere

The whole surface can shrink:

\rightarrow Both W-bosons and instantons become massless

\rightarrow 5d superconformal field theory
• Ex. 5d pure SU(2) gauge theory
 $\rightarrow A_1$ singularities over a sphere

The whole surface can shrink:

\rightarrow Both W-bosons and instantons become massless

\rightarrow 5d superconformal field theory

“UV complete”
• A fundamental hypermultiplet can be introduced by blowing up a point at the base sphere.

• There is a maximal number for fundamental hypermultiplets to have a UV completion.

• For an SU(N) gauge theory, the maximal number is 2N+4.

• In fact, when the bound is saturated the UV completion is given by a 6d SCFT.

HH, Kim, Lee, Taki, Yagi 15
Yonekura 15
2. \((p, q)\) 5-brane webs

- A 5d theory is realized on a worldvolume theory of 5-branes.
- The 5-brane configuration in Type IIB string theory.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5-brane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS5-brane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p, q) 5-brane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>angle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aharony, Hanany 97, Aharony, Hanany, Kol 97
Ex. Pure SU(2) gauge theory in a Coulomb branch.

- 6d theory on a 1d space \rightarrow effectively a 5d theory

$[(p, q) \text{ 5-brane: slope } = q/p]$

$(1, -1) \text{ 5-brane}$

D5-brane

$(1, 1) \text{ 5-brane}$

$= \text{ [D5-brane + NS5-brane]}$

NS5-brane

- 6d theory on a 1d space \rightarrow effectively a 5d theory
Ex. Pure SU(2) gauge theory in a Coulomb branch.
• The 5d fixed point is realized when all the particles become massless.
• The two descriptions are in fact dual to each other.

• A 5-brane web in type IIB string theory is dual to a toric diagram of a toric Calabi-Yau threefold in M-theory.

Leung Vafa 97
3. A dual description of 5d DE gauge theories
• We would like to find a dual description of 5d pure SO(2N), E$_6$, E$_7$, E$_8$ gauge theories.

• Since we consider D, E gauge groups, we first start from M-theory configurations.

• ADE gauge groups are obtained from ADE singularities over a sphere in a Calabi-Yau threefold
• Ex. 5d pure SO(2N+4) gauge theory
 \(\rightarrow D_{N+2} \) singularities over a sphere

Dynkin diagram of SO(10)
• We can take a different way to see the same geometry for a dual description.

“fiber-base duality”

Katz, Mayr, Vafa 97
Aharony, Hanany, Kol 97
Bao, Pomoni, Taki, Yagi 11
• We can take a different way to see the same geometry for a dual description. “fiber-base duality”

Katz, Mayr, Vafa 97
Aharony, Hanany, Kol 97
Bao, Pomoni, Taki, Yagi 11
• A schematic picture
• A schematic picture

shrink the three surfaces
• A schematic picture

three singularities
• A schematic picture

SU(2) gauge theory
• A schematic picture

SU(2) gauge theory

5d SCFT

SU(2) gauge theory
• The 5d SCFTs may be thought of as “matter” for the SU(2) gauge theory.

• Due to the SU(2) gauge symmetry, each of the 5d SCFTs should have an SU(2) flavor symmetry.

• What are the matter SCFTs?
• Going back to the schematic picture

original picture:

pure SU(2) gauge theory
• In fact, there are two pure SU(2) gauge theories depending on the discrete theta angle θ.

• The UV completion of the two theories are 5d SCFTs but their flavor symmetries are different.

(i). $\theta = 0 \rightarrow SU(2)$ flavor symmetry (E_1 theory)
(ii). $\theta = \pi \rightarrow U(1)$ flavor symmetry (\tilde{E}_1 theory)

• Therefore, the 5d SCFT should be the E_1 theory.
• It is illustrative to see it from 5-brane webs.

• A 5-brane web for the E_1 theory.

pure SU(2)
• It is illustrative to see it from 5-brane webs.

• A 5-brane web for the E_1 theory.

non-perturbative SU(2) flavor symmetry

pure SU(2)
• It is illustrative to see it from 5-brane webs.

• A 5-brane web for the E_1 theory.

pure SU(2)
• It is illustrative to see it from 5-brane webs.

• A 5-brane web for the E_1 theory.
• It is illustrative to see it from 5-brane webs.

• A 5-brane web for the E_1 theory.
• It is illustrative to see it from 5-brane webs.

• A 5-brane web for the E_1 theory.

\[
\tilde{D}_2(SU(2))
\]
• $\hat{D}_N(SU(2))$ is a 5d SCFT with (N-1)-dimensional Coulomb branch moduli space and has an SU(2) flavor symmetry.

Del Zotto, Vafa, Xie 15

• When the SU(2) flavor symmetry is perturbative the theory is S-dual to a pure SU(N) gauge theory with the CS level N or $-N$.

$\hat{D}_N(SU(2))$
$\tilde{D}_2(SU(2))$ theory

$\tilde{D}_2(SU(2))$ theory
original picture:

pure SU(3) gauge theory
• The pure SU(3) gauge theory should have an SU(2) flavor symmetry hence the Chern-Simons level should be 3 or –3.

• A 5-brane web picture:

non-perturbative SU(2) flavor symmetry

pure SU(3)
• The pure SU(3) gauge theory should have an SU(2) flavor symmetry hence the Chern-Simons level should be 3 or –3.

• A 5-brane web picture:
• The pure SU(3) gauge theory should have an SU(2) flavor symmetry hence the Chern-Simons level should be 3 or –3.

• A 5-brane web picture:

\[\text{pure SU}(3) \xrightarrow{\text{S-dual}} \tilde{D}_3(\text{SU}(2)) \]
• The geometric picture

\[\hat{D}_2(SU(2)) \text{ theory} \]

\[\hat{D}_2(SU(2)) \text{ theory} \]

\[\hat{D}_3(SU(2)) \text{ theory} \]
• The shrinking limit leads to:

\[\hat{D}_3(SU(2)) \text{ matter} \]

\[\hat{D}_2(SU(2)) \text{ matter} \]

SU(2) gauge theory
A duality

pure SO(10) gauge theory
• In general

pure SO(2N+4) gauge theory
• In general

pure SO(2N+4) gauge theory

“trivalent gauging”
A web-like description

\[\tilde{D}_N(SU(2)) \text{ matter} \rightarrow \tilde{D}_2(SU(2)) \text{ matter} \]

\[\tilde{D}_2(SU(2)) \text{ matter} \]
• A web-like description

\[\hat{D}_N(SU(2)) \text{ matter} \]

• We will make use of this picture for the later computations by topological strings.
• In fact, this realization of a duality can be easily extended to pure E_6, E_7, E_8 gauge theories.
• In fact, this realization of a duality can be easily extended to pure E_6, E_7, E_8 gauge theories.

• Ex. pure E_6 gauge theory

Dynkin diagram of E_6
• In fact, this realization of a duality can be easily extended to pure E_6, E_7, E_8 gauge theories.

• Ex. pure E_6 gauge theory
• A fiber – base duality
• A fiber – base duality

\[\hat{D}_2(SU(2)) \text{ theory} \]
A fiber – base duality

$\hat{D}_3(SU(2))$ theory

$\hat{D}_2(SU(2))$ theory
• The shrinking limit leads to:

\[\hat{D}_3(SU(2)) \] matter

\[\hat{D}_3(SU(2)) \] matter

\[\hat{D}_2(SU(2)) \] matter

SU(2) gauge theory
• A duality

Pure E_6 gauge theory
• A web-like picture

\[\tilde{D}_3(SU(2)) \text{ matter} \rightarrow \text{trivalent } SU(2) \text{ gauging} \rightarrow \tilde{D}_2(SU(2)) \text{ matter} \]
• A duality for pure E_7 gauge theory

Pure E_7 gauge theory

\[\widehat{D}_2(SU(2)) \]
\[\widehat{D}_4(SU(2)) \]
\[SU(2) \]
\[\widehat{D}_3(SU(2)) \]
• A duality for pure E_8 gauge theory

Pure E_8 gauge theory

\[\hat{D}_2(SU(2)) \]

\[\hat{D}_5(SU(2)) \]

\[SU(2) \]

\[\hat{D}_3(SU(2)) \]
4. Trivalent gluing prescription
• We propose a prescription for computing the partition functions of the dual theories which are constructed by the trivalent gauging.

• For that let us consider a simpler case of an SU(2) gauge theory with one flavor.
• The Nekrasov partition function of an SU(2) gauge theory with one flavor is schematically written by

\[Z_{Nek} = \sum_{\lambda, \mu} Q^{(|\lambda|+|\mu|)} Z^{SU(2)}_{\lambda, \mu} Z^{\text{hyper}}_{\lambda, \mu} \]

Young diagrams describing the fixed points of U(1) in the U(2) instanton moduli space.

Nekrasov 02,
Nekrasov, Okounkov 03
The Nekrasov partition function of an SU(2) gauge theory with one flavor is schematically written by

\[Z_{Nek} = \sum_{\lambda, \mu} Q^{\lvert \lambda \rvert + \lvert \mu \rvert} Z^{SU(2)}_{\lambda, \mu} Z^{hyp} \]

Young diagrams describing the fixed points of U(1) in the U(2) instanton moduli space.

SU(2) instanton background

Nekrasov 02,
Nekrasov, Okounkov 03
• Therefore, we would like to generalize this expression to

\[Z_{Nek} = \sum_{\lambda,\mu} Q|\lambda|+|\mu| Z^{SU(2)}_{\lambda,\mu} Z^{T_1}_{\lambda,\mu} Z^{T_2}_{\lambda,\mu} Z^{T_3}_{\lambda,\mu} \]

Trivalent SU(2) gauging of three 5d SCFTs
Therefore, we would like to generalize this expression to

$$Z_{Nek} = \sum_{\lambda, \mu} Q^{|\lambda|+|\mu|} Z^{SU(2)}_{\lambda, \mu} Z^{T_1}_{\lambda, \mu} Z^{T_2}_{\lambda, \mu} Z^{T_3}_{\lambda, \mu}$$

Trivalent SU(2) gauging of three 5d SCFTs

How can we compute these partition functions?
• However, obtaining the partition functions for the matter theories with an SU(2) instanton background will be difficult from a Lagrangian point of view since the SU(2) flavor symmetry appears non-perturbatively.

• We argue that the topological vertex methods helps us to compute the partition functions of the matter theories with an SU(2) instanton background.
• The topological vertex formalism is kind of a Feynman rule for the topological string amplitude.

\[Q_{\lambda\mu\nu}(\epsilon) \]

• For external legs, we assign a trivial Young diagram.
• The full topological string partition function can be computed by summing over Young diagrams of a product of topological vertices.

$$Z_{\text{top}} = \sum_{\alpha_i, \beta_i, \gamma_i} \prod_i (-Q_{\alpha_i})^{\alpha_i} (-Q_{\beta_i})^{\beta_i} (-Q_{\gamma_i})^{\gamma_i} C_{\alpha_i \beta_i \gamma_i}$$

• The topological string partition function yields the Nekrasov partition function up to extra factors.
A naive expectation is that we can simply apply the topological vertex to the web-diagram with non-trivial Young diagrams on the parallel external legs.

\[Z_{\hat{D}_N(SU(2))}^{\lambda,\mu} = ? \]
• We propose that the correct prescription is given by dividing it by a half of the SU(2) vector multiplet contribution.

\[
Z \hat{\mathcal{D}}_N(SU(2))_{\lambda,\mu} = \ldots
\]
• Ex. SU(2) gauge theory with one flavor
• Ex. SU(2) gauge theory with one flavor
• On the other hand, the partition function of a pure SU(2) gauge theory is given by
\[Q = \sum_{\lambda, \mu} Q^{\lambda + |\mu|} Z^{SU(2)}_{\lambda, \mu} \]

\[= \sum_{\lambda, \mu} Q^{\lambda + |\mu|} f_{\lambda, \mu} \]
Comparing the two equations, we can obtain the partition function of a hypermultiple on an SU(2) instanton background.

\[
= \sum_{\lambda, \mu} Q^{\lambda | + | \mu |} Z^{SU(2)}_{\lambda, \mu} Z^{hyper}_{\lambda, \mu}
\]

\[
= \sum_{\lambda, \mu} Q^{\lambda | + | \mu |} f_{\lambda, \mu} \times Z^{hyper}_{\lambda, \mu}
\]

= \sum_{\lambda, \mu} Q^{\lambda | + | \mu |} f_{\lambda, \mu} \times Z^{hyper}_{\lambda, \mu}
Therefore, the partition function of a hypermultiple on an SU(2) instanton background is then given by

\[Z_{\text{hyper}}^{\lambda,\mu} = \]
• Our proposal is the generalization of the previous case to a matter theory.

\[Z_{\hat{D}_N(SU(2))}^{\lambda,\mu} = \]
• Hence when we consider the trivalent SU(2) gauging of three 5d SCFTs, $\hat{D}_{N_1}(SU(2))$, $\hat{D}_{N_2}(SU(2))$, $\hat{D}_{N_3}(SU(2))$, we argue that the partition function is given by

$$Z_{Nek} = \sum_{\lambda, \mu} Q^{\lambda + |\mu|} Z^{SU(2)}_{\lambda, \mu}$$

$$\times Z^{\hat{D}_{N_1}(SU(2))}_{\lambda, \mu} Z^{\hat{D}_{N_2}(SU(2))}_{\lambda, \mu} Z^{\hat{D}_{N_3}(SU(2))}_{\lambda, \mu}$$

partition functions of three 5d SCFT matter
• With this prescription, it is now straightforward to compute the partition functions of 5d pure SO(2N+4), E₆, E₇, E₈ gauge theories.

(1). Pure SO(2N+4) gauge theories
• The partition function:

\[Z_{Nek} = \sum_{\lambda,\mu} Q^{\lambda + |\mu|} Z^{SU(2)}_{\lambda,\mu} \times Z^{D_N(SU(2))}_{\lambda,\mu} Z^{D_2(SU(2))}_{\lambda,\mu} Z^{D_2(SU(2))}_{\lambda,\mu} \]

• We checked that this indeed agrees with the localization result in the unrefined limit until the order \(Q^8 \) for the perturbative part and also until the order \(Q^5 \) for the one-instanton part and the two-instanton part for the case of SO(8).
(2). Pure E_6 theory

- The partition function

$$Z_{\text{NeK}} = \sum_{\lambda,\mu} Q^{\lambda\lambda + |\mu|} Z^{SU(2)}_{\lambda,\mu}$$

$$\times Z^{D_3(SU(2))}_{\lambda,\mu} Z^{D_3(SU(2))}_{\lambda,\mu} Z^{D_2(SU(2))}_{\lambda,\mu}$$
• We checked the result in the unrefined limit agrees with the localization result.
 Perturbative part : until Q^6
 One-instanton part : until Q^2

• The computation for the E_7 and E_8 partition functions is straightforward and we performed non-trivial checks.
Remarks:

1. It is possible to include matter in the vector representation for the SO(2N+4) gauge theory.

2. We can compute the partition function of SO(2N+3) gauge theory by a Higgsing from the partition function of SO(2N+4) gauge theory with vector matter.

3. We can extend the computation to the refined topological vertex. We checked the validity for SO(8).
5. Applications to 5d theories from 6d
• The trivalent gauging method can be also applied to 5d theories which arise from 6d SCFTs on a circle.

• We consider 6d pure SU(3), SO(8), E\textsubscript{6}, E\textsubscript{7}, E\textsubscript{8} gauge theories with one tensor multiplet.

• They are examples of non-Higgsable clusters and important building blocks for constructing general 6d SCFTs.

Morrison, Taylor 12, Heckman, Morrison Vafa 13 Del Zotto, Heckman, Tomasiello, Vafa 14 Heckman, Morrison Rudelius, Vafa 15
Those 6d SCFTs can be realized by F-theory compactifications on non-compact elliptically fibered Calabi-Yau threefolds.

In the case of the pure SU(3), SO(8), E$_6$, E$_7$, E$_8$ gauge theories, the geometries have type IV, I$_0^*$, IV*, III*, II* fibration over a sphere respectively.

Basically, the fiber spheres form an affine Dynkin diagram.
• 5d descriptions for the 6d pure SO(8), E$_6$, E$_7$, E$_8$ gauge theories have been already known.

• A 5d description of 6d SO(8) gauge theory without matter:

\[\hat{D}_2(SU(2)) \quad \hat{D}_2(SU(2)) \]

\[\hat{D}_2(SU(2)) \quad \hat{D}_2(SU(2)) \]

\[SU(2) \]

Del Zotto, Vafa, Xie 15
• Affine Dynkin (6d) vs Dynkin (5d)

6d pure SO(8)
5d pure SO(8)
• Affine Dynkin (6d) vs Dynkin (5d)
The partition function of the 5d theory is given by

\[Z_{Nek} = \sum_{\lambda, \mu} Q^{\left|\lambda\right|+\left|\mu\right|} Z^{SU(2)}_{\lambda, \mu} \]

\[\times Z^\mathcal{D}_2(SU(2))_{\lambda, \mu} Z^\mathcal{D}_2(SU(2))_{\lambda, \mu} Z^\mathcal{D}_2(SU(2))_{\lambda, \mu} Z^\mathcal{D}_2(SU(2))_{\lambda, \mu} \]

The elliptic genus of this 6d SCFT has been computed.

We checked that the result agrees with the one-string elliptic genus in the unrefined limit until the order \(Q^2 Q_4^2 \).
• It is straightforward to extend the analysis to the cases of 6d pure E_6, E_7, E_8 gauge theories with one tensor multiplet.

• Namely, we extend the Dynkin fibers of E_6, E_7, E_8 to the affine Dynkin fibers.

• Ex. E_6
• **E_7**

![Diagram for E_7]

- \(\tilde{D}_4(SU(2)) \)
- \(SU(2) \)
- \(\tilde{D}_4(SU(2)) \)

• **E_8**

![Diagram for E_8]

- \(\tilde{D}_6(SU(2)) \)
- \(SU(2) \)
- \(\tilde{D}_3(SU(2)) \)

• We computed the partition functions from the trivalent gauging prescription.
Finally, we consider the 6d pure SU(3) gauge theory with one tensor multiplet.

The structure of the geometry is different from the previous cases and we start from its geometry.

The Calabi-Yau threefold for the 6d theory can be realized by an orbifold.
• The orbifold geometry is given by $T^2 \times \mathbb{C}^2 / \Gamma$ with an orbifold action

$$\begin{align*}
(\omega^2; \omega, \omega) \quad &\text{with } \omega^3 = 1 \\
T^2 \quad &\mathbb{C} \quad \mathbb{C}
\end{align*}$$

• The torus becomes a sphere with three fixed points. But there is no singularity over the sphere.

• The fixed point geometry is locally given by $\mathbb{C}^3 / \mathbb{Z}_3$, which is local \mathbb{P}^2 geometry.
• A 5d description can be obtained by considering M-theory on the same Calabi-Yau threefold.

• Then each of the fixed points gives a 5d SCFT, E_0 theory, coming from the local \mathbb{P}^2. And three are coupled with each other.
• Local \mathbb{P}^2 geometry

• The Calabi-Yau geometry is given by gluing three local \mathbb{P}^2 geometries.
• Gluing two local \mathbb{P}^2 geometries.
• Gluing two local \mathbb{P}^2 geometries.

• Gluing three local \mathbb{P}^2 geometries
We can use the same gluing technique to compute the partition function of the SCFT form a local \mathbb{P}^2 geometry.

$$Z_{E_0}^v =$$

![Diagram](attachment:image.png)
Then the partition function of the 5d theories from the 6d pure SU(3) gauge theory is given by

\[Z_{Ne_k} = \sum_v Q^{|\nu|} Z^{SU(1)}_{\nu} Z^{E_0}_{\nu} Z^{E_0}_{\nu} Z^{E_0}_{\nu} \]

partition function of a resolved conifold
• The elliptic genus of this 6d SCFT has been recently calculated.

• For comparison we in fact need to perform flop transitions.

• When we take a 5d limit by taking the size of the compactification circle to infinity then the 6d theory reduces to a pure SU(3) gauge theory.
• In the current case, decoupling one local \mathbb{P}^2 reproduces the geometry glued by two local \mathbb{P}^2.
• In the current case, decoupling one local \mathbb{P}^2 reproduces the geometry glued by two local \mathbb{P}^2.

flop transition

pure SU(3)
• Therefore, we need to perform the flop transition for the partition function obtained from the trivalent SU(1) gauging of three local \mathbb{P}^2 geometries.

• After the flop transition, indeed we found agreement with the elliptic genus of one-string until the order of $Q_1^2 Q_2^2 Q_3^2$.
Remarks:

1. Among the other non-Higgsable clusters, the one with gauge groups $SU(2) \times SO(7) \times SU(2)$ has an orbifold construction. We determined the 5d description and it is again given by the trivalent $SU(2)$ gauging.

2. We can extend the computation to the refined topological vertex. We checked the case of $SO(8)$ until the order $Q Q_1^2 Q_2^2 Q_3^3$ for the one-string part.
6. Conclusion
• We proposed a **new** prescription to compute the partition functions of 5d theories constructed by trivalent gauging.

• This method gives the Nekrasov partition functions of (B)DE gauge theories in addition to AC.

• Furthermore, we computed the partition functions of 5d theories from circle compactifications of 6d pure SU(3), SO(8), E\(_6\), E\(_7\), E\(_8\) gauge theories.