Symmetries of Monopole Spectral Curves

Joint with Harry Braden, Based on *Lett Math Phys* 113, 87 (2023).

Linden Disney-Hogg

University of Edinburgh / University of Leeds

1. Background and Motivation

2. Nahm Data from Symmetry Considerations

3. Outlook

Background and Motivation

Given a principal SU(2) bundle over \mathbb{R}^3 with connection A and section of the adjoint bundle ϕ , the data of a magnetic monopole is a solution of the BPS equation $F = \star D\phi$ satisfying boundary conditions that as $r \to \infty$,

- 1. $|\phi| = 1 \frac{k}{2r} + \mathcal{O}(r^{-2}),$ 2. $\frac{\partial |\phi|}{\partial \Omega} = \mathcal{O}(r^{-2}),$
- 3. $|D\phi| = \mathcal{O}(r^{-2}).$

 $k \in \mathbb{Z}$ classifies solutions topologically, called the charge.

4*k*-dimensional moduli space of all charge-*k* monopoles M_k with action of E(3). (4*k* – 4)-dimensional submanifold of strongly centred monopoles M_k^0 with action of O(3).

Dynamics of monopoles approximated by geodesic motion in moduli space.

Recall minitwistor space $\pi : T\mathbb{P}^1 \cong \mathcal{O}(2) \to \mathbb{P}^1$ with involution $\tau(\zeta, \eta) = (-1/\overline{\zeta}, -\overline{\eta}/\overline{\zeta}^2)$ and $L \to T\mathbb{P}^1$ with transition function $\exp(-\eta/\zeta)$.

Given spectral curve $S \subset T\mathbb{P}^1$ a compact algebraic curve in the linear system $|\pi^* \mathcal{O}(2k)|$, the Hitchin conditions on S are

- S has no multiple components,
- S real wrt τ ,
- $L^2
 ightarrow S$ trivial, L(k-1)
 ightarrow S real,
- $\forall s \in (0,2), H^0(S, L^s(k-2)) = 0.$

Write S as vanishing of polynomial $P(\eta, \zeta) = \eta^k + \sum_{i=1}^k a_i(\zeta) \eta^{k-i}$, $\deg(a_i) = 2i$. $g(S) = (k-1)^2$.

Example: k = 1

$$P(\eta,\zeta) = \eta - \left[(x_1 + ix_2) - 2ix_3\zeta + (x_1 - ix_2)\zeta^2 \right]$$

Background - Nahm Data

The data $\{T_i(s) \mid T_i \in M_k(\mathbb{C}_\infty), s \in [0,2]\}$ is called Nahm data if

• the T_i satisfy Nahm's equation,

$$\frac{dT_i}{ds} = \frac{1}{2} \sum_{j,k=1}^{3} \epsilon_{ijk} \left[T_j, T_k \right] \,,$$

- ∀s ∈ (0,2), T_i(s) are regular, simple poles at s = 0,2, residues form an irreducible k-dimensional rep of SU(2),
- $T_i(s) = -T_i^{\dagger}(s), \ T_i(s) = T_i^{T}(2-s).$

Nahm's equations have Lax formulation $\dot{L} = [L, M]$,

$$L = (T_1 + iT_2) - 2iT_3\zeta + (T_1 - iT_2)\zeta^2, \quad M = -iT_3 + (T_1 - iT_2)\zeta.$$

Example: k = 1

$$T_j = i x_j$$
 constant.

Theorem (Hitchin, 1983) *TFAE:*

- 1. the data of a magnetic monopole,
- 2. a spectral curve satisfying the Hitchin conditions,
- 3. Nahm data.

Spectral curve of the Nahm Lax pair is the associated spectral curve.

Centering monopole corresponds to $a_1 = 0$ in spectral curve, $Tr(T_i) = 0$ for Nahm data.

Constructing gauge fields from Nahm data involves solving an ODE ("bold adaptation of the ADHM construction of instantons").

Example: Charge-2 Monopoles

dim $M_2^0 = 4$. Quotienting by residual SO(3) action leaves 1-parameter family.

Nahm data $T_j(s) = \frac{1}{2i} f_j(s) \sigma_j$, σ_j Pauli matrices, f_j real functions, gives

$$\dot{f}_1 = f_2 f_3 + \text{cycles},$$

solved in terms of elliptic functions.

Spectral curve

$$\eta^{2} + \frac{1}{4}K(k)^{2}\left[\zeta^{4} + 2(k^{2} - k'^{2})\zeta^{2} + 1\right] = 0.$$

Scattering of two 1-monopoles understood in terms of parameter k.

Charge-2 Pictures

FIGURE 4. Two views of the Energy density $\mathcal{E}(x)$ for k = 0.8. Blue corresponds to the isocontour $\mathcal{E}(x) = 0.2$, red to $\mathcal{E}(x) = 0.42$, and dark red to $\mathcal{E}(x) = 0.7$.

 (b) The charge 2 monopoles via the ADHMN construction [BE21]

Å

FIGURE 2. Schematic diagram of the direct collision process.

(a) Low-Energy Scattering of Non-Abelian Magnetic Monopoles [AH88]

Problem

So what goes wrong? Constructing Nahm data from nothing is hard, better if we have a spectral curve to aim for, but spectral curve conditions are also hard.

Theorem (Braden, 2018) Spectral curves are transcendental.

Few solutions found this way.

$P(\eta,\zeta)$	G	
η	<i>SO</i> (3)	[Hit82]
$\eta \prod_{l=1}^{m} (\eta^2 + l^2 \pi^2 \zeta^2)$	<i>SO</i> (2)	[Hit82]
$\prod_{l=0}^{m} (\eta^2 + [l+1/2]^2 \pi^2 \zeta^2)$	<i>SO</i> (2)	[Hit82]
$\eta^2 + \frac{1}{4}K(k)^2 \left[\zeta^4 + 2(k^2 - k'^2)\zeta^2 + 1\right]$	<i>C</i> ₂	[Hur83]
$\eta^3 + \alpha \eta \zeta^2 + \gamma \zeta^3 + \beta (\zeta^6 - 1)^*$	<i>C</i> ₃	[BDE11]

*Coefficients defined implicitly by vanishing of period on genus-2 curve.

Nahm Data from Symmetry Considerations

Representation Theory

Method of Hitchin, Manton, Murray, 1995. SO(3) rep space of (T_i) is

$$\begin{split} \mathbb{R}^3 \otimes \mathfrak{sl}_{\mathbb{C}}(k) &= \mathbb{S}^2 \otimes (\mathbb{S}^{2k-2} \oplus \cdots \oplus \mathbb{S}^2), \\ &= (\mathbb{S}_{-1}^{2k} \oplus \mathbb{S}_0^{2k-2} \oplus \mathbb{S}_1^{2k-4}) \oplus \cdots \oplus (\mathbb{S}_{-1}^4 \oplus \mathbb{S}_0^2 \oplus \mathbb{S}_1^0) \end{split}$$

 \mathbb{S}^r vector space of degree-*r* homogeneous bivariate polynomials with PSU(2) action. Given $P \in \mathbb{S}_i^{2r}$, $\rho : \mathfrak{so}(3) \to \mathfrak{sl}_{\mathbb{C}}(k)$, realise associated matrix by

$$\mathbb{S}_{i}^{2r} \to \mathbb{S}_{-1}^{2r} \xrightarrow{\mathsf{Pol}} \mathbb{S}^{2} \otimes \mathbb{S}^{2r-2} \Big|_{\mathbb{S}_{-1}^{2r}} \xrightarrow{\mathsf{hwv}} \mathbb{S}^{2} \otimes \mathbb{S}^{2(r+i)} \Big|_{\mathbb{S}_{i}^{2r}} \xrightarrow{\mathsf{hwv}} \mathbb{R}^{3} \otimes \mathfrak{sl}_{\mathbb{C}}(k) \Big|_{\mathbb{S}_{i}^{2r}}.$$

Mapping respects group action, so given $G \leq SO(3)$ and $P \in (\mathbb{S}^{2r})^G$, get vectors $(S_i) \in (\mathbb{R}^3 \otimes \mathfrak{sl}_{\mathbb{C}}(k))^G$. Note

$$\langle (
ho_i)
angle = \left(\mathbb{R}^3 \otimes \mathfrak{sl}_{\mathbb{C}}(k)
ight)^{SO(3)} \leq \left(\mathbb{R}^3 \otimes \mathfrak{sl}_{\mathbb{C}}(k)
ight)^G \leq \left(\mathbb{R}^3 \otimes \mathfrak{sl}_{\mathbb{C}}(k)
ight)^{\{e\}}$$

Representation Theory

Assuming a spanning set $\langle (\rho_i), (S_i^{(j)}), j = 1, ..., d \rangle = (\mathbb{R}^3 \otimes \mathfrak{sl}_{\mathbb{C}}(k))^G$, writing $T_i = x\rho_i + y_j S_i^{(j)}$ (summing over repeated indices) gives equations for *G*-invariant Nahm data

$$\begin{split} & [\rho_1, \rho_2] \propto \rho_3, \\ & \left[\rho_1, S_2^{(j)}\right] + \left[S_1^{(j)}, \rho_2\right] = \alpha^{(j)}\rho_3 + \beta^{(j,k)}S_3^{(k)}, \\ & \left[S_1^{(j)}, S_2^{(k)}\right] + \left[S_1^{(k)}, S_2^{(j)}\right] = (1+1_{j=k})(\gamma^{(j,k)}\rho_3 + \delta^{(j,k,l)}S_3^{(l)}), \quad k \leq j, \end{split}$$

+ cycles, which can be solved with Gröbner bases or vectorisation, where the ability to solve imposes constraints on x, y_j . Nahm's equations become

$$\begin{aligned} x' &= 2x^2 + \alpha^{(k)} x y_k + \gamma^{(k,l)} y_k y_l, \\ y'_j &= \beta^{(k,j)} x y_k + \delta^{(k,l,j)} y_k y_l. \end{aligned}$$

Remains to solve with correct singularities and reality conditions.

Example Calculation

load("nahm data.pv")

 $K. < j > = NumberField(polygen(QQ)^2 + 1)$.<z,w> = K[1 j = (polygen(K)^2+1).roots(multiplicities=False)[0] r1 = matrix(K, [[0, 0, 0], [0, 0, -2], [0, 2, 0]])r2 = matrix(K, [[0, 0, 2], [0, 0, 0], [-2, 0, 0]])r3 = matrix(K, [[0, -2, 0], [2, 0, 0], [0, 0, 0]]) $Q = j*w*z*(w^4 - z^4)$ rs, Ss = find invariant vectors([r1, r2, r3], Q) make hermitian(Ss) , constraints = solve commutation relations(rs, Ss) ODEs = ode system(rs, Ss) f = spectral curve(rs, Ss) Ts = nahm matrices(rs, Ss) print("Constraints on coefficients:", constraints) print("ODEs:") pretty print(ODEs) print("Spectral curve:") pretty print(f) print("Nahm data:") pretty print(Ts)

Succeeded in making all matrices anti-Hermitian: True Constraints on coefficients: [] ODEs:

 $[2x^2 - 50y_0^2, -4xy_0]$

Spectral curve:

 $(480jx^2y_0 - 4000jy_0^3)\zeta^5 + \eta^3 + (-480jx^2y_0 + 4000jy_0^3)\zeta$

Nahm data:

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -2x + 10jy_0 \\ 0 & 2x + 10jy_0 & 0 \end{bmatrix}, \begin{pmatrix} 0 & 0 & 2x + 10jy_0 \\ 0 & 0 & 0 \\ -2x + 10jy_0 & 0 & 0 \end{bmatrix}, \begin{pmatrix} 2x + 10jy_0 & 0 \\ 2x + 10jy_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

This approach allowed for the construction of many new curves with distinguished symmetries.

${\sf P}(\eta,\zeta)$	G	
$\eta^3+ia_3\zeta(\zeta^4-1)$	A_4	[HMM95]
$\eta^3 - 6(a^2 \pm 4)^{1/3} \kappa^2 \eta \zeta^2 + 2i \kappa^3 a \zeta (\zeta^4 - 1)$	<i>C</i> ₄	[HS96b]
$\eta \left\{ \eta^2 - K(k)^2 \left[k^2 (\zeta^4 + 1) + 2(k^2 - 2)\zeta^2 \right] \right\}$	C_2 (inv)	[HS96a]
$\eta^4+a_4(\zeta^8+14\zeta^4+1)$	S ₄	[HMM95]
$\eta^4 + 36 i a \kappa^3 \eta \zeta (\zeta^4 - 1) + 3 \kappa^4 (\zeta^8 + 14 \zeta^4 + 1)$	A_4	[HS96d]
$\eta\left[\eta^4+4a_4(\zeta^8+14\zeta^4+1) ight]$	S_4	[HS96c]
$\eta \left[\eta^{6} + a_7 \zeta (\zeta^{10} + 11 \zeta^5 - 1) ight]$	A_5	[HS96c]

Those with a free parameter (k or κ) give scattering in the moduli space.

Q: In charge 3, what remaining potential symmetric monopoles are there? A: Wiman, 1895 (English translation DH, Beckett, Deutsch, 2022) writes down equations for all non-hyperelliptic genus-4 curves and their automorphism groups.

Such curves are $Q \cap C \subset \mathbb{P}^3$, Q either non-singular or a cone. $T\mathbb{P}^1 \hookrightarrow \mathbb{P}^{1,1,2} \cong Q_{\text{cone}}$, and write C in terms of $T\mathbb{P}^1$ coordinates as

$$\eta^3 + f_2(\zeta_0, \zeta_1)\eta^2 + f_4(\zeta_0, \zeta_1)\eta + f_6(\zeta_0, \zeta_1) = 0.$$

Hence all candidate charge-3 monopole spectral curves have been written down, remains to impose reality and other Hitchin conditions.

Full list is too long (21 curves), so need a way to simplify.

Genus-1 Quotients

Idea: Ask for spectral curves S with $G \leq \operatorname{Aut}(S)$ s.t. g(S/G) = 1. Can enumerate these based on work of Breuer and others. They can only give G and associated signature of quotient c, but with a bit of work (and Sage's Riemann surfaces functionality) can match these to Wiman.

f	G	С	δ
$\eta^3 + \eta(a\zeta^4 + b\zeta^2 + c) + (d\zeta^6 + e\zeta^4 + f\zeta^2 + g)$	<i>C</i> ₂	[1; 2 ⁶]	6
$\eta^3+\eta(a\zeta^3+b)+(\zeta^6+c\zeta^3+d)$	<i>C</i> ₃	[1; 3 ³]	3
$\eta^3 + a\eta\zeta^2 + \zeta(\zeta^4 + 1)$	<i>C</i> ₄	$[1; 4^2]$	2
$\eta^3+\eta[a(\zeta^4+1)+b\zeta^2]+\zeta(\zeta^4-1)$	C_{2}^{2}	$[1; 2^3]$	3
$\eta^3+ extbf{a}\eta\zeta^2+(\zeta^6+1)$	S_3	$[1; 2^2]$	2
$\eta^3+a\eta\zeta^2+(\zeta^6+1)$	C_6	$[1; 2^2]$	2
$\eta^3-\zeta(\zeta^4+1)$	A_4	[1; 2]	1

 A_4 and C_4 curves already found in [HMM95, HS96b]. C_3 family is just A_4 curve. Pullback condition rules out C_2 . dim_R $(M_3^0)^G \leq \delta$, δ determined by c only.

Theorem (DH, Braden, 2023) *Given* $\alpha \in [0, 1]$ *, define*

$$\tau = \tau(\alpha) = i \frac{{}_{2}F_{1}(1/6, 5/6, 1; 1-\alpha)}{{}_{2}F_{1}(1/6, 5/6, 1; \alpha)}.$$

Solving

$$\frac{1}{3}\alpha_2^2 = \frac{1}{4}g_2(1,\tau), \quad \frac{1}{27}\alpha_2^3 - 2\beta^2 = \frac{1}{8}g_3(1,\tau),$$

with $sgn(\alpha_2) = sgn(\alpha)$ yields a monopole spectral curve with D_6 symmetry

$$\eta^3 + \alpha_2 \eta \zeta^2 + \beta (\zeta^6 - 1) = 0.$$

Moreover, the Nahm data is known explicitly in terms of p-functions.

Specialisation of [BDE11] curve made explicit. Can understand scattering in terms of α , and get explicit values for α_2, β when $\alpha = 1/2$.

New Spectral Curves!

Theorem (DH, Braden, 2023) Given $\alpha \in \mathbb{R}$, $m \in [0, 1]$, and sgn = ± 1 , define g_2, g_3 by $g_2 = 12 \left(K(m)^2/3 \right)^2 q_1(m), g_3 = 4 \left(K(m)^2/3 \right)^3 (2m-1)q_2(m)$, where

$$q_1(m) = \left\{ egin{array}{ccc} 1-m+m^2 & sgn=1\ 1-16m+16m^2 & sgn=-1 \end{array}
ight., \quad q_2(m) = \left\{ egin{array}{ccc} (m-2)(m+1)\ 2(32m^2-32m-1) \end{array}
ight.$$

If m is such that $g_2 > 0$ and the polynomial $(4 - 2\alpha)x^3 - g_2x - g_3$ has a real root x_* with $|x_*| < \sqrt{g_2/3}$ and $sgn(x_*) = -sgn(\alpha)$, then we may solve

$$a^{2} + \frac{b^{2}}{12} = g_{2}, \quad \frac{b(b^{2} - 36a^{2})}{216} + \frac{c^{2}}{4} = g_{3}$$

for $a, b, c \in \mathbb{R}$. Then

$$\eta^3 + \eta \left[a(\zeta^4 + 1) + b\zeta^2 \right] + ic\zeta(\zeta^4 - 1) = 0$$

is a monopole spectral curve with V_4 symmetry. Moreover the Nahm data is given explicitly in terms of elliptic functions.

New Spectral Curves!

17

New Spectral Curves

(a) k = 0.45, $\alpha = 0.2$, $\Delta > 0$, b = -3.21 (b) k = 0.45, $\alpha = 0.2$, $\Delta > 0$, b = -7.19

New Spectral Curves

(a) k = 0.77, $\alpha = -2.0$, $\Delta > 0$, b = 1.42 (b) k = 0.77, $\alpha = -2.0$, $\Delta > 0$, b = 7.24

Outlook

Outlook

Questions for charge 3:

• Extend to the other curves on Wiman's list, solving in terms of e.g. hyperelliptic functions?

Further questions:

- Geometry can be extended to higher charges.
- What can we do for hyperbolic monopoles (e.g. [NR07])?
- What happens for higher gauge groups with different symmetry breaking?
- Can we formalise the idea that if g(S/G) = 1, we can solve, from a Nahm perspective?
- Interpretation of the representation theory.
- dim = $\delta 1$ for elliptic quotients?

Using Sutcliffe ansatz, C_3 -invariant monopole written in in terms of periodic $A_2^{(1)}$ Toda

$$\dot{a}_i = \frac{1}{2}a_i(b_i - b_{i+1}), \quad \dot{b}_i = a_i^2 - a_{i-1}^2,$$

i = 1, 2, 3 taken mod 3. Imposing additional symmetry gives restriction $a_1^2 - a_2^2 = 0 = b_2$. Have constants $\alpha_2 = -b_1^2 + a_0^2 + 2a_1^2$, $\beta = -a_0a_1^2$, so reduces to elliptic equation. Have to fix the real period of the corresponding lattice, which requires inverting a *j*-invariant using formula of Ramanujan. Remaining constraints of reality and pole structure fall into place.

Reduction can be seen to come from folding the Dynkin diagram $A_2^{(1)} \rightarrow A_2^{(2)}$, and leaves the Bullough-Dodd equation. Alternatively from enforcing the residue to be irreducible.

Find matrices

$$T_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\bar{f}_1 \\ 0 & f_1 & 0 \end{pmatrix}, \quad T_2 = \begin{pmatrix} 0 & 0 & f_2 \\ 0 & 0 & 0 \\ -\bar{f}_2 & 0 & 0 \end{pmatrix}, \quad T_3 = \begin{pmatrix} 0 & -\bar{f}_3 & 0 \\ f_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and equations reduce to $\dot{f}_1 = \bar{f}_2 \bar{f}_3$ and cycles. Can separate this into equations for $|f_i|$ and $\arg(f_i)$ to solve.

Requiring that the f_i are real is what sets c = 0, then these are inversion-symmetric monopoles. Requiring $f_1 = f_2$ sets a = 0 and these are monopoles 'with a twist'.

 $\tau(1/2) = i$, so this correspond to the square lattice. Coefficients are

$$\alpha_2 = \frac{\sqrt{3}\Gamma(1/4)^4}{8\pi}, \quad \beta = \pm \frac{\Gamma(1/4)^6}{32(\sqrt{3}\pi)^{3/2}}$$

Related to the "twisted figure-of-eight" monopole of [HS96b], where automorphism group is D_8 .

References i

- M. F. Atiyah and N. J. Hitchin, The geometry and dynamics of magnetic monopoles, Princeton University Press, 1988.
- H. W. Braden, A. D'Avanzo, and V. Z. Enolski, On charge-3 cyclic monopoles, Nonlinearity 24 (2011), no. 3, 643–675.
- H. W. Braden and V. Z. Enolski, The charge 2 monopole via the ADHMN construction, Advances in Theoretical and Mathematical Physics 25 (2021), 791–956, Appendix by David E. Braden, Peter Braden, and H. W. Braden.

N. J. Hitchin, *Monopoles and geodesics*, Communications in Mathematical Physics **83** (1982), no. 4, 579–602.

N. J. Hitchin, N. S. Manton, and M. K. Murray, Symmetric monopoles, Nonlinearity 8 (1995), no. 5, 661–692.

References ii

- C. J. Houghton and P. M. Sutcliffe, *Inversion symmetric* 3-monopoles and the Atiyah - Hitchin manifold, Nonlinearity 9 (1996), no. 6, 1609.
- , Monopole scattering with a twist, Nuclear Physics B 464 (1996), no. 1, 59–84.
- . Octahedral and dodecahedral monopoles, Nonlinearity 9 (1996), no. 2, 385.
- Mathematical Physics 180 (1996), no. 2, 343–361.
- J. Hurtubise, SU(2) *monopoles of charge* 2, Communications in Mathematical Physics **92** (1983), no. 2, 195–202.

 P. Norbury and N. M. Romão, Spectral curves and the mass of hyperbolic monopoles, Communications in Mathematical Physics 270 (2007), no. 2, 295–333.