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Background and Motivation



Background - Euclidean Monopoles

Given a principal SU(2) bundle over R?® with connection A and section of
the adjoint bundle ¢, the data of a magnetic monopole is a solution of the
BPS equation F = xD¢ satisfying boundary conditions that as r — oo,

L ¢l =1~ 5 +0(r?),
) _
2. ¢l — o(r2),
3. |D¢| = O(r=2).
k € Z classifies solutions topologically, called the charge.

4 k-dimensional moduli space of all charge-k monopoles My with action
of E(3). (4k — 4)-dimensional submanifold of strongly centred monopoles
M? with action of O(3).

Dynamics of monopoles approximated by geodesic motion in moduli
space.



Background - Spectral Curve

Recall minitwistor space 7 : TP! = O(2) — P! with involution
7(¢,n) = (=1/¢, —7/¢?) and L — TP with transition function

exp(—1/C).

Given spectral curve S C TP! a compact algebraic curve in the linear
system |7*O(2k)|, the Hitchin conditions on S are

e S has no multiple components,

e S real wrt T,

e [2— S trivial, L(k — 1) — S real,
e Vs €(0,2), H(S, L5(k — 2)) = 0.

Write S as vanishing of polynomial P(n, () = n* + Zf-;l a;(O)nk—,
deg(a;) = 2i. g(S) = (k—1)%
Example: k=1

P(n,¢) =n— [(a + ix) — 2ix3¢ + (xq — ix2)(?]



Background - Nahm Data

The data {Ti(s)| T; € Mk(Cx), s € [0,2]} is called Nahm data if

e the T; satisfy Nahm's equation,

3
dT; 1
4 — > E €iik [ T, Til

Ji k=1

e Vs € (0,2), T;(s) are regular, simple poles at s = 0, 2, residues form
an irreducible k-dimensional rep of SU(2),
o Ti(s) = ~Ti(s). Tils) = T/ (2 9).

Nahm's equations have Lax formulation L = [L, M],
L = (Tl + IT2) = 2IT3C + (T]_ = I'Tz)cz, M = —I'T3 —|— (T]_ = I'T2)C.

Example: k=1

T; = ix; constant.



Background - Circle of Ideas

Theorem (Hitchin, 1983)
TFAE:

1. the data of a magnetic monopole,
2. a spectral curve satisfying the Hitchin conditions,

3. Nahm data.

Spectral curve of the Nahm Lax pair is the associated spectral curve.

Centering monopole corresponds to a; = 0 in spectral curve, Tr(T;) =0
for Nahm data.

Constructing gauge fields from Nahm data involves solving an ODE
(“bold adaptation of the ADHM construction of instantons”).



Charge-2

Example: Charge-2 Monopoles
dim M2 = 4. Quotienting by residual SO(3) action leaves 1-parameter

family.

Nahm data Tj(s) = 4f(s)oj, o; Pauli matrices, f; real functions, gives
fi=hf + cycles,

solved in terms of elliptic functions.

Spectral curve
1
n 4+ KK ¢+ 20k — k)¢ + 1} —0.

Scattering of two 1-monopoles understood in terms of parameter k.



i
«oc»

S

Ficure 2. Schematic diagram of the direct collision process.

(a) Low-Energy Scattering of Non-Abelian
Magnetic Monopoles [AH88]

FIGURE 4. Two views of the Energy density £(x) for k = 0.8. Blue corre-

sponds to the isacontour £(x) = 0.2, red to £(x) = 0.42, and dark red to

E(x) = 0.7

(b) The charge 2 monopoles via the
ADHMN construction [BE21]



So what goes wrong? Constructing Nahm data from nothing is hard,
better if we have a spectral curve to aim for, but spectral curve
conditions are also hard.

Theorem (Braden, 2018)
Spectral curves are transcendental.

Few solutions found this way.

P(n,¢) | 6 |
7 S0(3) | [Hit82]
n Ty (n? + PPm2¢?) SO(2) | [Hit82]
[Timo(m? + [ + 172" 72¢?) S0(2) | [Hits2]
7+ K (k)? [C“ +2(k2 = k%) + 1} G | [Hurs3]
n® +an¢® + ¢ + B(¢° - 1)* G | [BDE11]

*Coefficients defined implicitly by vanishing of period on genus-2 curve.



Nahm Data from Symmetry
Considerations



Representation Theory

Method of Hitchin, Manton, Murray, 1995. SO(3) rep space of (T;) is

R¥@slc(k)=S*® (S* 2@ - 0S?),
= (koS 2epS* e - 0(S*,05:0SY),

S" vector space of degree-r homogeneous bivariate polynomials with

PSU(2) action. Given P € S%, p: s50(3) — slc(k), realise associated
matrix by
Pal

SZ 8% S SRS, M S @S

2r
S—1

. ™R3 ® sle(k)

i

2r -
§;

Mapping respects group action, so given G < SO(3) and P € (S%)¢, get
vectors (S;) € (R3 @ slc(k))C. Note

(p1)) = (R® @ slc(k))*°P) < (R® @ slc(K))C < (R @ slc(k)) .



Representation Theory

Assuming a spanning set <(p,~), (Si(j)) =1, d> = (R3 ® slc(k))C,
writing T; = xp; + yJ-SI-U) (summing over repeated indices) gives
equations for G-invariant Nahm data
[p1, p2] o ps,
[P1752(j)} + [510)7[)2} = alp; + U S,
[Sfj)v 52(k)} N {Sl(k)7 59)} = (1+ L=k ) (0 Pps + 804N, k<,
+ cycles, which can be solved with Grobner bases or vectorisation, where

the ability to solve imposes constraints on x, y;. Nahm's equations
become

x' = 2x% + B xy + yEDyy,

/

yj = B%xyi + 5!y,

Remains to solve with correct singularities and reality conditions.
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Example Calculation

load("nahn data.py")

K.<j> = NumberField(polygen(QQ)~2 + 1)
<z,w> = K|
j = (polygen(K)*2+1).roots (multiplicities=False)[6]

rl = matrix(k, [[e, e, o], [®, 0, -2], [0, 2, O]])
r2 = matrix(K, [[e, o, 2], [, @, e], [-2, @, ©]])
r3 = matrix(K, [[6, -2, 6], [2, 0, 6], [0, 6, 0]])

Q = jrrze(wa - z2°4)

rs, Ss = find invariant vectors([rl, r2, r3], Q)
nake_hermitian(ss)

_, constraints = solve_commutation relations(rs, Ss)
ODEs = ode systen(rs, Ss)

f = spectral_curve(rs, Ss)

Ts = nahm_matrices(rs, Ss)

print("Constraints on coefficients:", constraints)
print("0DEs:")

pretty print(0DEs)

print("Spectral curve:*)

pretty print(f)

print("Nahm data:")

pretty print(Ts)

Succeeded in making all matrices anti-Hermitian:

True
Constraints on coefficients: []

[25 — 5052, ~4x30]
Spectral curve:

(480)x yo —4000j33) ¢ +1* + (=480jxyp + 4000433 ) &

Nahm data:

0 0 0 0 0 2x+10jy 0 2x+10jy, 0
0 0 —2x+10jy, |. 00 0[] 2x+ 10jy, 00
0 2x+ 10jy o) \2x+10j5 0 0 0 00
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Many New Curves

This approach allowed for the construction of many new curves with
distinguished symmetries.

P(n,¢) | 6 |
n® +iasC(¢* - 1) A, | [HMMO5]
n® — 6(a + 4)1/3k2n¢2 + 2iK3aC(¢* — 1) o [HS96b]
n{n? - k)2 [K2(¢* 4+ 1) +2(k* = 2)¢3]} | G (inv) | [HS96a]
n* 4 as(¢® +14¢* + 1) S [HMM95]
n* 4 36iar3nC(¢* — 1) + 36+ 14¢* +1) | Ag [HS96d]
n [n* + 4as(¢C® + 14¢* + 1)) Ss [HS96¢]
n [n® + a7¢ (¢ + 11¢° — 1)] As [HS96¢]

Those with a free parameter (k or k) give scattering in the moduli space.
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Being More Methodical

Q: In charge 3, what remaining potential symmetric monopoles are
there? A: Wiman, 1895 (English translation DH, Beckett, Deutsch,
2022) writes down equations for all non-hyperelliptic genus-4 curves and
their automorphism groups.

Such curves are Q N C C IP?, @ either non-singular or a cone.
TP — PL12 2 Q.one, and write C in terms of TP! coordinates as

n° + f(Co, G1)0° + fa(Co, C1)1 + f6(Co, G1) = 0.

Hence all candidate charge-3 monopole spectral curves have been written
down, remains to impose reality and other Hitchin conditions.

Full list is too long (21 curves), so need a way to simplify.
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Genus-1 Quotients

Idea: Ask for spectral curves S with G < Aut(S) s.t. g(5/G) =1. Can
enumerate these based on work of Breuer and others. They can only give
G and associated signature of quotient ¢, but with a bit of work (and
Sage's Riemann surfaces functionality) can match these to Wiman.

f |G| c |o

B Hnac* + b2 +c)+(d+ec*+f2+g) | G [ [1,29] ] 6
17 +n(ac® + b) + (¢° + ¢ + d) G | [1:3]]3

n® + anC? + ¢(¢* + 1) G | [1,4]]2

n® +nla(¢* + 1) + bC? +¢(¢* - 1) C3 | [1;,2% |3

n® +an¢® +(¢° +1) Ss | [1;27] | 2

n*+an¢® +(¢°+1) G | [1;27 | 2

7’ = (¢t +1) Ay | [12] |1

Ay and G4 curves already found in [HMMO95, HS96b]. C; family is just
A4 curve. Pullback condition rules out G. dimR(Mg)G <4, 0

determined by c only.
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New Spectral Curves!

Theorem (DH, Braden, 2023)
Given a € |0,1], define

i2F1(1/6) 5/6,1;1 - «)

T=r(a) = 2F1(1/6,5/6,1;a)
Solving
1 1 1 1
50&% = Zg2(177-)7 Eag - 262 = §g3 (laT)7

with sgn(ap) = sgn(a) yields a monopole spectral curve with Dg
symmetry
7+ aan¢® + B(¢° - 1) =0.

Moreover, the Nahm data is known explicitly in terms of @-functions.

Specialisation of [BDE11] curve made explicit. Can understand scattering
in terms of «, and get explicit values for ap, 8 when o = 1/2.
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New Spectral Curves!

Theorem (DH, Braden, 2023)
Given « € R, m € [0,1], and sgn = +1, define g», g5 by

g =12 (K(m)2/3)2 ai(m), gz =4 (K(m)2/3)3 (2m — 1)g2(m), where

B 1—m+m? sgn=1 . (m—2)(m+1)
a(m) = { 1—16m+16m> sgn=—1 "' a2(m) = { 2(32m* — 32m — 1)

If m is such that g > 0 and the polynomial (4 — 2a)x® — gox — g3 has a
real root x, with |x.| < \/g/3 and sgn(x.) = —sgn(«), then we may
solve

PO o U
12" & 216 g ~ 8

for a,b,c € R. Then
n° 4+ [a(¢* + 1) + b¢?] +ic¢(¢* —1) =0

is a monopole spectral curve with V, symmetry. Moreover the Nahm

data is given explicitly in terms of elliptic functions.
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New Spectral Curves!

D, subset . D, subset
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New Spectral Curves

X y X ¥

(a) k=045, =02, A>0, b=-321 (b) k=045 =02, A>0, b=-7.19
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New Spectral Curves

(a) k=077, a=—-2.0,A>0,b=142 (b) k=077, =—-2.0,A >0, b=7.24



Outlook




Questions for charge 3:

e Extend to the other curves on Wiman's list, solving in terms of e.g.
hyperelliptic functions?

Further questions:

e Geometry can be extended to higher charges.
e What can we do for hyperbolic monopoles (e.g. [NRO7])?

e What happens for higher gauge groups with different symmetry
breaking?

e Can we formalise the idea that if g(5/G) = 1, we can solve, from a
Nahm perspective?

e Interpretation of the representation theory.

e dim = 6 — 1 for elliptic quotients?
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Idea of Computation

Using Sutcliffe ansatz, Cz-invariant monopole written in in terms of
periodic Agl) Toda

a; = %ai(bi — bit1), bi = a’? - 3,2_1,
i =1,2,3 taken mod 3. Imposing additional symmetry gives restriction
a? — a3 = 0 = by. Have constants ap = —b? + a3 + 223, 8 = —apa3, so
reduces to elliptic equation. Have to fix the real period of the
corresponding lattice, which requires inverting a j-invariant using formula
of Ramanujan. Remaining constraints of reality and pole structure fall
into place.

Reduction can be seen to come from folding the Dynkin diagram
A(Ql) — Ag), and leaves the Bullough-Dodd equation. Alternatively from
enforcing the residue to be irreducible.
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Idea of Computation

Find matrices

00 O 0 0 £ 0 - O
T.=(0 0 -A|, =] 0 0 0|, Tzs=|6( 0 0,
0 A O -5 0 0 0 0 0

and equations reduce to fi = Kf and cycles. Can separate this into
equations for |f;| and arg(f;) to solve.

Requiring that the f; are real is what sets ¢ = 0, then these are
inversion-symmetric monopoles. Requiring f; = f, sets a = 0 and these
are monopoles ‘with a twist'.
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Special Curve

7(1/2) = i, so this correspond to the square lattice. Coefficients are

0y — \/§ré71r/4)4, -

r(/4)°
32(v/3m)3/2°

Related to the “twisted figure-of-eight” monopole of [HS96b], where
automorphism group is Dg.

23



References i

[
B

M. F. Atiyah and N. J. Hitchin, The geometry and dynamics of
magnetic monopoles, Princeton University Press, 1988.

H. W. Braden, A. D'Avanzo, and V. Z. Enolski, On charge-3 cyclic
monopoles, Nonlinearity 24 (2011), no. 3, 643-675.

H. W. Braden and V. Z. Enolski, The charge 2 monopole via the
ADHMN construction, Advances in Theoretical and Mathematical
Physics 25 (2021), 791-956, Appendix by David E. Braden, Peter
Braden, and H. W. Braden.

N. J. Hitchin, Monopoles and geodesics, Communications in
Mathematical Physics 83 (1982), no. 4, 579-602.

N. J. Hitchin, N. S. Manton, and M. K. Murray, Symmetric
monopoles, Nonlinearity 8 (1995), no. 5, 661-692.

24



References ii

@ cJ Houghton and P. M. Sutcliffe, Inversion symmetric
3-monopoles and the Atiyah - Hitchin manifold, Nonlinearity 9
(1996), no. 6, 1609.

B

, Monopole scattering with a twist, Nuclear Physics B 464
(1996), no. 1, 59-84.

B

, Octahedral and dodecahedral monopoles, Nonlinearity 9
(1996), no. 2, 385.

@ __, Tetrahedral and cubic monopoles, Communications in
Mathematical Physics 180 (1996), no. 2, 343-361.

[§ J. Hurtubise, SU(2) monopoles of charge 2, Communications in
Mathematical Physics 92 (1983), no. 2, 195-202.

25



References iii

@ P. Norbury and N. M. Romao, Spectral curves and the mass of
hyperbolic monopoles, Communications in Mathematical Physics
270 (2007), no. 2, 295-333.

26



	Background and Motivation
	Nahm Data from Symmetry Considerations
	Outlook

