Symmetries of Monopole Spectral Curves

Joint with Harry Braden,
Based on Lett Math Phys 113, 87 (2023).

Linden Disney-Hogg
University of Edinburgh / University of Leeds

Outline

1. Background and Motivation
2. Nahm Data from Symmetry Considerations
3. Outlook

Background and Motivation

Background - Euclidean Monopoles

Given a principal $S U(2)$ bundle over \mathbb{R}^{3} with connection A and section of the adjoint bundle ϕ, the data of a magnetic monopole is a solution of the BPS equation $F=\star D \phi$ satisfying boundary conditions that as $r \rightarrow \infty$,

1. $|\phi|=1-\frac{k}{2 r}+\mathcal{O}\left(r^{-2}\right)$,
2. $\frac{\partial|\phi|}{\partial \Omega}=\mathcal{O}\left(r^{-2}\right)$,
3. $|D \phi|=\mathcal{O}\left(r^{-2}\right)$.
$k \in \mathbb{Z}$ classifies solutions topologically, called the charge.
$4 k$-dimensional moduli space of all charge- k monopoles M_{k} with action of $E(3)$. ($4 k-4$)-dimensional submanifold of strongly centred monopoles M_{k}^{0} with action of $O(3)$.

Dynamics of monopoles approximated by geodesic motion in moduli space.

Background - Spectral Curve

Recall minitwistor space $\pi: T \mathbb{P}^{1} \cong \mathcal{O}(2) \rightarrow \mathbb{P}^{1}$ with involution $\tau(\zeta, \eta)=\left(-1 / \bar{\zeta},-\bar{\eta} / \bar{\zeta}^{2}\right)$ and $L \rightarrow T \mathbb{P}^{1}$ with transition function $\exp (-\eta / \zeta)$.
Given spectral curve $S \subset T \mathbb{P}^{1}$ a compact algebraic curve in the linear system $\left|\pi^{*} \mathcal{O}(2 k)\right|$, the Hitchin conditions on S are

- S has no multiple components,
- S real wrt τ,
- $L^{2} \rightarrow S$ trivial, $L(k-1) \rightarrow S$ real,
- $\forall s \in(0,2), H^{0}\left(S, L^{s}(k-2)\right)=0$.

Write S as vanishing of polynomial $P(\eta, \zeta)=\eta^{k}+\sum_{i=1}^{k} a_{i}(\zeta) \eta^{k-i}$, $\operatorname{deg}\left(a_{i}\right)=2 i . g(S)=(k-1)^{2}$.

Example: $k=1$

$$
P(\eta, \zeta)=\eta-\left[\left(x_{1}+i x_{2}\right)-2 i x_{3} \zeta+\left(x_{1}-i x_{2}\right) \zeta^{2}\right]
$$

Background - Nahm Data

The data $\left\{T_{i}(s) \mid T_{i} \in M_{k}\left(\mathbb{C}_{\infty}\right), s \in[0,2]\right\}$ is called Nahm data if

- the T_{i} satisfy Nahm's equation,

$$
\frac{d T_{i}}{d s}=\frac{1}{2} \sum_{j, k=1}^{3} \epsilon_{i j k}\left[T_{j}, T_{k}\right]
$$

- $\forall s \in(0,2), T_{i}(s)$ are regular, simple poles at $s=0,2$, residues form an irreducible k-dimensional rep of $S U(2)$,
- $T_{i}(s)=-T_{i}^{\dagger}(s), T_{i}(s)=T_{i}^{T}(2-s)$.

Nahm's equations have Lax formulation $\dot{L}=[L, M]$,

$$
L=\left(T_{1}+i T_{2}\right)-2 i T_{3} \zeta+\left(T_{1}-i T_{2}\right) \zeta^{2}, \quad M=-i T_{3}+\left(T_{1}-i T_{2}\right) \zeta .
$$

Example: $k=1$

$$
T_{j}=i x_{j} \quad \text { constant } .
$$

Background - Circle of Ideas

Theorem (Hitchin, 1983)
TFAE:

1. the data of a magnetic monopole,
2. a spectral curve satisfying the Hitchin conditions,
3. Nahm data.

Spectral curve of the Nahm Lax pair is the associated spectral curve.
Centering monopole corresponds to $a_{1}=0$ in spectral curve, $\operatorname{Tr}\left(T_{i}\right)=0$ for Nahm data.

Constructing gauge fields from Nahm data involves solving an ODE ("bold adaptation of the ADHM construction of instantons").

Charge-2

Example: Charge-2 Monopoles

$\operatorname{dim} M_{2}^{0}=4$. Quotienting by residual $S O(3)$ action leaves 1-parameter family.

Nahm data $T_{j}(s)=\frac{1}{2 i} f_{j}(s) \sigma_{j}, \sigma_{j}$ Pauli matrices, f_{j} real functions, gives

$$
\dot{f}_{1}=f_{2} f_{3}+\text { cycles },
$$

solved in terms of elliptic functions.
Spectral curve

$$
\eta^{2}+\frac{1}{4} K(k)^{2}\left[\zeta^{4}+2\left(k^{2}-k^{\prime 2}\right) \zeta^{2}+1\right]=0 .
$$

Scattering of two 1-monopoles understood in terms of parameter k.

Charge-2 Pictures

Figure 2. Schematic diagram of the direct collision process.
(a) Low-Energy Scattering of Non-Abelian Magnetic Monopoles [AH88]

Figure 4. Two views of the Energy density $\mathcal{E}(x)$ for $k=0.8$. Blue corresponds to the isocontour $\mathcal{E}(x)=0.2$, red to $\mathcal{E}(x)=0.42$, and dark red to $\mathcal{E}(x)=0.7$.
(b) The charge 2 monopoles via the ADHMN construction [BE21]

Problem

So what goes wrong? Constructing Nahm data from nothing is hard, better if we have a spectral curve to aim for, but spectral curve conditions are also hard.

Theorem (Braden, 2018)
Spectral curves are transcendental.
Few solutions found this way.

$P(\eta, \zeta)$	G	
η	$S O(3)$	$[\mathrm{Hit82}]$
$\eta \prod_{l=1}^{m}\left(\eta^{2}+l^{2} \pi^{2} \zeta^{2}\right)$	$S O(2)$	$[\mathrm{Hit82]}$
$\prod_{l=0}^{m}\left(\eta^{2}+[I+1 / 2]^{2} \pi^{2} \zeta^{2}\right)$	$S O(2)$	$[\mathrm{Hit82}]$
$\eta^{2}+\frac{1}{4} K(k)^{2}\left[\zeta^{4}+2\left(k^{2}-k^{\prime 2}\right) \zeta^{2}+1\right]$	C_{2}	$[\mathrm{Hur83}]$
$\eta^{3}+\alpha \eta \zeta^{2}+\gamma \zeta^{3}+\beta\left(\zeta^{6}-1\right)^{*}$	C_{3}	$[\mathrm{BDE11}]$

[^0]Nahm Data from Symmetry
Considerations

Representation Theory

Method of Hitchin, Manton, Murray, 1995. SO(3) rep space of $\left(T_{i}\right)$ is

$$
\begin{aligned}
\mathbb{R}^{3} \otimes \mathfrak{s l}_{\mathbb{C}}(k) & =\mathbb{S}^{2} \otimes\left(\mathbb{S}^{2 k-2} \oplus \cdots \oplus \mathbb{S}^{2}\right) \\
& =\left(\mathbb{S}_{-1}^{2 k} \oplus \mathbb{S}_{0}^{2 k-2} \oplus \mathbb{S}_{1}^{2 k-4}\right) \oplus \cdots \oplus\left(\mathbb{S}_{-1}^{4} \oplus \mathbb{S}_{0}^{2} \oplus \mathbb{S}_{1}^{0}\right)
\end{aligned}
$$

\mathbb{S}^{r} vector space of degree- r homogeneous bivariate polynomials with $P S U(2)$ action. Given $P \in \mathbb{S}_{i}^{2 r}, \rho: \mathfrak{s o}(3) \rightarrow \mathfrak{s l}_{\mathbb{C}}(k)$, realise associated matrix by

$$
\left.\left.\left.\mathbb{S}_{i}^{2 r} \rightarrow \mathbb{S}_{-1}^{2 r} \xrightarrow{\text { Pol }} \mathbb{S}^{2} \otimes \mathbb{S}^{2 r-2}\right|_{\mathbb{S}_{-1}^{2 r}} \xrightarrow{h w v} \mathbb{S}^{2} \otimes \mathbb{S}^{2(r+i)}\right|_{\mathbb{S}_{i}^{2 r}} \xrightarrow{h w v} \mathbb{R}^{3} \otimes \mathfrak{s l}_{\mathbb{C}}(k)\right|_{\mathbb{S}_{i}^{2 r}}
$$

Mapping respects group action, so given $G \leq S O(3)$ and $P \in\left(\mathbb{S}^{2 r}\right)^{G}$, get vectors $\left(S_{i}\right) \in\left(\mathbb{R}^{3} \otimes \mathfrak{s l}_{\mathbb{C}}(k)\right)^{G}$. Note

$$
\left\langle\left(\rho_{i}\right)\right\rangle=\left(\mathbb{R}^{3} \otimes \mathfrak{s l}_{\mathbb{C}}(k)\right)^{S O(3)} \leq\left(\mathbb{R}^{3} \otimes \mathfrak{s l}_{\mathbb{C}}(k)\right)^{G} \leq\left(\mathbb{R}^{3} \otimes \mathfrak{s l}_{\mathbb{C}}(k)\right)^{\{e\}} .
$$

Representation Theory

Assuming a spanning set $\left\langle\left(\rho_{i}\right),\left(S_{i}^{(j)}\right), j=1, \ldots, d\right\rangle=\left(\mathbb{R}^{3} \otimes \mathfrak{s l}_{\mathbb{C}}(k)\right)^{G}$, writing $T_{i}=x \rho_{i}+y_{j} S_{i}^{(j)}$ (summing over repeated indices) gives equations for G-invariant Nahm data

$$
\begin{aligned}
{\left[\rho_{1}, \rho_{2}\right] } & \propto \rho_{3} \\
{\left[\rho_{1}, S_{2}^{(j)}\right]+\left[S_{1}^{(j)}, \rho_{2}\right] } & =\alpha^{(j)} \rho_{3}+\beta^{(j, k)} S_{3}^{(k)}, \\
{\left[S_{1}^{(j)}, S_{2}^{(k)}\right]+\left[S_{1}^{(k)}, S_{2}^{(j)}\right] } & =\left(1+1_{j=k}\right)\left(\gamma^{(j, k)} \rho_{3}+\delta^{(j, k, l)} S_{3}^{(/)}\right), \quad k \leq j
\end{aligned}
$$

+ cycles, which can be solved with Gröbner bases or vectorisation, where the ability to solve imposes constraints on x, y_{j}. Nahm's equations become

$$
\begin{aligned}
& x^{\prime}=2 x^{2}+\alpha^{(k)} x y_{k}+\gamma^{(k, l)} y_{k} y_{l}, \\
& y_{j}^{\prime}=\beta^{(k, j)} x y_{k}+\delta^{(k, l, j)} y_{k} y_{l} .
\end{aligned}
$$

Remains to solve with correct singularities and reality conditions.

Example Calculation

```
load("nahm data.py")
K.<j> = NumberField(polygen (QQ)^^2 + 1)
.<Z,W> = K[]
j = (polygen(K)^2+1). roots(multiplicities=False)[0]
rl = matrix(K, [[0, 0, 0], [0, 0, -2], [0, 2, 0]])
r2 = matrix(K, [[0, 0, 2], [0, 0, 0], [-2, 0, 0]])
r3 = matrix(K, [[0, -2, 0], [2, 0, 0], [0, 0, 0]])
Q = j* w* z** (w^4- z^4)
rs, Ss = find invariant vectors([r1, r2, r3], Q)
make_hermitian(Ss)
    constraints = solve commutation_relations(rs, Ss)
ODEs = ode_system(rs, \ss)
f = spectral curve (rs, Ss)
Ts = nahm matrices(rs, Ss)
print("Constraints on coefficients:", constraints)
print("ODES:")
pretty_print(ODEs)
print("Spectral curve:")
pretty print(f)
print("Nahm data:")
pretty_print(Ts)
```

Succeeded in making all matrices anti-Hermitian:
True
Constraints on coefficients: []
ODES:
$\left[2 x^{2}-50 y_{0}^{2},-4 x y_{0}\right]$
Spectral curve:
$\left(480 j x^{2} y_{0}-4000 j y_{0}^{3}\right) \zeta^{5}+\eta^{3}+\left(-480 j x^{2} y_{0}+4000 j y_{0}^{3}\right) \zeta$
Nahm data:
$\left[\left(\begin{array}{lrr}0 & 0 & 0 \\ 0 & 0 & -2 x+10 j y_{0} \\ 0 & 2 x+10 j y_{0} & 0\end{array}\right),\left(\begin{array}{rrr}0 & 0 & 2 x+10 j y_{0} \\ 0 & 0 & 0 \\ -2 x+10 j y_{0} & 0 & 0\end{array}\right),\left(\begin{array}{rrr}0 & -2 x+10 j y_{0} & 0 \\ 2 x+10 j y_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right]$

Many New Curves

This approach allowed for the construction of many new curves with distinguished symmetries.

$P(\eta, \zeta)$	G	
$\eta^{3}+i a_{3} \zeta\left(\zeta^{4}-1\right)$	A_{4}	$[\mathrm{HMM} 95]$
$\eta^{3}-6\left(a^{2} \pm 4\right)^{1 / 3} \kappa^{2} \eta \zeta^{2}+2 i \kappa^{3} a \zeta\left(\zeta^{4}-1\right)$	C_{4}	$[\mathrm{HS96b}]$
$\eta\left\{\eta^{2}-K(k)^{2}\left[k^{2}\left(\zeta^{4}+1\right)+2\left(k^{2}-2\right) \zeta^{2}\right]\right\}$	C_{2} (inv)	$[\mathrm{HS96a}]$
$\eta^{4}+a_{4}\left(\zeta^{8}+14 \zeta^{4}+1\right)$	S_{4}	$[\mathrm{HMM} 95]$
$\eta^{4}+36 i a \kappa^{3} \eta \zeta\left(\zeta^{4}-1\right)+3 \kappa^{4}\left(\zeta^{8}+14 \zeta^{4}+1\right)$	A_{4}	$[\mathrm{HS96d}]$
$\eta\left[\eta^{4}+4 a_{4}\left(\zeta^{8}+14 \zeta^{4}+1\right)\right]$	S_{4}	$[\mathrm{HS96c}]$
$\eta\left[\eta^{6}+a_{7} \zeta\left(\zeta^{10}+11 \zeta^{5}-1\right)\right]$	A_{5}	$[\mathrm{HS96c}]$

Those with a free parameter (k or k) give scattering in the moduli space.

Being More Methodical

Q: In charge 3, what remaining potential symmetric monopoles are there? A: Wiman, 1895 (English translation DH, Beckett, Deutsch, 2022) writes down equations for all non-hyperelliptic genus-4 curves and their automorphism groups.

Such curves are $Q \cap C \subset \mathbb{P}^{3}, Q$ either non-singular or a cone. $T \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{1,1,2} \cong Q_{\text {cone }}$, and write C in terms of $T \mathbb{P}^{1}$ coordinates as

$$
\eta^{3}+f_{2}\left(\zeta_{0}, \zeta_{1}\right) \eta^{2}+f_{4}\left(\zeta_{0}, \zeta_{1}\right) \eta+f_{6}\left(\zeta_{0}, \zeta_{1}\right)=0
$$

Hence all candidate charge-3 monopole spectral curves have been written down, remains to impose reality and other Hitchin conditions.

Full list is too long (21 curves), so need a way to simplify.

Genus-1 Quotients

Idea: Ask for spectral curves S with $G \leq \operatorname{Aut}(S)$ s.t. $g(S / G)=1$. Can enumerate these based on work of Breuer and others. They can only give G and associated signature of quotient c, but with a bit of work (and Sage's Riemann surfaces functionality) can match these to Wiman.

f	G	c	δ
$\eta^{3}+\eta\left(a \zeta^{4}+b \zeta^{2}+c\right)+\left(d \zeta^{6}+e \zeta^{4}+f \zeta^{2}+g\right)$	C_{2}	$\left[1 ; 2^{6}\right]$	6
$\eta^{3}+\eta\left(a \zeta^{3}+b\right)+\left(\zeta^{6}+c \zeta^{3}+d\right)$	C_{3}	$\left[1 ; 3^{3}\right]$	3
$\eta^{3}+a \eta \zeta^{2}+\zeta\left(\zeta^{4}+1\right)$	C_{4}	$\left[1 ; 4^{2}\right]$	2
$\eta^{3}+\eta\left[a\left(\zeta^{4}+1\right)+b \zeta^{2}\right]+\zeta\left(\zeta^{4}-1\right)$	C_{2}^{2}	$\left[1 ; 2^{3}\right]$	3
$\eta^{3}+a \eta \zeta^{2}+\left(\zeta^{6}+1\right)$	S_{3}	$\left[1 ; 2^{2}\right]$	2
$\eta^{3}+a \eta \zeta^{2}+\left(\zeta^{6}+1\right)$	C_{6}	$\left[1 ; 2^{2}\right]$	2
$\eta^{3}-\zeta\left(\zeta^{4}+1\right)$	A_{4}	$[1 ; 2]$	1

A_{4} and C_{4} curves already found in [HMM95, HS96b]. C_{3} family is just A_{4} curve. Pullback condition rules out $C_{2} . \operatorname{dim}_{\mathbb{R}}\left(M_{3}^{0}\right)^{G} \leq \delta, \delta$ determined by c only.

New Spectral Curves!

Theorem (DH, Braden, 2023)
Given $\alpha \in[0,1]$, define

$$
\tau=\tau(\alpha)=i \frac{{ }_{2} F_{1}(1 / 6,5 / 6,1 ; 1-\alpha)}{{ }_{2} F_{1}(1 / 6,5 / 6,1 ; \alpha)}
$$

Solving

$$
\frac{1}{3} \alpha_{2}^{2}=\frac{1}{4} g_{2}(1, \tau), \quad \frac{1}{27} \alpha_{2}^{3}-2 \beta^{2}=\frac{1}{8} g_{3}(1, \tau),
$$

with $\operatorname{sgn}\left(\alpha_{2}\right)=\operatorname{sgn}(\alpha)$ yields a monopole spectral curve with D_{6} symmetry

$$
\eta^{3}+\alpha_{2} \eta \zeta^{2}+\beta\left(\zeta^{6}-1\right)=0 .
$$

Moreover, the Nahm data is known explicitly in terms of \wp-functions.
Specialisation of [BDE11] curve made explicit. Can understand scattering in terms of α, and get explicit values for α_{2}, β when $\alpha=1 / 2$.

New Spectral Curves!

Theorem (DH, Braden, 2023)
Given $\alpha \in \mathbb{R}, m \in[0,1]$, and sgn $= \pm 1$, define g_{2}, g_{3} by
$g_{2}=12\left(K(m)^{2} / 3\right)^{2} q_{1}(m), g_{3}=4\left(K(m)^{2} / 3\right)^{3}(2 m-1) q_{2}(m)$, where
$q_{1}(m)=\left\{\begin{array}{cc}1-m+m^{2} & \text { sgn }=1 \\ 1-16 m+16 m^{2} & s g n=-1\end{array} \quad, \quad q_{2}(m)=\left\{\begin{array}{c}(m-2)(m+1) \\ 2\left(32 m^{2}-32 m-1\right)\end{array}\right.\right.$
If m is such that $g_{2}>0$ and the polynomial $(4-2 \alpha) x^{3}-g_{2} x-g_{3}$ has a real root x_{*} with $\left|x_{*}\right|<\sqrt{g_{2} / 3}$ and $\operatorname{sgn}\left(x_{*}\right)=-\operatorname{sgn}(\alpha)$, then we may solve

$$
a^{2}+\frac{b^{2}}{12}=g_{2}, \quad \frac{b\left(b^{2}-36 a^{2}\right)}{216}+\frac{c^{2}}{4}=g_{3}
$$

for $a, b, c \in \mathbb{R}$. Then

$$
\eta^{3}+\eta\left[a\left(\zeta^{4}+1\right)+b \zeta^{2}\right]+i c \zeta\left(\zeta^{4}-1\right)=0
$$

is a monopole spectral curve with V_{4} symmetry. Moreover the Nahm data is given explicitly in terms of elliptic functions.

New Spectral Curves!

New Spectral Curves

(a) $k=0.45, \alpha=0.2, \Delta>0, b=-3.21$ (b) $k=0.45, \alpha=0.2, \Delta>0, b=-7.19$

New Spectral Curves

(a) $k=0.77, \alpha=-2.0, \Delta>0, b=1.42$ (b) $k=0.77, \alpha=-2.0, \Delta>0, b=7.24$

Outlook

Outlook

Questions for charge 3:

- Extend to the other curves on Wiman's list, solving in terms of e.g. hyperelliptic functions?

Further questions:

- Geometry can be extended to higher charges.
- What can we do for hyperbolic monopoles (e.g. [NR07])?
- What happens for higher gauge groups with different symmetry breaking?
- Can we formalise the idea that if $g(S / G)=1$, we can solve, from a Nahm perspective?
- Interpretation of the representation theory.
- $\operatorname{dim}=\delta-1$ for elliptic quotients?

Idea of Computation

Using Sutcliffe ansatz, C_{3}-invariant monopole written in in terms of periodic $A_{2}^{(1)}$ Toda

$$
\dot{a}_{i}=\frac{1}{2} a_{i}\left(b_{i}-b_{i+1}\right), \quad \dot{b}_{i}=a_{i}^{2}-a_{i-1}^{2},
$$

$i=1,2,3$ taken mod 3 . Imposing additional symmetry gives restriction $a_{1}^{2}-a_{2}^{2}=0=b_{2}$. Have constants $\alpha_{2}=-b_{1}^{2}+a_{0}^{2}+2 a_{1}^{2}, \beta=-a_{0} a_{1}^{2}$, so reduces to elliptic equation. Have to fix the real period of the corresponding lattice, which requires inverting a j-invariant using formula of Ramanujan. Remaining constraints of reality and pole structure fall into place.

Reduction can be seen to come from folding the Dynkin diagram $A_{2}^{(1)} \rightarrow A_{2}^{(2)}$, and leaves the Bullough-Dodd equation. Alternatively from enforcing the residue to be irreducible.

Idea of Computation

Find matrices

$$
T_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\bar{f}_{1} \\
0 & f_{1} & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{ccc}
0 & 0 & f_{2} \\
0 & 0 & 0 \\
-\bar{f}_{2} & 0 & 0
\end{array}\right), \quad T_{3}=\left(\begin{array}{ccc}
0 & -\bar{f}_{3} & 0 \\
f_{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and equations reduce to $\dot{f}_{1}=\bar{f}_{2} \bar{f}_{3}$ and cycles. Can separate this into equations for $\left|f_{i}\right|$ and $\arg \left(f_{i}\right)$ to solve.

Requiring that the f_{i} are real is what sets $c=0$, then these are inversion-symmetric monopoles. Requiring $f_{1}=f_{2}$ sets $a=0$ and these are monopoles 'with a twist'.

Special Curve

$\tau(1 / 2)=i$, so this correspond to the square lattice. Coefficients are

$$
\alpha_{2}=\frac{\sqrt{3} \Gamma(1 / 4)^{4}}{8 \pi}, \quad \beta= \pm \frac{\Gamma(1 / 4)^{6}}{32(\sqrt{3} \pi)^{3 / 2}} .
$$

Related to the "twisted figure-of-eight" monopole of [HS96b], where automorphism group is D_{8}.

References

- M. F. Atiyah and N. J. Hitchin, The geometry and dynamics of magnetic monopoles, Princeton University Press, 1988.
H. W. Braden, A. D'Avanzo, and V. Z. Enolski, On charge-3 cyclic monopoles, Nonlinearity 24 (2011), no. 3, 643-675.
围 H. W. Braden and V. Z. Enolski, The charge 2 monopole via the ADHMN construction, Advances in Theoretical and Mathematical Physics 25 (2021), 791-956, Appendix by David E. Braden, Peter Braden, and H. W. Braden.
N. J. Hitchin, Monopoles and geodesics, Communications in Mathematical Physics 83 (1982), no. 4, 579-602.
国 N. J. Hitchin, N. S. Manton, and M. K. Murray, Symmetric monopoles, Nonlinearity 8 (1995), no. 5, 661-692.

References ii

C. J. Houghton and P. M. Sutcliffe, Inversion symmetric 3-monopoles and the Atiyah - Hitchin manifold, Nonlinearity 9 (1996), no. 6, 1609.

, Monopole scattering with a twist, Nuclear Physics B 464 (1996), no. 1, 59-84.

围
_, Octahedral and dodecahedral monopoles, Nonlinearity 9 (1996), no. 2, 385.

R \qquad , Tetrahedral and cubic monopoles, Communications in Mathematical Physics 180 (1996), no. 2, 343-361.

目 J. Hurtubise, $\mathrm{SU}(2)$ monopoles of charge 2, Communications in Mathematical Physics 92 (1983), no. 2, 195-202.

References iif

P. Norbury and N. M. Romão, Spectral curves and the mass of hyperbolic monopoles, Communications in Mathematical Physics 270 (2007), no. 2, 295-333.
[^0]: *Coefficients defined implicitly by vanishing of period on genus-2 curve.

