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Background and Motivation



Background - Euclidean Monopoles

Given a principal SU(2) bundle over R3 with connection A and section of

the adjoint bundle ϕ, the data of a magnetic monopole is a solution of the

BPS equation F = ⋆Dϕ satisfying boundary conditions that as r → ∞,

1. |ϕ| = 1− k
2r +O(r−2),

2. ∂|ϕ|
∂Ω = O(r−2),

3. |Dϕ| = O(r−2).

k ∈ Z classifies solutions topologically, called the charge.

4k-dimensional moduli space of all charge-k monopoles Mk with action

of E (3). (4k − 4)-dimensional submanifold of strongly centred monopoles

M0
k with action of O(3).

Dynamics of monopoles approximated by geodesic motion in moduli

space.
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Background - Spectral Curve

Recall minitwistor space π : TP1 ∼= O(2) → P1 with involution

τ(ζ, η) = (−1/ζ̄,−η̄/ζ̄2) and L → TP1 with transition function

exp(−η/ζ).

Given spectral curve S ⊂ TP1 a compact algebraic curve in the linear

system |π∗O(2k)|, the Hitchin conditions on S are

• S has no multiple components,

• S real wrt τ ,

• L2 → S trivial, L(k − 1) → S real,

• ∀s ∈ (0, 2), H0(S , Ls(k − 2)) = 0.

Write S as vanishing of polynomial P(η, ζ) = ηk +
∑k

i=1 ai (ζ)η
k−i ,

deg(ai ) = 2i . g(S) = (k − 1)2.

Example: k = 1

P(η, ζ) = η −
[
(x1 + ix2)− 2ix3ζ + (x1 − ix2)ζ

2
]
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Background - Nahm Data

The data {Ti (s) |Ti ∈ Mk(C∞), s ∈ [0, 2]} is called Nahm data if

• the Ti satisfy Nahm’s equation,

dTi

ds
=

1

2

3∑
j,k=1

ϵijk [Tj ,Tk ] ,

• ∀s ∈ (0, 2), Ti (s) are regular, simple poles at s = 0, 2, residues form

an irreducible k-dimensional rep of SU(2),

• Ti (s) = −T †
i (s), Ti (s) = TT

i (2− s).

Nahm’s equations have Lax formulation L̇ = [L,M],

L = (T1 + iT2)− 2iT3ζ + (T1 − iT2)ζ
2, M = −iT3 + (T1 − iT2)ζ.

Example: k = 1

Tj = ixj constant.
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Background - Circle of Ideas

Theorem (Hitchin, 1983)
TFAE:

1. the data of a magnetic monopole,

2. a spectral curve satisfying the Hitchin conditions,

3. Nahm data.

Spectral curve of the Nahm Lax pair is the associated spectral curve.

Centering monopole corresponds to a1 = 0 in spectral curve, Tr(Ti ) = 0

for Nahm data.

Constructing gauge fields from Nahm data involves solving an ODE

(“bold adaptation of the ADHM construction of instantons”).
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Charge-2

Example: Charge-2 Monopoles
dimM0

2 = 4. Quotienting by residual SO(3) action leaves 1-parameter

family.

Nahm data Tj(s) =
1
2i fj(s)σj , σj Pauli matrices, fj real functions, gives

ḟ1 = f2f3 + cycles,

solved in terms of elliptic functions.

Spectral curve

η2 +
1

4
K (k)2

[
ζ4 + 2(k2 − k ′2)ζ2 + 1

]
= 0.

Scattering of two 1-monopoles understood in terms of parameter k.
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Charge-2 Pictures

(a) Low-Energy Scattering of Non-Abelian

Magnetic Monopoles [AH88]

(b) The charge 2 monopoles via the

ADHMN construction [BE21]
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Problem

So what goes wrong? Constructing Nahm data from nothing is hard,

better if we have a spectral curve to aim for, but spectral curve

conditions are also hard.

Theorem (Braden, 2018)
Spectral curves are transcendental.

Few solutions found this way.

P(η, ζ) G

η SO(3) [Hit82]

η
∏m

l=1(η
2 + l2π2ζ2) SO(2) [Hit82]∏m

l=0(η
2 + [l + 1/2]2 π2ζ2) SO(2) [Hit82]

η2 + 1
4K (k)2

[
ζ4 + 2(k2 − k ′2)ζ2 + 1

]
C2 [Hur83]

η3 + αηζ2 + γζ3 + β(ζ6 − 1)∗ C3 [BDE11]

∗Coefficients defined implicitly by vanishing of period on genus-2 curve.
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Nahm Data from Symmetry

Considerations



Representation Theory

Method of Hitchin, Manton, Murray, 1995. SO(3) rep space of (Ti ) is

R3 ⊗ slC(k) = S2 ⊗ (S2k−2 ⊕ · · · ⊕ S2),

= (S2k−1 ⊕ S2k−2
0 ⊕ S2k−4

1 )⊕ · · · ⊕ (S4−1 ⊕ S20 ⊕ S01),

Sr vector space of degree-r homogeneous bivariate polynomials with

PSU(2) action. Given P ∈ S2ri , ρ : so(3) → slC(k), realise associated

matrix by

S2ri → S2r−1
Pol→ S2 ⊗ S2r−2

∣∣
S2r−1

hwv→ S2 ⊗ S2(r+i)
∣∣∣
S2ri

hwv→ R3 ⊗ slC(k)
∣∣
S2ri

.

Mapping respects group action, so given G ≤ SO(3) and P ∈ (S2r )G , get
vectors (Si ) ∈ (R3 ⊗ slC(k))

G . Note

⟨(ρi )⟩ =
(
R3 ⊗ slC(k)

)SO(3) ≤ (R3 ⊗ slC(k))
G ≤

(
R3 ⊗ slC(k)

){e}
.
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Representation Theory

Assuming a spanning set
〈
(ρi ), (S

(j)
i ) , j = 1, . . . , d

〉
= (R3 ⊗ slC(k))

G ,

writing Ti = xρi + yjS
(j)
i (summing over repeated indices) gives

equations for G -invariant Nahm data

[ρ1, ρ2] ∝ ρ3,[
ρ1,S

(j)
2

]
+
[
S
(j)
1 , ρ2

]
= α(j)ρ3 + β(j,k)S

(k)
3 ,[

S
(j)
1 ,S

(k)
2

]
+
[
S
(k)
1 ,S

(j)
2

]
= (1 + 1j=k)(γ

(j,k)ρ3 + δ(j,k,l)S
(l)
3 ), k ≤ j ,

+ cycles, which can be solved with Gröbner bases or vectorisation, where

the ability to solve imposes constraints on x , yj . Nahm’s equations

become

x ′ = 2x2 + α(k)xyk + γ(k,l)ykyl ,

y ′
j = β(k,j)xyk + δ(k,l,j)ykyl .

Remains to solve with correct singularities and reality conditions.

10



Example Calculation
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Many New Curves

This approach allowed for the construction of many new curves with

distinguished symmetries.

P(η, ζ) G

η3 + ia3ζ(ζ
4 − 1) A4 [HMM95]

η3 − 6(a2 ± 4)1/3κ2ηζ2 + 2iκ3aζ(ζ4 − 1) C4 [HS96b]

η
{
η2 − K (k)2

[
k2(ζ4 + 1) + 2(k2 − 2)ζ2

]}
C2 (inv) [HS96a]

η4 + a4(ζ
8 + 14ζ4 + 1) S4 [HMM95]

η4 + 36iaκ3ηζ(ζ4 − 1) + 3κ4(ζ8 + 14ζ4 + 1) A4 [HS96d]

η
[
η4 + 4a4(ζ

8 + 14ζ4 + 1)
]

S4 [HS96c]

η
[
η6 + a7ζ(ζ

10 + 11ζ5 − 1)
]

A5 [HS96c]

Those with a free parameter (k or κ) give scattering in the moduli space.
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Being More Methodical

Q: In charge 3, what remaining potential symmetric monopoles are

there? A: Wiman, 1895 (English translation DH, Beckett, Deutsch,

2022) writes down equations for all non-hyperelliptic genus-4 curves and

their automorphism groups.

Such curves are Q ∩ C ⊂ P3, Q either non-singular or a cone.

TP1 ↪→ P1,1,2 ∼= Qcone, and write C in terms of TP1 coordinates as

η3 + f2(ζ0, ζ1)η
2 + f4(ζ0, ζ1)η + f6(ζ0, ζ1) = 0.

Hence all candidate charge-3 monopole spectral curves have been written

down, remains to impose reality and other Hitchin conditions.

Full list is too long (21 curves), so need a way to simplify.
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Genus-1 Quotients

Idea: Ask for spectral curves S with G ≤ Aut(S) s.t. g(S/G ) = 1. Can

enumerate these based on work of Breuer and others. They can only give

G and associated signature of quotient c , but with a bit of work (and

Sage’s Riemann surfaces functionality) can match these to Wiman.

f G c δ

η3 + η(aζ4 + bζ2 + c) + (dζ6 + eζ4 + f ζ2 + g) C2 [1; 26] 6

η3 + η(aζ3 + b) + (ζ6 + cζ3 + d) C3 [1; 33] 3

η3 + aηζ2 + ζ(ζ4 + 1) C4 [1; 42] 2

η3 + η[a(ζ4 + 1) + bζ2] + ζ(ζ4 − 1) C 2
2 [1; 23] 3

η3 + aηζ2 + (ζ6 + 1) S3 [1; 22] 2

η3 + aηζ2 + (ζ6 + 1) C6 [1; 22] 2

η3 − ζ(ζ4 + 1) A4 [1; 2] 1

A4 and C4 curves already found in [HMM95, HS96b]. C3 family is just

A4 curve. Pullback condition rules out C2. dimR(M
0
3 )

G ≤ δ, δ

determined by c only.
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New Spectral Curves!

Theorem (DH, Braden, 2023)
Given α ∈ [0, 1], define

τ = τ(α) = i
2F1(1/6, 5/6, 1; 1− α)

2F1(1/6, 5/6, 1;α)
.

Solving

1

3
α2
2 =

1

4
g2(1, τ),

1

27
α3
2 − 2β2 =

1

8
g3 (1, τ) ,

with sgn(α2) = sgn(α) yields a monopole spectral curve with D6

symmetry

η3 + α2ηζ
2 + β(ζ6 − 1) = 0.

Moreover, the Nahm data is known explicitly in terms of ℘-functions.

Specialisation of [BDE11] curve made explicit. Can understand scattering

in terms of α, and get explicit values for α2, β when α = 1/2.
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New Spectral Curves!

Theorem (DH, Braden, 2023)
Given α ∈ R, m ∈ [0, 1], and sgn = ±1, define g2, g3 by

g2 = 12
(
K (m)2/3

)2
q1(m), g3 = 4

(
K (m)2/3

)3
(2m − 1)q2(m), where

q1(m) =

{
1−m +m2 sgn = 1

1− 16m + 16m2 sgn = −1
, q2(m) =

{
(m − 2)(m + 1) sgn = 1

2(32m2 − 32m − 1) sgn = −1

If m is such that g2 > 0 and the polynomial (4− 2α)x3 − g2x − g3 has a

real root x∗ with |x∗| <
√

g2/3 and sgn(x∗) = − sgn(α), then we may

solve

a2 +
b2

12
= g2,

b(b2 − 36a2)

216
+

c2

4
= g3

for a, b, c ∈ R. Then

η3 + η
[
a(ζ4 + 1) + bζ2

]
+ icζ(ζ4 − 1) = 0

is a monopole spectral curve with V4 symmetry. Moreover the Nahm

data is given explicitly in terms of elliptic functions.
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New Spectral Curves!
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New Spectral Curves

(a) k = 0.45, α = 0.2, ∆ > 0, b = −3.21 (b) k = 0.45, α = 0.2, ∆ > 0, b = −7.19
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New Spectral Curves

(a) k = 0.77, α = −2.0, ∆ > 0, b = 1.42 (b) k = 0.77, α = −2.0, ∆ > 0, b = 7.24
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Outlook



Outlook

Questions for charge 3:

• Extend to the other curves on Wiman’s list, solving in terms of e.g.

hyperelliptic functions?

Further questions:

• Geometry can be extended to higher charges.

• What can we do for hyperbolic monopoles (e.g. [NR07])?

• What happens for higher gauge groups with different symmetry

breaking?

• Can we formalise the idea that if g(S/G ) = 1, we can solve, from a

Nahm perspective?

• Interpretation of the representation theory.

• dim = δ − 1 for elliptic quotients?
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Idea of Computation

Using Sutcliffe ansatz, C3-invariant monopole written in in terms of

periodic A
(1)
2 Toda

ȧi =
1

2
ai (bi − bi+1), ḃi = a2i − a2i−1,

i = 1, 2, 3 taken mod 3. Imposing additional symmetry gives restriction

a21 − a22 = 0 = b2. Have constants α2 = −b21 + a20 + 2a21, β = −a0a
2
1, so

reduces to elliptic equation. Have to fix the real period of the

corresponding lattice, which requires inverting a j-invariant using formula

of Ramanujan. Remaining constraints of reality and pole structure fall

into place.

Reduction can be seen to come from folding the Dynkin diagram

A
(1)
2 → A

(2)
2 , and leaves the Bullough-Dodd equation. Alternatively from

enforcing the residue to be irreducible.
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Idea of Computation

Find matrices

T1 =

0 0 0

0 0 −f̄1
0 f1 0

 , T2 =

 0 0 f2
0 0 0

−f̄2 0 0

 , T3 =

0 −f̄3 0

f3 0 0

0 0 0

 ,

and equations reduce to ḟ1 = f̄2 f̄3 and cycles. Can separate this into

equations for |fi | and arg(fi ) to solve.

Requiring that the fi are real is what sets c = 0, then these are

inversion-symmetric monopoles. Requiring f1 = f2 sets a = 0 and these

are monopoles ‘with a twist’.
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Special Curve

τ(1/2) = i , so this correspond to the square lattice. Coefficients are

α2 =

√
3Γ(1/4)4

8π
, β = ± Γ(1/4)6

32(
√
3π)3/2

.

Related to the “twisted figure-of-eight” monopole of [HS96b], where

automorphism group is D8.
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