Spontaneous Hopf Fibration in the 2HDM

Steven Cotterill

University of Manchester

Topological Solitons Workshop, 1st September 2023

The Two Higgs Doublet Model (2HDM)

 Adds an additional complex scalar doublet to the SM with the general potential.

$$V = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$$

+ $\left[-m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \right]$

- 5 scalar particles: h, H, H₊ and A.
- $\Phi = \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} = \frac{v_{\rm SM}}{\sqrt{2}} e^{\frac{1}{2}i\chi} (\sigma^0 \otimes U_L) \begin{pmatrix} 0 \\ f_1 \\ f_+ \\ f_2 e^{i\xi} \end{pmatrix}$ • Neutral vacuum ($f_+ = 0$) for a massless photon.
- Used in MSSM and DFSZ axion model.
- Experimental constraints from Higgs boson, masses of new particles, FCNCs, etc...

Bilinear forms

• Rewrite the potential in terms of $\,R^\mu=\Phi^\dagger(\sigma^\mu\otimes\sigma^0)\Phi$,

$$V = -\frac{1}{2}M_{\mu}R^{\mu} + \frac{1}{4}L_{\mu\nu}R^{\mu}R^{\nu}$$

- There is also $n^a = -\Phi^{\dagger}(\sigma^0 \otimes \sigma^a)\Phi$ associated with isospin rotations.
- Vectors associated with the map SU(2) \rightarrow SO(3): $U^{\dagger}\sigma^{a}U = \mathcal{R}^{ab}\sigma^{b}$.
- $R_+ = R_\mu R^\mu$ tracks the neutral vacuum condition (needs to be zero for a massless photon).
- Topology is more easily seen with R^a than Φ .

Accidental symmetries of the 2HDM

• Parameter choices \rightarrow additional "accidental" symmetries.

Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7
Z_2	_	·	0	· (_	_	—	Real	0	0
$\mathrm{U}(1)_{\mathrm{PQ}}$	_	_	0	_	_	_	_	0	0	0
$SO(3)_{\rm HF}$	_	μ_1^2	0	_	λ_1	_	$2\lambda_1 - \lambda_3$	0	0	0

"Vacuum Topology of the Two Higgs Doublet Model" – Battye, Brawn & Pilaftsis JHEP **08** 020 (2011)

Topological solitons:
$$\begin{cases} \mathbb{Z}_2, & \pi_0(S^0 \times S^3) = \mathbb{Z}_2 \Longrightarrow \text{Domain walls} & R^1 \to -R^1 \\ U(1)_{PQ}, & \pi_1(S^1 \times S^3) = \mathbb{Z} \implies \text{Strings} & R^1, R^2 \text{ rotations} \\ SO(3)_{HF}, & \pi_2(S^2 \times S^3) = \mathbb{Z} \implies \text{Monopoles} & R^a \text{ rotations} \end{cases}$$

Random simulations in the \mathbb{Z}_2 case

"Simulations of Domain Walls In Two Higgs Doublet Models" – Battye, Pilaftsis & Viatic JHEP 01 105 (2021)

Global monopoles

"Global monopoles in the two-Higgs-doublet-model" – Battye, Cotterill & Viatic Phys. Lett B 844 138091 (2023)

Initial attempts for monopoles

$$\Phi = \frac{v_{\rm SM}}{\sqrt{2}} \begin{pmatrix} 0\\k(r)\cos\theta\\0\\k(r)\sin\theta e^{i\phi} \end{pmatrix} \quad \text{but } \hat{R}^a = \begin{pmatrix} \sin 2\theta\cos\phi\\\sin 2\theta\sin\phi\\\cos 2\theta \end{pmatrix} \quad \blacksquare \quad \Phi = \frac{v_{\rm SM}}{\sqrt{2}} \begin{pmatrix} 0\\k(r)\cos\frac{1}{2}\theta\\0\\k(r)\sin\frac{1}{2}\theta e^{i\phi} \end{pmatrix}$$

Nambu monopole

Can improve with the SM degrees of freedom!

$$D_{\mu}\Phi = \left[(\sigma^0 \otimes \sigma^0)\partial_{\mu} + \frac{1}{2}ig(\sigma^0 \otimes \sigma^a)W^a_{\mu} + \frac{1}{2}ig'(\sigma^0 \otimes \sigma^0) + \frac{1}{2}ig''(\sigma^a \otimes \sigma^0)V^a_{\mu} \right] \Phi$$

Cancel divergent terms with the coupling between W^a_μ and V^a_μ . Both assume that f_+ is zero everywhere, not just in the vacuum.

Gauged monopole ansatz

• Full ansatz:

$$\begin{split} \Phi &= \frac{v_{\rm SM}}{2\sqrt{2}} \begin{pmatrix} -(k+k_{+})\sin\theta e^{-i\phi} \\ (k-k_{+}) + (k+k_{+})\cos\theta \\ -(k-k_{+}) + (k+k_{+})\cos\theta \\ (k+k_{+})\sin\theta e^{i\phi} \end{pmatrix} \\ gW_{i}^{a} &= -\frac{1}{r}h(r)\epsilon_{ij}^{a}\hat{r}^{j}, \quad g'Y_{i} = 0 \quad \text{and} \quad g''V_{i}^{a} = -\frac{1}{r}H(r)\epsilon_{ij}^{a}\hat{r}^{j} \\ R^{a} &= n^{a} = \frac{1}{2}v_{\rm SM}^{2}(k^{2}-k_{+}^{2})\hat{r}^{a} \end{split}$$

• Gradient energy causes a "Spontaneous Hopf Fibration" with winding in S^2 but not S^1 .

Gauged monopole solution

Gauged string solution

$$\begin{split} \Phi &= \frac{v_{\rm SM}}{\sqrt{2}} \begin{pmatrix} 0\\ f_1\\ f_+\\ f_2 e^{i\theta} \end{pmatrix} \quad \hat{R}^a = \hat{n}^a = \hat{r}^a \,, \, \text{where} \,\, a \in [1,2] \\ gW_i^a &= -\frac{1}{r} \Big[h_1(r) \hat{x}^a + (1-h_3(r)) \hat{z}^a \Big] \hat{\theta}_i + h_2(r) \hat{y}^a \hat{r}_i, \\ g'Y_i &= 0 \quad \text{and} \quad g''V_i^3 = -\frac{1}{r} (1-H(r)) \hat{\theta}_i \end{split}$$

Neutral vacuum violation mass analysis

- Hopf fibration removes gradient energy divergences. What about local neutral vacuum violation?
- Neglect gradient energy to estimate effective mass.
- Monopoles: $m_{k_+}^2(0) = -\frac{1}{2}\tilde{\lambda}_1$

• Strings:
$$m_{f_+}^2(0) = \tilde{\lambda}_1\left(\frac{\epsilon^2 - \delta^2}{1 + \delta^2}\right)$$

(when $\alpha = \beta = \pi/4$)

Conclusions

- Spontaneous Hopf fibration mechanism is not necessarily specific to the 2HDM
- Localised neutral vacuum violation \rightarrow new interactions
- Phenomenology?
- Changes to the standard cosmology for these types of solitons?

"Vacuum Topology of the Two Higgs Doublet Model" – Battye, Brawn & Pilaftsis JHEP **08** 020 (2011) "Simulations of Domain Walls In Two Higgs Doublet Models" – Battye, Pilaftsis & Viatic JHEP **01** 105 (2021) "Global monopoles in the two-Higgs-doublet-model" – Battye, Cotterill & Viatic Phys. Lett B **844** 138091 (2023) "Spontaneous Hopf Fibration" – Battye & Cotterill *in prep.*