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® Generalization of soliton theory to noncommutative(nc)
counterparts is an interesting topic. Some nc versions of integrable
systems and their integrability have been invstigated (Paniak,
Hamanaka & Toda, Wang & Wadati, Nimmo & Gilson, Li etc.).
Besides, connections of nc OPs, nc Painléve equations, quasi-Schur
functions and so on to nc integrable systems have been attracting
much attention.

® Nc integrable systems: super, matrix, quaternion integrable systems
and nc integrable systems caused by replacing the normal product
by Moyal star product. They have dynamical applications in string
theory, quantum Hall effect, quantum information and computing.
Since we only assume that functions are noncommutative in general,
corresponding results are applicable to the above-mentioned cases.
Nc KdV equation: Uy — 3UU, — 3U,U + Uygyr = 0.

® |n commutative setting, some results of nc integrable systems can
be transformed to the ones of the corresponding commutative
integrable systems. Super integrable systems can be treated as nc
integrable systems too. This reveals the advantage of investigating
nc integrable systems instead of commutative ones.



® Part |: The twisted derivation and its Gauge transformation
proposed by us, from which Darboux transformations can be
constructed for some well-known (nc) integrable systems which lead
to determinant/quasideterminant solutions to (nc) integrable
systems.

® Part Il: KP equation is the most fundamental among many soliton
equations. lts extensions are extensively studied. There are different
methods to construct (squared eigenfunction symmetry constraint,
variation of constants) and solve soliton equations with
self-consistent sources (IST, D-bar, DT, Backlund transformation,
Hirota's method).



A brief review of quasideterminants
The twisted derivation and Gauge transformation
® Darboux transformations for several types of nc integrable
systems and quasideterminant solutions
The nc extended KP equation
® |ax pair
® Quasi-Wronskian solutions by variation of constants
® Quasi-Grammian solutions by variation of constants

® The nc extended modified KP equation

® |ax pair
® Quasi-Wronskian solutions by variation of constants
® Quasi-Grammian solutions by variation of constants

® Miura transformation

Future work



Quasideterminants - Definition

Developed since early 1990s by Gelfand and Retakh; recent review
article Gelfand et al (2005) Advances in Mathematics, 193, 56-141.

Definition

An n x n matrix A = (a; j) over a ring (non-commutative, in
general) has n? quasideterminants written as |A|; ;. Defined
recursively by

|Alij = ai; —rl(A%)7 e, AT = (A ])ij=1,..m-

%] i
A ¢
Notation: A = | [ .

K3

i+j_det(4)
det(Ai9)

It is obvious that |A|; ; = (—1) in commutative case.



Quasideterminants - Simplest cases

Casen=1. Let A= (a), then |A]|;1 =a.



Quasideterminants - Simplest cases

Casen=1. Let A= (a), then |A]|;1 =a.

Casen=2. Let A= <a b), then
c d

b

|Al11 = ‘@ d‘ =a—bd'c, |Ag= Z @‘ =b—ac 'd,

a

b _ —il
. ‘—d—ca b.

‘A|2’1 = ‘ =C— db_la, ’A‘QQ =

a b
[c] d



Quasideterminants - Simplest cases

Casen=1. Let A= (a), then |A]|;1 =a.

Casen=2. Let A= <a b), then
c d

b _
|Al11 = ‘@ d‘ —a—bd'c, |A

1,2 =
C

)

a@__ —1
d‘—b ac - d

_ a b _ —1 . a b . 1
‘A|2,1 - ’ d‘ =cC db a, ’A‘Q,Q — ‘C ‘ =d ca b.
From this we can obtain the matrix inverse

Al = (|A|1_i |A|2_% _((a—=bd7te)™t (c—dbla)T?
Ay 14lzy)  \b—actd)™t (d—ca”'b)7H)”



Quasideterminants - Continued

For a simpler notation we often use a prototype square partitioned
. (A B . .
matrix c o4 where d is a single entry.

A B|_ .
'o —d—CA'B.

d also could be a matrix:

Anxn Bn><l

Cnxn

which leads to the essential difference of quasideterminants from
determinants!

=D—-CA !B,




Quasideterminants - Invariance

The following formula can be used to understand the effect on a
quasideterminant of certain elementary row operations involving
addition and multiplication on the left

5 2.5

There is an analogous invariance under column operations
involving addition and multiplication on the right.

EA EB

FA+gC |FB+gd

A B

~elo g




Quasideterminants - Noncommutative Jacobi Identity

Noncommutative Jacobi identity

A B C

ng_‘AC 'ABABl‘AC’
E h E E D D @
Jacobi identity (compared to nc Jacobi identity)
i C_‘A C‘A B_‘A BHA c‘
I, E i||D f E h{|D g




Quasideterminants - Quasi-Pliicker coordinates

Given an (n + k) x n matrix A, we denote A’ the ith row of A and
AT the submatrix with rows in a subset I of {1,2,--- ,n + k}.

Given i,j € {1,2,...,n+ k} and I such that #I =n — 1 and
j ¢ I, the (right) quasi-Pliicker coordinates are

I
rilj = ’I“in(A) = ‘ﬁf ﬁj B = — iz ﬁ
ns ns Al 1
for any column index s € {1,...,n}.
A useful consequence is the identity
AL o™t AT o

At [o] =|A" 1],
A1 A7 o]



Plicker Relations

A simple case:

ag a1

bo b1

az ag

by b3

ap G2

bo b2

ap ag

b b3

ap az

bo b3

ap a2

b1 ba

=0




Quasideterminants - Homological relations

Quasideterminants are not independent. They are related by
quasi-Pliicker coordinates, named homological relations

A B C| |A B 0||A B C
D f [g]l=|D f [o]|D f g
E h i| |[E b 1[|E h [{



Derivatives of general quasideterminants

Ay k-th column of A. A¥: k-th row of A. I= Z erel.

er: column n-vector with 1 in the i-th row and 0 elsewhere

A B
‘ =d —C'A'B-CA'B' +CA'A'A™'B

c [d]

Derivatives of Quasi-Wronskian:

Derivatives of Quasi-Grammian with A’ = Zle E,F;:

n

Z

k=

A B

‘A B’
ARy [(BYY

/ k

>

=1

A B

|4 B
-#+|o @ le

A

A B
C

¢ [d]

o



The twisted derivation and Gauge transformation

Consider an associative, unital algebra A (not necessarily graded) over ring K.
Suppose that there is a homomorphism o: A — A (i.e. for all a € K, a,b € A,
o(aa) = ac(a), o(a+b) = o(a) + o(b) and o(ab) = o(a)o(b)) and a twisted
derivation D: A — A satisfying D(K) = 0 and D(ab) = D(a)b+ o(a)D(b).

Gauge transformation: Gy = a(0)D0~" = D — D(0)6™*, 0 € A.

Theorem
Assume that g, 01,02, ... be a sequence in A. Let ¢p[0] = ¢ and for n € N
¢[n] = D(¢[n — 1)) — D(O[n — 1])0[n — 1] ""¢[n — 1],

where 0[n] = ¢[n]|s—0, . Then, forn € N,

0o 0,1 ¢
D) -+  D(On_1) D(¢)
oln] = : : N (1)
D" (o) -+ D" (6n-1) D"N(9)

DM0) - DMBaa)

e C.X. Li & J.J.C. Nimmo, Proc. R. Soc. A, 466(2010):-2471-2493:




Derivative Here D = 0, satisfies D(ab) = D(a)b+ aD(b) and o is
the identity mapping.
(eg. (nc) KP equation, (nc) Toda lattice equation!)

~ 0
(b: (812 _8w(9)9_1)¢:¢w _9$9_1¢: ‘ ew
G = (D — 0:(02)0,, )0 = b — 0L b1

Forward difference The homomorphism is the shift operator
T(a(x)) = a(x + h) and the twisted derivation is

Aa(z)) = W’

satisfying A(ab) = A(a)b+ T'(a)A(b).
(eg. (nc) Hirota-Miwa equation!)



G = (8 = 8i(00)67)bn = 07 (Pnt1 — Ons107 " bn),
where A; = ai_l(Ti — 1) and T; is the shift operator.

Superderivative For a,b € A, a superalgebra, the superderivative
D = 9y + 00, satisfies D(ab) = D(a)b+ aD(b), where
is the grade involution, x is an even variable, 6 is an odd
Grassmann variable.
(eg. Super KdV equation!)

¢ =D(¢) — D(0)0~¢.

Jackson derivative The homomorphism is a g-shift operator defined by
Sq(a(z)) = a(gz) and the twisted derivation is

Dyfa(w)) = 1),

satisfying Dy (ab) = Dgy(a)b+ Sq(a)Dqy(b).
(works for (nc) g-discrete 2D Toda lattice equation too!)



Nc extended integrable systems
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A, 2008
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H.X. Wu, J.X. Liu & C.X. Li, Quasideterminant solutions of the extended
noncommutative Kadomtsev—Petviashvili hierarchy, Theor. Math. Phys., 2017.



The nc extended KP equation

The nc KP reads as
(vt + Uz + VaUg)z + 3vyy — 3z, vy] = 0. (2)

It has the quasi-Wronskian solution

@ enN

v =-2Q(0,0) = —2 ’ o™ 1] (3)

where © is the N x N Wronskian matrix of 01, ,0n w.r.t. x,

en is the column vector with 1 in the N-th row and O elsewhere,
© = (01,---,0x), O is the N-th derivative of © w.r.t. z and
0;, i =1,---, N satisfy the dispersion relations

ayei = 832302, 040; = —48391'. (4)
[4 C. Gilson & J.J.C. Nimmo. On a direct approach to

quasideterminant solutions of a noncommutative KP equation,
J. Phys. A: Math. Theor. 40 (2007) 3839-3850,



The nc extended KP equation:

M
(Ut + Vzzz + vzvz)z ol 3vyy - 3['Uzavy] = =2 (Z qﬂaz> 5
=1

xT
Gy = Gizz + Vz i,

Tiyy = —Tixx — TiVz.

Lax pair:

by = (0% + vz)(9),
b = — [483 + 6050 + 3vas + 30y — SN qia_lm} (9)

@ H.X. Wu, J.X. Liu and C.X. Li. Quasideterminant solutions of the
extended noncommutative Kadomtsev—Petviashvili hierarchy, Theor.
Math. Phys. 192(2017): 982-999. Darboux transformation!



Quasi-Wronskian solutions for the nc eKP equation

Assume that 0; = h; + g;C; where C} is an arbitrary constant, h; and g; satisfy
the dispersion relations (4). Then it is clear that

0y0; = 0260;, 0:0; = —40320;. (5)

By using variation of constants, we assume that 6; = h; + ¢;C;(t) with

alt), 1<i<M<N
Ci(t) = : (6)
C; otherwise.
Then we have
0y0; = 0260;, 010; = —4020; + gici. (7)
Let © be the Wronskian matrix of 6,4 =1,2,--- , N w.r.t. & and
O = (61,---,0n). Denote
.. ; é EN—j
Q4 5) = (-1) ’@(N+i) @] ; (8)

It is obvious that v = —2Q(0, 0) will no longer satisfy the nc KP equation.



Denote H® = (gVé1,+ ,gYérr,0,-+- ,0) and f = (HO, HO),... gO-D)T
Then @i“ = —400+3) 1+ @) and

vt = —2Q(0, O)t
=8Q(3,0) — 8Q(0,3) + 8Q(0,2)Q(0,0) + 8Q(0,1)Q(1,0) + 8Q(0,0)Q(2,0)
. 8) en . M1 & e; 6) e;
215w @I\ - 22 o™ [o] |mt-v @V

The nc extended KP becomes

(’Ut + Vaxx + 'UacUa:)x + 3'Uyy - 3[1]1)7 Uy] = <Z Q1T1> (9)
=1 T
with .
© gi O e
R N ) R N+i—1_. N
qi = (_1) ®(N) gZ(N) ﬁlv T = (_1) ¢ i e;r @ (10)

Where g; = ( (O) . gEN 1)) is the column vector and ¢; = B;(¢)n; (¢).



Besides
M
(vt + Vzze + VzUz )z + 3vUyy — 3[vz, vy] = —2 (Z qim> , (11)
i=1 v

we have the constraints

Qiyy = Gi,zz + Uz Gi, (12)

Phg = —Foam = Pilze (13)

@ H.X. Wu, J.X. Liu and C.X. Li. Quasideterminant solutions of the
extended noncommutative Kadomtsev—Petviashvili hierarchy, Theor.
Math. Phys. 192(2017): 982-999. Darboux transformation!



In commutative case, we have actually

v =2In(7),,
P;
qi = —,
T
v,
r, = —
-

which gives Wronskian determinant solutions to the bilinear
extended KP equation.



Quasi-Grammiann solutions the nc eKP equation

Denote
Q pri)

£10) @

Where P = (p1,--- ,pn) and Q = Q(O, P) = Q(0;, pi) nx ~ is the N x N Grammian
matrix defined for ¢,5 € {1,--- ,N}.

R(i,j) = (-1)’ (14)

As is known, the nc KP equation (11) has the quasi-Grammian solutions
v = —2R(0,0) (15)
where
Q05, i) = pl0,
Q0 p:)y = p105,0 — pL .05, (16)

Q05,pi)e = —4(p} 05,02 — P} 0w + P 10 05)-

with 0; satisfying the dispersion relations (4) and p; satisfying

{Gi,y = Gi,xwa {Pj,y = —Pj,zx; (17)

ei,t = _49i,xa:a:~ Pj,t = _4pj,zmx~



Rewrite Q(0;, pi)z = p;fG]' as

Q(8;,p:) = Ci j +/pjojdx.
By using variation of constants, we assume

Q(85,pi) = Ci,5(t) + /PIdew

where

Ci,j, otherwise.

Ci(t), i=j and 1<i<M<N, MNE€EZt,
Ci,;(t) =

Under these assumptions, we have

vy = — 2R(0,0)¢
=8R(3,0) — 8R(0,3) + SR(O, 2)R(0,0) 4+ 8R(0, 1) R(1,0)

pt
6I I

+ 8R(0,0)R(2,0) zz

C'L

(18)

Actually, other derivative formulas of v are exactly the same as those appearing in the

case of the nc KP equation.



Similar to the case of quasi-Wronskian solutions, we are able to construct the
nc eKP equation

M
(Ut + Vzzoe + 'Uac'Uz)a; + 3Uyy = 3[1}1«71]?!] = -2 <E ([’ziri) ,

i=1
Gi,y = Qi,ez + V2Qi,

Tiy = —Tizx — TiVz.

with ¢; and r; satisfying the constraints

w=(1'lg 5% (19)
t

where we have assumed ¢ = S, (t)n:(¢).



In commutative case, we have actually

v =2In(7),,
P,
9 = —
7
v,
r, = —
-

which gives Grammian determinant solutions to the bilinear
extended KP equation.



nc extended mKP

The nc mKP equation

Wz — wy—+[w, W] =0,
Wt + Weze — wwzw + 3Wy + 3wz, W]t — 3[wee, w] — 3[W, 'w2] =0

becomes

F(Gat + 3G2y + Gae — Gt FGy — 4G3:. FGy — 3G2. F G2y + 6G2. FGo F Gy

21
+ 3G2. FGy — 3Gy FGy + 3Gy FGoy — 6GyFG1FGy) = 0 (21)

under the transformations

w=—F,F1, W=—F,F! 22)
w=G Gy, W =G"1aG,.

@ C. R. Gilson and J. J. C. Nimmo and C. M. Sooman On a direct approach to
quasideterminant solutions of a noncommutative modified KP equation, Journal
of Physics A: Mathematical and Theoretical 41(2008): 3839-3850.



Lax pair for the nc extended modified KP equation
¢y = (07 + 2ud)¢, (23)
M
o = <_4ag — 12002 — 6(wy + w2 + W)dr + » q:-amla-az> b, (24)
i=1
Ziiy = iz + 2W iz, Fiy = —Tizz + 2Tizw, (25)
whose compatibility condition gives the nc emKP equation
Wz — wy + [w, W] =0,

Wi + Weze — Bwwew + 3Wy + 3wz, W]t — 3[wee, w] — 3[W, w2]

M
== ([w,d7 + (@7)a) -

1=1



Quasi-Wronskian solutions for the nc emKP equation

The nc emKP equation has quasi-Wronskian solutions given by

()
om o)
—1 €1
om

and
0i,y = 971,117 ei,t = 7402,1:31

By choosing 6; = h; + g;C; where C; is an arbitrary constant, h; and g; satisfy
the dispersion relations (4), it is clear that
0y0; = 0260;, 010; = —40320;. (27)

By appling variation of constants in the same way as the nc eKP eqquation, we
assume that 0; = h; + g;C;i(t) with

Cz(t) — {Ci(t)v 1 S 1 S M S N

= . (28)
C; otherwise.

Then we have
0y0; = 020;, 010; = —4020; + gici. (29)



F' and G no longer satisfy the nc mKP equation. Instead we have
the nc emKP equation with quasi-Wronskian solutions given by

qi =

o [o]

oM O e
G=F1= : 30
el oo @ &
o)
0
@(1) g ! é) €1
’ 1 ~7, = (-1 ! 1 o 1
. Bis r (=1)'n eiT @ (31)




Quasi-Grammian solutions the nc emKP equation

The nc mKP equation
We — wy+[w, W] =0,
Wt + Waze — Bwwyw + 3Wy + 3w, W]t — 3[wee, w] — 3[W, w2] =0

has quasi-Grammian solutions

w=—F,F !, W =—-F,F ! (32)
w=G1Gy, w=G6"1G,
where quasi-Grammians H and R are defined as
Q' pGEDt Q pGELT

F=— =I+R(0,-1), G=F1=I—-R(0,-1)=

e o [

Where PT and © are column and row vector of length N respectively and obey the
same dispersion relations as defined in the case of the nc KP equation. Q and ' are
N x N Grammian matrices with ' defined as

Q'(0,P) =(0,P) — PCYTe = (C; ;) + / Pfeds — P(-Vio

= (Cij) — /P<—1>f@<1>dx

@ C.R. Gilson, J.J.C. Nimmo & C.M. Craig, Matrix solutions of a noncommutative
mKP equation. Theor. Math. Phys. 2009.



By usingvariation of constants, we assume

Q(05,pi) = Ci 5(t) +/P191‘d$

where
Ci(t), i=j and 1<i<M<N, M,NecZzZt,
Ci;(t) = {C : (33)
55,  otherwise.
Under these assumptions, we are able to construct the nc emKP equation
whose quasi-Grammian solutions are given by
Q pEOLT
F=- =1+R'(0,-1 34
o + R'(0,-1), (34)
Q pEOLT
G=F'=I-R(0,-1) = , 35
0,-1) = | (35)
~ g Q €; ~ G— Q P(_l)T
g = (1) o @ Bi, Ti=(-1) 177i o @ : (36)




Miura transformation

The Miura transformation between the nc eKP (v, ¢g;, ;) and the
nc emKP (w, W, g;, ;) is given by
—wy —w? 4+ W = Fo, F1, (37)
¢ = Fqi, ri=-nG. (38)

Both of the Miura transformations between the eKP hierarchy and
the emKP hierarchy, the nc KP and the nc mKP have been
obtained in literature. Here we establish the Miura transformation

between the nc eKP and the nc emKP by using quasideterminant
identities.




Conclusion and future work

® According to the Gauge transformation for the twisted derivation we
proposed, we illustrate that determinant solutions and quasideterminant
solutions can be constructed for some commutative integrable systems
and nc integrable systems including the super KdV equation, respectively,
by using Darboux transformations.

® Source generation procedure is generalized to construct nc integrable
systems. Two types of quasideterminant solutions to the nc eKP equation
and nc emKP equation are derived. Gauge transformation between the nc
eKP equation and nc emKP equations are established from the viewpoint
of solutions.

® Possible applications to other types of nc integrable systems.

® Other generalization of soliton theory to nc analogues.



