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Outline
The Ablowitz-Ramani-Segur conjecture [Ablowitz et al., 1980]

A nonlinear PDE is solvable by the inverse scattering method [Zakharov and Shabat, 1974]
only if every nonlinear ODE obtained by an exact reduction has the Painlevé property.

(1) Motivating examples:
▶ A matrix KdV equation: integrability and symmetries.

[Wadati and Kamijo, 1974], [Olver and Sokolov, 1998]
▶ A matrix first Painlevé equation as a reduction of the matrix KdV.

[Olver and Sokolov, 1998]
▶ Discrete analogs for the matrix first Painlevé equation. [Adler, 2020]

(2) Non-commutative ODEs:
▶ Setting and main definitions. [Bobrova, 2023]
▶ First integrals and Lax pairs. [Mikhailov and Sokolov, 2000], [Bobrova, 2023]

(3) Non-commutative O∆Es:
▶ Setting and main definitions.
▶ First integrals and Lax pairs.
▶ Continuous limits.

(4) Methods for the derivation & more examples.
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Motivating examples



A matrix KdV equation

wt + 6wwx + 6wxw + wxxx = 0, w = w(x , t) ∈ Matn(C), x , t ∈ C. KdV

▶ The inverse scattering method. [Wadati and Kamijo, 1974]

▶ A hierarchy of commuting symmetries. [Olver and Sokolov, 1998], [Olver and Wang, 2000]

▶ The Zakharov-Shabat type pair{
∂xΨ = U Ψ,

∂tΨ = V Ψ,
Ψ = Ψ(x , t) := (ψ1 ψ2)

T , (1)

with 2 × 2-matrices U = U(µ, x , t) and V = V (µ, x , t) and the scalar spectral parameter µ:

U =

(
0 1

2µ I+ w

−2 I 0

)
, V =

(
−2wx 2µ2 I+ 2wµ− 4w2 − wxx

−8µ I+ 8w 2wx

)
. (2)

▶ The zero-curvature condition ∂tU − ∂xV = [V ,U] is equivalent to the KdV.

▶ Symmetries: [Olver and Sokolov, 1998]

shift along x shift along t Galilean transformation self-similar transformation

V1 = ∂x V2 = ∂t V3 = 12t ∂x + ∂w V4 = x ∂x + 3t ∂t − 2w ∂w
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A matrix P1 equation (1)

y ′′ = 6y2 + z I+ a, y(z), a ∈ Matn(C), z ∈ C. P1

Reduction of the equation
▶ Symmetry reduction of the matrix KdV equation:

wt + 6wwx + 6wxw + wxxx = 0 ⇒
w(x , t) = −y(z) + t I,

z(x , t) = x − 6t2
⇒ y ′′ = 6y2 + z I+ a

the KdV equation the Galilean transformation
with the shift along t

the P1 equation

Reduction of the ZC representation
▶ Transformation of the spectral parameter:

λ(t) = µ+ 2t. (3)
▶ The ZC representation ∂tU − ∂xV = [V ,U] becomes

∂zA− ∂λB = [B,A], (4)

where A(λ, z) and B(λ, z) are

B(λ, z) = U (λ, z) =

(
0 1

2λ I− y
−2 I 0

)
, (5)

A(λ, z) = 1
2V (λ, z) + 6tU (λ, z) =

(
y ′ λ2 I− λy + y2 + 1

2 z I+
1
2a

−4λ I− 4y −y ′

)
. (6)

▶ The compatibility condition (4) is equivalent to the matrix P1 equation.
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A matrix P1 equation (2)

y ′′ = 6y2 + z I+ a, y(z), a ∈ Matn(C), z ∈ C. P1

Properties
▶ P1 solves the matrix KdV equation.

▶ P1 admits an isomonodromic representation.

▶ P1 passes a matrix Painlevé-Kovalevskaya test [Balandin and Sokolov, 1998].

▶ P1 is Hamiltonian:

H(u, v , z) = tr
(
−2u3 + 1

2 v
2 − au − zu

)
,

{
uij , vkl

}
= δil δjk ; (7){

u′ = v ,

v ′ = 6u2 + z I+ a,
⇔ P1 for y(z) = u(z).

▶ P1 as well as its Lax pair can be generalized to the case of an associative unital algebra
AC = ⟨ui , vi , a⟩, i ≥ 0 equipped with a derivation dz : A → A satisfying the Leibniz rule and

dz (a) = 0, dz (z) = 1, dz (ui ) = ui+1 =: u(i+1), dz (vi ) = vi+1 =: v (i+1). (8)

▶ Moreover, making the change z̄ = z I+ a in P1 and its Lax pair, we arrive at the so-called
fully non-abelian version of the P1 equation.
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Discrete analogs for the P1 equation [Adler, 2020]

um+1um + u2
m + umum−1 + x um + γm = 0, dP1

1

uTm+1um + u2
m + umu

T
m−1 + x um + γm = 0, dP2

1

γm = m − ν + (−1)mε, um ∈ Matn(C), x ν, ε ∈ C.

▶ They are results of a reduction of the matrix Volterra lattices for um = um(x):

um,x = um+1 um − um um−1, VL1

um,x = uTm+1 um − um uTm−1. VL2

▶ The VL1, VL2 is equivalent to the compatibility condition of the given 2 × 2 matrix system{
Ψm+1 = Lm(λ)Ψm,

∂xΨm = Mm(λ)Ψm,
Ψm = Ψm(x) := (ψm ψm−1)

T . (9)

▶ The reduction can be extended for the Lax pairs and leads to the system{
∂λΦm = Am(λ)Φm,

Φm+1 = Bm(λ)Φm,
Φm = Φm(λ) ∈ Mat2(C). (10)

▶ E.g., for the dP1
1, we have

Am =

(
λ2 + λ(um + x)− γm+1 λ2 um − λ(umum−1 − γm)

−λ− um − um−1 − x −λum − γm

)
, Bm =

(
λ λum

−1 0

)
. (11)
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Some observations

▶ All considered matrix ODEs and O∆Es coincide with the well-known scalar analogs.

▶ All of them are the reductions of the integrable matrix PDEs or P∆Es.

▶ Thanks to the reductions, one can justify the integrability of the reduced matrix ODEs or
O∆Es by using the Lax pairs.

▶ These systems might contain arbitrary matrix constants or even might be generalised to the
fully non-commutative case.

▶ In the equations P1, dP1
1 and their Lax pairs we do not use the matrix setting explicitly.

So, they can be extended to the case of an associative unital algebra A with a derivation.

▶ In order to deal with the dP2
1, one needs to introduce an involution on A.

▶ Regarding the discrete systems, it is natural to study continuous limits. Indeed, one can
consider the change with the commutative parameter ε

z = εm (12)

supplemented by the maps

um 7→ u, um+k 7→ u + k εu′ + 1
2k

2 ε2u′′ + O(ε3). (13)

The latter must be chosen in such a way that the limit ε→ 0 exists.
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Non-Abelian ODEs



Setting (1)

▶ Let Gi , i = 0, 1, 2, . . . be a free group generated by the set x̄i = {x1,i , x2,i , . . . , xN,i}:

Gi = ⟨x1,i , x2,i , . . . , xN,i ⟩. (14)

We set xk,0 =: xk .

▶ Let A be a unital associative group algebra over the field C (or any other field of char = 0):

A =
⊕
i≥0

CGi . (15)

Definition 1. An involution τ : A → A defining by

τ(xk ) = xk , τ(P Q) = τ(Q) τ(P), P,Q ∈ A (16)

is called a transposition. Its action on M = (mi,j ) ∈ Matn(A) is extended as follows

τ(mi,j ) = (τ(mj,i )). (17)

▶ Let z be a central element of A and all parameters αi belong to the field.

Remark 1. One can extend A in order to include z, αi .

Example 1. Let N = 3 and P = x1 x2
2 x3. Then

τ(P) ≡ τ
(
x1 x

2
2 x3

)
= τ(x3) τ(x2)

2 τ(x1) = x3 x
2
2 x1. (18)
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Setting (2)

Remark 2. We identify the unit of A with the unit of the field C.

Definition 2. A C-linear map dz : A → A satisfying the properties

dz (αi ) = 0, dz (z) = 1, dz (xk,i ) = xk,i+1, (19)

dz (P Q) = dz (P)Q + P dz (Q) P,Q ∈ A (20)

is called a derivation of A. We denote dz (xk ) = x ′k , d
2
z (xk ) = x ′′k , and so on.

Remark 3. τ and dz commute with each other.

Example 1. Consider N = 2 and P = x1x2
2 x1. Then dz (P) is

dz (P) = dz
(
x1 x

2
2 x1

)
= x ′1 x

2
2 x1 + x1 x

′
2 x2 x1 + x1 x2 x

′
2 x1 + x1 x

2
2 x ′1. (21)

Example 2. Let N = 1. Find dz
(
x−1
1

)
. Since x1 x

−1
1 = x−1

1 x1 = 1, we have

dz
(
x1 x

−1
1

)
= dz (x1) x−1

1 + x1 dz
(
x−1
1

)
≡ dz (1) = 0. (22)

Therefore,

dz
(
x−1
1

)
= −x−1

1 x ′1 x
−1
1 . (23)
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Main definition

Definition 3. A set of relations of the form

dz (xk ) = Fk , Fk ∈ A, k = 1, . . . ,N (24)

we call a system of non-abelian ODEs. If for some k the element Fk depends on z
explicitly, the system is non-autonomous, otherwise – autonomous.

Remark 4. The system (24) is a non-abelian generalization of a system of first order ODEs. It is
also easy to introduce a non-abelian analog for a system of the higher order ODEs.

Remark 5. Note that we can introduce a set of derivations dz1 , dz2 , . . . . Then, the system it is
easy to define a system of non-abelian PDEs just by considering different dzl in (24).

Example 3. Let N = 1 in (24). Then the following equations

x ′1 = x1, x ′1 = z x1 (25)

are autonomous and non-autonomous, respectively. These equations are invariant under the
τ -action, since, for instance,

τ(x ′1) = (τ(x1))
′ = x ′1 ≡ τ(z x1) = τ(x1) τ(z) = x1 z = z x1. (26)
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First integrals (1)

dz (xk ) = Fk , Fk ∈ A, k = 1, . . . ,N. (24)

Definition 4. An element I ∈ A is a first integral for system (24) if

dz (I ) = 0. (27)

Example 4. Consider N = 2 and set I = x1 x2 − x2 x1. For the system{
x ′1 = x1 x2 x1,

x ′2 = −x2 x1 x2
(28)

the element I is a first integral:

dz (I ) = x ′1 x2 + x1 x
′
2 − x ′2 x1 − x2 x

′
1

= x1 x2 x1 x2 − x1 x2 x1 x2 + x2 x1 x2 x1 − x2 x1 x2 x1 = 0,
(29)

while for the system {
x ′1 = x2

1 x2,

x ′2 = −x1 x2
2

(30)

we have
dz (I ) = x ′1 x2 + x1 x

′
2 − x ′2 x1 − x2 x

′
1 = x2

1 x2
2 − x2

1 x2
2 + x1 x

2
2 x1 − x2 x

2
1 x2

= x1 x
2
2 x1 − x2 x

2
1 x2 ̸= 0. (= 0 up to [x1, x2])

(31)
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= x1 x
2
2 x1 − x2 x

2
1 x2 ̸= 0. (= 0 up to [x1, x2])

(31)
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First integrals (1)
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First integrals (2)

dz (xk ) = Fk , Fk ∈ A, k = 1, . . . ,N. (24)

Definition 5. If P − Q ∈ [A,A] for P, Q ∈ A, then we write P ∼ Q.

Example 5. x1 x2
2 x1 ∼ x2 x2

1 x2.

Definition 6. A class of P ∈ A in the space A
/
[A,A] is denoted by TrP.

Definition 7. An element I ∈ A is a first trace-integral for system (24) if

dz (Tr I ) = 0. (32)

Example 6. Under Example 4, the element I = x1 x2 − x2 x1 is a trivial trace-integral for both
systems (moreover, for any non-abelian system), since I ∼ 0.

Remark 6. The trace-integrals are necessary for introducing a non-abelian Hamiltonian
formalism. We will not consider such a formalism in this series of lectures. For more details, see
the original paper [Kontsevich, 1993] where this formalism was introduced for the first time.
See also [Olver and Sokolov, 1998] and [Mikhailov and Sokolov, 2000].
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Lax pairs (1)

dz (xk ) = Fk , Fk ∈ A, k = 1, . . . ,N. (24)

▶ In addition to dz , consider a derivation dλ and λ ∈ Z(A) such that

dλ(λ) = 1, dλ(z) = 0, dλ(αi ) = 0, dλ(xk ) = 0. (33)

The parameter λ is a spectral parameter .
▶ Let A = A(λ, z), B = B(λ, z) and L = L(λ, z), M = M(λ, z) be n × n matrices over A.

Definition 8. If the non-autonomous system (24) is equivalent to the equation

dzA − dλB = BA − AB, (34)

then the matrices A, B and condition (34) are called an isomonodromic Lax pair and an
isomonodromic representation for system (24).

Definition 9. If the autonomous system (24) is equivalent to the equation

dzL = ML − LM, (35)

then the matrices L, M and condition (35) are called an isospectral Lax pair and a Lax equation
for system (24).

Remark 7. The existence of a Lax pair is invariant under the τ -action. Note that the matrices
change as follows

A 7→ −A, B 7→ −B; L 7→ L, M 7→ −M. (36)
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Lax pairs (2)
Example 7. Let N = 2. The system{

x ′1 = x1 x2 x1,

x ′2 = −x2 x1 x2
(37)

has the following isospectral Lax pair

L =

(
0 −x1

−x2 x1 x2 0

)
λ−1 +

(
x2 −1
x2
2 −x2

)
λ−2, M = 1

2

(
x1 x2 −x1

−x2 x1 x2 −x2 x1

)
. (38)

Definition 10. A non-autonomous system turns to be autonomous by replacing z with t ∈ Z(A)
in all right-hand sides Fk and assuming dz (t) = 0. We call this procedure an autonomization.

Proposition 1. [Bobrova, 2023] If a non-autonomous system has an isomonodromic Lax pair,
then the corresponding autonomous system has an isospectral Lax pair.

Example 8. An autonomous version of the P1 system{
u′ = v ,

v ′ = 6u2 + z,
⇔ u′′ = 6u2 + z (39)

has the following isospectral Lax pair

L =

(
0 2
0 0

)
λ2 +

(
0 −2u
−2 0

)
λ+

(
v 2u2 + t

−2u −v

)
, M =

(
0 1
0 0

)
λ+

(
0 −2u
−1 0

)
. (40)

Remark 8. An autonomous version of the P1 equation is solved in terms of the ℘-function.
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Non-Abelian O∆Es



Setting and definitions (1)

▶ Let A be as before a unital associative group algebra over C:

A =
⊕
i≥0

CGi , i = 0, 1, 2, . . . , (41)

where Gi = ⟨x1,i , x2,i , . . . , xN,i ⟩.

▶ Instead of a derivation of A, we introduce a translation operator on A.

Definition 1. A homomorphism T : A → A satisfying the properties

T (z) = z, T (αi ) = f (αi ), T (xk,i ) = xk,i+1, (42)

where f (αi ) is a certain function, is called a shift operator on A.

Definition 2. A set of relations of the form

T (xk,i ) = Fk , Fk ∈ A, k = 1, . . . ,N (43)

we call a discrete non-abelian system. It can be classified into three types:
▶ if f (αi ) = αi for any i , then (43) is autonomous;
▶ if f (αi ) = αi ± 1 for some i , then (43) is non-autonomous and of additive type (d);
▶ if f (αi ) = q±1 αi for some i , then (43) is non-autonomous and of multiplicative type (q).

Remark 1. In abelian case, there exist discrete elliptic systems. We do not consider this case,
since we are not aware of examples of such systems (yet).
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Setting and definitions (2)

T (xk,i ) = Fk , Fk ∈ A, k = 1, . . . ,N (43)

Remark 2. Considering the notation

Tm(xk ) ≡ T (T . . .T (T (xk )) . . . ) =: xk,m, (44)

(43) can be rewritten in a difference form that we will call a system of non-abelian O∆Es.

Example 1. Let N = 1 in (43). Then the following equations

xm+1 = α xm, xm+1 = (α+m) xm, xm+1 = α qm xm (45)

are autonomous and non-autonomous of additive and multiplicative type respectively.

Remark 3. A discrete dynamic might be considered as a map

φ : AN → AN . (46)

In particular, considering the precious example, we have for the autonomous system the map

φ : A → A, x 7→ α x , (47)

where x := x1.
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First integrals

T (xk,i ) = Fk , Fk ∈ A, k = 1, . . . ,N (43)

Definition 3. An element I ∈ A is a first integral for system (43) if

φ(I ) = I . (48)

Example 4. Let N = 4. Consider the discrete map

ym+4 = ym+1 + ym+2

(
y−1
m − y−1

m+3

)
ym+2. (49)

The map φ : A4 → A4

(y1, y2, y3, y4) 7→
(
y2, y3, y4, y2 + y3 (y

−1
1 − y−1

4 ) y3
)

(50)

preserves the function

I = y2 y
−1
3 + y3 y

−1
1 + y4 y

−1
2 . (51)

Remark 4. (49) is a non-abelian analog [Bobrova et al., 2023] for the Somos-4 equation:

xm+4 xm = xm+3 xm+1 + x2
m+2. (52)

In this case, I = x2
2 (x1x3)

−1 + x2
3 (x2x4)

−1 + x1x4(x2x3)−1 + x2x3(x1x4)−1.
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Lax pairs (1)

T (xk,i ) = Fk , Fk ∈ A, k = 1, . . . ,N (43)

▶ λ, q are central elements of A.

Definition 4. If the autonomous system (43) is equivalent to the equation

Lm+1(λ)Mm(λ) = Mm(λ) Lm(λ), (53)

then the matrices Lm = Lm(λ), Mm = Mm(λ) and condition (53) are called a discrete Lax pair
and a discrete Lax equation for system (43).

Definition 5. If the non-autonomous d-system (43) is equivalent to the equation

dλBm(λ) = Am+1(λ)Bm(λ)− Bm(λ)Am(λ), (54)

then the matrices Am = Am(λ), Bm = Bm(λ) and condition (54) are called an isomonodromic
d-pair and an isomonodromic d-representation for system (43).

Definition 6. If the non-autonomous q-system (43) is equivalent to the equation

Bm(q λ)Am(λ) = Am+1(λ)Bm(λ), (55)

then the matrices Am = Am(λ), Bm = Bm(λ) and condition (55) are called an isomonodromic
q-pair and an isomonodromic q-representation for system (43).
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Lax pairs (2)

Lm+1(λ)Mm(λ) = Mm(λ) Lm(λ), (53)

Example 5. Let N = 4 and am = ym+2 y
−1
m , bm = ym y−1

m+1. Consider the matrices

Lm =

(
λ
(
λ2 + bm+1 + am+1

) (
λ2 + bm+1

)
am

λ2 + bm λ am

)
, Mm =

(
λ am

1 0

)
. (56)

Then, the compatibility condition (53) is equivalent to the non-abelian Somos-4 equations:

ym+4 = ym+1 + ym+2

(
y−1
m − y−1

m+3

)
ym+2. (57)

Example 6. Let N = 5, am = ym+3 y
−1
m and bm = ym y−1

m+1. The matrices [Bobrova et al., 2023]

Lm =

 λ2 λ (bm+2 + am+1) bm+2 am

bm+1 λ2 λ am

λ bm 0

 , Mm =

0 λ am

1 0 0
0 1 0

 (58)

leads to a non-abelian version of the Somos-5 equation:

ym+5 = ym+1 + ym+3

(
y−1
m − y−1

m+4

)
ym+2. (59)
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Continuous limits
Commutative case
▶ Set z = εm and xm = x(z).
▶ Then, xm+k = x(z + ε k) and one can consider the formal Taylor series near ε = 0.
▶ Under the limit ε→ 0 (if it exists), the discrete equation becomes a continuous one.

Example 7. Consider the so-called q-P1 equation

um+1 u
2
m um−1 = α qm um + β. q-P1

After the change

um = 1 − ε2 y(z), z = εm, α = 4, β = −3, q = 1 − 1
4 ε

5, (60)

we can take the limit ε→ 0 and, thus, it becomes the first Painlevé equation:

y ′′ = 6y2 + z. (61)

Non-commutative case
▶ Similar to the commutative case, we set z = εm and xm = x .
▶ Instead of the Taylor series, we use the change xm+k = x + k εx ′ + 1

2k
2 ε2x ′′ + O(ε3).

Example 9. Consider a non-abelian analog for the q-P1 [Bobrova et al., 2023]

um+1um − um−1um−2 = αm u−1
m−1 − u−1

m αm−1, αm = α qm q-P1[1]

and a straightforward generalisation of change (60). Taking the limit ε→ 0, it turns to

y ′′′ = 6 y y ′ + 6 y ′ y + 1, (62)

or, after the integration, to the P1.
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Methods & Examples



Statement of the problem

The matrix P1 equation

y ′′ = 6y2 + z I+ a, y(z), a ∈ Matn(C), z ∈ C. P1

How to detect non-abelian integrable analogs for the Painlevé equations?

Classification steps
(i) Construct a criterion allowing to select a finite list of non-abelian analogs such that

under the commutative reduction the generalizations coincide with a given Painlevé equation.

(ii) For the obtained analogs find their zero-curvature representation.

Definition 1. A matrix or a non-abelian generalization of a Painlevé equation is integrable, if
it satisfies a criterion from item (i) and admits the zero-curvature representation.
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Some methods

▶ Matrix Painlevé-Kovalevskaya test ⇒ matP1, matP2 [Balandin and Sokolov, 1998]:

matP2 : y ′′ = 2y3 + zy + α I,

matP1 : y ′′ = 6y2 + z I+ a; y(z), a ∈ Matn(C), z, α ∈ C.
▶ Quantization of Poisson brackets ⇒ qP2, qP4, qP5 [Nagoya et al., 2008]:

qP4 : y ′′ = 1
2 y

′ y−1 y ′ + 3
2 y

3 − 2zy2 +
( 1

2 z
2 + 1 − 2α0 − α1

)
y − 1

2

(
α2

1 − ℏ2) y−1,

y ∈ AC, z, αi ∈ C.
▶ An infinite ncToda system ⇒ ncP2 [Retakh and Rubtsov, 2010]:

ncP2 : y ′′ = 2y3 + 1
2 z y + 1

2 y z + α, y , z ∈ RF, α ∈ F.

▶ Matrix Schlesinger deformation ⇒ matPH
6 [Kawakami, 2015].

Also matPH
5 , matPH

4 , matPH
3 (D6), matPH

3 (D7), matPH
3 (D8), matPH

2 , matPH
1 systems.

Recent results
▶ Matrix P2 type systems with matrix coefficients [Adler and Sokolov, 2021].
▶ Matrix P4 type systems with matrix coefficients [Bobrova and Sokolov, 2022].
▶ A fully non-commutative P4 system [Bobrova et al., 2022].
▶ Hamiltonian non-abelian Painlevé type systems [Bobrova and Sokolov, 2023a].
▶ Non-abelian Painlevé systems with Okamoto integral [Bobrova and Sokolov, 2023b].
▶ A symmetry approach to non-abelian Painlevé systems [Bobrova and Sokolov, 2023c].
▶ Reductions of a non-abelian Hirota equation [Bobrova et al., 2023].
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Non-Abelian Okamoto integrals [Bobrova and Sokolov, 2023b]

Description of the method
▶ Construct non-abelian ansatz for the auxiliary system and the Okamoto integral J.
▶ Require that the generalized Okamoto integral J ∈ A should be a first integral of the system.

This leads to the restrictions on the unknown coefficients.
▶ For a given (finite) list of non-abelian systems reconstruct non-abelian Painlevé systems:

(a) replace t by z,
(b) reconstruct f (z) in the system.

Example 1.
▶ The commutative Hamiltonian P2 system:

H = −u2v + 1
2 v

2 − κu − 1
2 zv ,

{u, v} = 1, {u, u} = {v , v} = 0;

{
u′ = −u2 + v − 1

2 z,

v ′ = 2uv + κ,

u(z), v(z),

z, κ ∈ C.

▶ Non-abelian Okamoto integral:

J(u, v) = a1u
2v + a2uvu + (−1 − a1 − a2)vu

2 + 1
2 v

2 − κu − 1
2 t v . (63)

▶ Non-abelian autonomous system:{
u′ = −u2 + v − 1

2 t,

v ′ = 2vu + β[v , u] + κ,
β ∈ C. (64)

▶ dz (J(u, v)) = 0 ⇐⇒ β = 0, a1 = 0, a2 = −1 or β = −2, a1 = −1, a2 = 0.
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2d dToda → Somos-N → q-Painlevé
Commutative case

discrete Toda equations
[Hone et al., 2017]−→ Somos-N equations

[Hone and Inoue, 2014]−→ discrete Painlevé equations.

Non-commutative case [Bobrova et al., 2023]
▶ Consider the non-abelian 2ddTL:

θl+1,m+1,n = θl,m,n+1 + θl+1,m,n

(
θ−1
l,m,n − θ−1

l+1,m+1,n−1

)
θl,m+1,n. 2ddTL

▶ One may introduce a non-autonomous constant into the 2ddTL by a scaling:

θl+1,m+1,n = αl,m,nθl,m,n+1 + θl,m+1,n

(
θ−1
l,m,n − θ−1

l+1,m+1,n−1αl,m,n−1

)
θl+1,m,n,

αl,m,n = α qk1 l+k2m+k3n,
(65)

where α is a non-abelian constant parameter and ki , q are commutative ones.
▶ By a plane-wave reduction, (65) reduces to a non-abelian Somos-N like equation:

yM+N = αM yM+r + yM+s

(
y−1
M − y−1

M+N−r αM−r

)
yM+N−s , αM = α qM ,

N ∈ N>3, 1 ≤ r < s ≤
[
N
2

]
.

(66)

▶ Let r = 1 and s = 2. Then, for even N ≥ 4 and odd N ≥ 5 consider the changes

uM = yM+3 y
−1
M+2, uM = yM+4 y

−1
M+2. (67)

They lead to q-P1[n] and q-P2[n] hierarchies, respectively.
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A non-abelian q-P1

▶ Recall the non-abelian Somos-4 equation:

yM+4 = αM yM+1 + yM+2

(
y−1
M − y−1

M+3 αM−1

)
yM+2. (68)

▶ It can be rewritten as

yM+4y
−1
M+2 − yM+2y

−1
M = αM yM+1y

−1
M+2 − yM+2y

−1
M+3 αM−1. (69)

▶ Consider the change uM = yM+3 y
−1
M+2. Then, the latter becomes

uM+1uM − uM−1uM−2 = αM u−1
M−1 − u−1

M αM−1. q-P1[1]

▶ The second member of the hierarchy:

uM+3 uM+2 − uM−1 uM−2 = αM u−1
M−1 u

−1
M u−1

M+1 − u−1
M u−1

M+1 u
−1
M+2 αM−1. q-P1[2]

Remark 1. In the abelian case, the q-P1[1] can be derived as follows. Let us take two q-P1:

uM+1 u
2
M uM−1 = β + αM uM , uM u2

M−1 uM−2 = β + αM−1uM−1, (70)

or, equivalently,

uM+1 uM = β u−1
M u−1

M−1 + αM u−1
M−1, uM−1 uM−2 = β u−1

M u−1
M−1 + αM−1 u

−1
M . (71)

Then their difference leads to q-P1[1].
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Remark 1. In the abelian case, the q-P1[1] can be derived as follows. Let us take two q-P1:

uM+1 u
2
M uM−1 = β + αM uM , uM u2

M−1 uM−2 = β + αM−1uM−1, (70)

or, equivalently,

uM+1 uM = β u−1
M u−1

M−1 + αM u−1
M−1, uM−1 uM−2 = β u−1

M u−1
M−1 + αM−1 u

−1
M . (71)

Then their difference leads to q-P1[1].
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PhD thesis, Reims.

[Bobrova et al., 2022] Bobrova, I., Retakh, V., Rubtsov, V., and Sharygin, G. (2022).
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[Mikhailov and Sokolov, 2000] Mikhailov, A. V. and Sokolov, V. V. (2000).
Integrable ODEs on associative algebras.
Communications in Mathematical Physics, 211:231–251.
arXiv:solv-int/9908004.

[Nagoya et al., 2008] Nagoya, H., Grammaticos, B., Ramani, A., et al. (2008).
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