Non-Abelian ODEs and $O\Delta Es$

Irina Bobrova

MPI for Mathematics in the Sciences, Leipzig, Germany

March 05 & 07, 2024

Noncommutative Integrable Systems Workshop

A short overview of the topic

- S. P. Balandin and V. V. Sokolov. On the Painlevé test for non-Abelian equations. Physics letters A, 246(3-4):267–272, 1998.
- P. J. Olver and V. V. Sokolov. Integrable evolution equations on associative algebras. Communications in Mathematical Physics, 193(2):245–268, 1998.
- H. Nagoya, B. Grammaticos, A. Ramani, et al. Quantum Painlevé equations: from Continuous to discrete. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 4:051, 2008.
- V. S. Retakh and V. N. Rubtsov. Noncommutative Toda Chains, Hankel Quasideterminants and Painlevé II Equation. Journal of Physics. A, Mathematical and Theoretical, 43(50):505204, 2010. arXiv:1007.4168.
- M. Cafasso and D. Manuel. Non-commutative Painlevé equations and Hermite-type matrix orthogonal polynomials. Communications in Mathematical Physics, 326(2):559–583, 2014. arXiv:1301.2116.
- ▶ H. Kawakami. Matrix Painlevé systems. Journal of Mathematical Physics, 56(3):033503, 2015.
- M. Cafasso, D. Manuel, et al. The Toda and Painlevé systems associated with semiclassical matrix-valued orthogonal polynomials of Laguerre type. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 14:076, 2018. arXiv:1801.08740.
- M. Bertola, M. Cafasso, and V. Rubtsov. Noncommutative Painlevé equations and systems of Calogero type. Communications in Mathematical Physics, 363(2):503–530, 2018. arXiv:1710.00736.
- V. E. Adler. Painlevé type reductions for the non-Abelian Volterra lattices. Journal of Physics A: Mathematical and Theoretical, 54(3):035204, 2020. arXiv:2010.09021.
- V. E. Adler and V. V. Sokolov. On matrix Painlevé II equations. Theoret. and Math. Phys., 207(2):188–201, 2021. arXiv:2012.05639.
- V. E. Adler and M. P. Kolesnikov. Non-Abelian Toda lattice and analogs of Painlevé III equation. J. Math. Phys., 63:103504, 2022. arXiv:2203.09977.

Outline

The Ablowitz-Ramani-Segur conjecture [Ablowitz et al., 1980]

A nonlinear PDE is solvable by the inverse scattering method [Zakharov and Shabat, 1974] only if every nonlinear ODE obtained by an exact reduction has the Painlevé property.

- (1) Motivating examples:
 - A matrix KdV equation: integrability and symmetries. [Wadati and Kamijo, 1974], [Olver and Sokolov, 1998]
 - A matrix first Painlevé equation as a reduction of the matrix KdV. [Olver and Sokolov, 1998]
 - Discrete analogs for the matrix first Painlevé equation. [Adler, 2020]
- (2) Non-commutative ODEs:
 - Setting and main definitions. [Bobrova, 2023]
 - First integrals and Lax pairs. [Mikhailov and Sokolov, 2000], [Bobrova, 2023]
- (3) Non-commutative $O\Delta Es$:
 - Setting and main definitions.
 - First integrals and Lax pairs.
 - Continuous limits.
- (4) Methods for the derivation & more examples.

Motivating examples

A matrix KdV equation

 $w_t + 6 ww_x + 6 w_x w + w_{xxx} = 0, \qquad w = w(x, t) \in Mat_n(\mathbb{C}), \qquad x, t \in \mathbb{C}.$ KdV

- The inverse scattering method. [Wadati and Kamijo, 1974]
- A hierarchy of commuting symmetries. [Olver and Sokolov, 1998], [Olver and Wang, 2000]
- The Zakharov-Shabat type pair

$$\begin{cases} \partial_{x}\Psi = U\Psi, \\ \partial_{t}\Psi = V\Psi, \end{cases} \qquad \Psi = \Psi(x,t) := (\psi_{1} \ \psi_{2})^{T}, \qquad (1)$$

with 2 \times 2-matrices $U = U(\mu, x, t)$ and $V = V(\mu, x, t)$ and the scalar spectral parameter μ :

$$U = \begin{pmatrix} 0 & \frac{1}{2}\mu \mathbb{I} + w \\ -2\mathbb{I} & 0 \end{pmatrix}, \quad V = \begin{pmatrix} -2w_x & 2\mu^2 \mathbb{I} + 2w\mu - 4w^2 - w_{xx} \\ -8\mu \mathbb{I} + 8w & 2w_x \end{pmatrix}.$$
(2)

- ▶ The zero-curvature condition $\partial_t U \partial_x V = [V, U]$ is equivalent to the KdV.
- ► Symmetries: [Olver and Sokolov, 1998] shift along x || shift along t || Galilean transformation || self-similar transformation $V_1 = \partial_x$ || $V_2 = \partial_t$ || $V_3 = 12t \partial_x + \partial_w$ || $V_4 = x \partial_x + 3t \partial_t - 2w \partial_w$

A matrix P_1 equation (1)

$$y'' = 6y^2 + z \mathbb{I} + a,$$
 $y(z), a \in Mat_n(\mathbb{C}),$ $z \in \mathbb{C}.$ P_1

Reduction of the equation

Symmetry reduction of the matrix KdV equation:

$$w_t + 6ww_x + 6w_x w + w_{xxx} = 0 \implies w(x, t) = -y(z) + t \mathbb{I},$$

the KdV equation
$$w(x, t) = x - 6t^2$$

the Galilean transformation
with the shift along t the P₁ equation

Reduction of the ZC representation

• Transformation of the spectral parameter:

$$\lambda(t) = \mu + 2t. \tag{3}$$

• The ZC representation $\partial_t U - \partial_x V = [V, U]$ becomes

$$\partial_z A - \partial_\lambda B = [B, A],$$
 (4)

where $A(\lambda, z)$ and $B(\lambda, z)$ are

$$B(\lambda, z) = U(\lambda, z) = \begin{pmatrix} 0 & \frac{1}{2}\lambda \mathbb{I} - y \\ -2 \mathbb{I} & 0 \end{pmatrix},$$
(5)

$$A(\lambda, z) = \frac{1}{2}V(\lambda, z) + 6tU(\lambda, z) = \begin{pmatrix} y' & \lambda^2 \mathbb{I} - \lambda y + y^2 + \frac{1}{2}z \mathbb{I} + \frac{1}{2}a \\ -4\lambda \mathbb{I} - 4y & -y' \end{pmatrix}.$$
 (6)

The compatibility condition (4) is equivalent to the matrix P₁ equation.

A matrix P_1 equation (1)

$$y'' = 6y^2 + z \mathbb{I} + a,$$
 $y(z), a \in Mat_n(\mathbb{C}),$ $z \in \mathbb{C}.$ P_1

Reduction of the equation

Symmetry reduction of the matrix KdV equation:

$$\begin{array}{c|c} w_t + 6ww_x + 6w_xw + w_{xxx} = 0 \\ & \text{the KdV equation} \end{array} \xrightarrow{} \begin{array}{c|c} w(x,t) = -y(z) + t \, \mathbb{I}, \\ z(x,t) = x - 6t^2 \\ & \text{the Galilean transformation} \\ & \text{with the shift along } t \end{array} \xrightarrow{} \begin{array}{c|c} y'' = 6y^2 + z \, \mathbb{I} + a \\ & \text{the P}_1 \text{ equation} \end{array}$$

Reduction of the ZC representation

► Transformation of the spectral parameter:

$$\lambda(t) = \mu + 2t. \tag{3}$$

• The ZC representation $\partial_t U - \partial_x V = [V, U]$ becomes

$$\partial_z A - \partial_\lambda B = [B, A],$$
 (4)

where $A(\lambda, z)$ and $B(\lambda, z)$ are

$$B(\lambda, z) = U(\lambda, z) = \begin{pmatrix} 0 & \frac{1}{2}\lambda \mathbb{I} - y \\ -2\mathbb{I} & 0 \end{pmatrix},$$
(5)

$$A(\lambda, z) = \frac{1}{2}V(\lambda, z) + 6tU(\lambda, z) = \begin{pmatrix} y' & \lambda^2 \mathbb{I} - \lambda y + y^2 + \frac{1}{2}z\mathbb{I} + \frac{1}{2}a \\ -4\lambda \mathbb{I} - 4y & -y' \end{pmatrix}.$$
 (6)

• The compatibility condition (4) is equivalent to the matrix P_1 equation.

A matrix P_1 equation (2)

$$y'' = 6y^2 + z \mathbb{I} + a,$$
 $y(z), a \in Mat_n(\mathbb{C}),$ $z \in \mathbb{C}.$ P_1

Properties

- P₁ solves the matrix KdV equation.
- ▶ P₁ admits an isomonodromic representation.
- ▶ P₁ passes a matrix Painlevé-Kovalevskaya test [Balandin and Sokolov, 1998].
- ▶ P₁ is Hamiltonian:

$$H(u, v, z) = \operatorname{tr} \left(-2u^3 + \frac{1}{2}v^2 - au - zu\right), \qquad \left\{u_{ij}, v_{kl}\right\} = \delta_{il} \,\delta_{jk}; \tag{7}$$

$$\begin{cases}
u' = v, \\
v' = 6u^2 + z \,\mathbb{I} + a,
\end{cases} \quad \text{for} \quad y(z) = u(z).$$

▶ P₁ as well as its Lax pair can be generalized to the case of an associative unital algebra $\mathcal{A}_{\mathbb{C}} = \langle u_i, v_i, a \rangle$, $i \ge 0$ equipped with a derivation $d_z : \mathcal{A} \to \mathcal{A}$ satisfying the Leibniz rule and

$$d_z(a) = 0, \quad d_z(z) = 1, \quad d_z(u_i) = u_{i+1} =: u^{(i+1)}, \quad d_z(v_i) = v_{i+1} =: v^{(i+1)}.$$
 (8)

Moreover, making the change z̄ = z I + a in P₁ and its Lax pair, we arrive at the so-called fully non-abelian version of the P₁ equation.

A matrix P_1 equation (2)

$$y'' = 6y^2 + z \mathbb{I} + a,$$
 $y(z), a \in Mat_n(\mathbb{C}),$ $z \in \mathbb{C}.$ P_1

Properties

- ▶ P₁ solves the matrix KdV equation.
- ▶ P₁ admits an isomonodromic representation.
- ▶ P₁ passes a matrix Painlevé-Kovalevskaya test [Balandin and Sokolov, 1998].
- ▶ P₁ is Hamiltonian:

$$H(u, v, z) = \operatorname{tr} \left(-2u^3 + \frac{1}{2}v^2 - au - zu\right), \qquad \left\{u_{ij}, v_{kl}\right\} = \delta_{il}\,\delta_{jk}; \tag{7}$$

$$\begin{cases}
u' = v, \\
v' = 6u^2 + z \mathbb{I} + a,
\end{cases} \Leftrightarrow \mathsf{P}_1 \qquad \text{for} \qquad y(z) = u(z).$$

▶ P₁ as well as its Lax pair can be generalized to the case of an associative unital algebra $\mathcal{A}_{\mathbb{C}} = \langle u_i, v_i, a \rangle$, $i \ge 0$ equipped with a derivation $d_z : \mathcal{A} \to \mathcal{A}$ satisfying the Leibniz rule and

$$d_z(a) = 0, \quad d_z(z) = 1, \quad d_z(u_i) = u_{i+1} =: u^{(i+1)}, \quad d_z(v_i) = v_{i+1} =: v^{(i+1)}.$$
 (8)

• Moreover, making the change $\bar{z} = z \mathbb{I} + a$ in P_1 and its Lax pair, we arrive at the so-called fully non-abelian version of the P_1 equation.

Discrete analogs for the P_1 equation [Adler, 2020]

$$u_{m+1}u_m + u_m^2 + u_m u_{m-1} + x u_m + \gamma_m = 0,$$
 dP_1^1

$$J_{m+1}^{T}u_{m} + u_{m}^{2} + u_{m}u_{m-1}^{T} + x u_{m} + \gamma_{m} = 0, \qquad d\mathsf{P}_{1}^{2}$$

$$\gamma_m = m - \nu + (-1)^m \varepsilon, \quad u_m \in \operatorname{Mat}_n(\mathbb{C}), \quad x \nu, \, \varepsilon \in \mathbb{C}.$$

• They are results of a reduction of the matrix Volterra lattices for $u_m = u_m(x)$:

$$u_{m,x} = u_{m+1} u_m - u_m u_{m-1},$$
 VL¹

$$u_{m,x} = u_{m+1}^T u_m - u_m u_{m-1}^T.$$
 VL²

▶ The VL¹, VL² is equivalent to the compatibility condition of the given 2×2 matrix system

$$\begin{cases} \Psi_{m+1} = L_m(\lambda)\Psi_m, \\ \partial_x \Psi_m = M_m(\lambda)\Psi_m, \end{cases} \qquad \Psi_m = \Psi_m(x) := (\psi_m \ \psi_{m-1})^T. \tag{9}$$

The reduction can be extended for the Lax pairs and leads to the system

$$\begin{pmatrix} \partial_{\lambda} \Phi_m &= A_m(\lambda) \Phi_m, \\ \Phi_{m+1} &= B_m(\lambda) \Phi_m, \end{pmatrix} \qquad \Phi_m = \Phi_m(\lambda) \in \operatorname{Mat}_2(\mathbb{C}).$$
 (10)

• E.g., for the dP_1^1 , we have

L

$$A_m = \begin{pmatrix} \lambda^2 + \lambda(u_m + x) - \gamma_{m+1} & \lambda^2 u_m - \lambda(u_m u_{m-1} - \gamma_m) \\ -\lambda - u_m - u_{m-1} - x & -\lambda u_m - \gamma_m \end{pmatrix}, \quad B_m = \begin{pmatrix} \lambda & \lambda u_m \\ -1 & 0 \end{pmatrix}.$$
(11)

6 / 25

Discrete analogs for the P_1 equation [Adler, 2020]

$$u_{m+1}u_m + u_m^2 + u_m u_{m-1} + x u_m + \gamma_m = 0,$$
 dP_1^1

$${}^{T}_{m+1}u_{m} + u_{m}^{2} + u_{m}u_{m-1}^{T} + x u_{m} + \gamma_{m} = 0, \qquad \qquad d\mathsf{P}^{2}_{1}$$

$$\gamma_m = m - \nu + (-1)^m \varepsilon, \quad u_m \in \operatorname{Mat}_n(\mathbb{C}), \quad x \, \nu, \, \varepsilon \in \mathbb{C}.$$

• They are results of a reduction of the matrix Volterra lattices for $u_m = u_m(x)$:

$$u_{m,x} = u_{m+1} u_m - u_m u_{m-1},$$
 VL¹

$$u_{m,x} = u_{m+1}^T u_m - u_m u_{m-1}^T.$$
 VL²

• The VL¹, VL² is equivalent to the compatibility condition of the given 2×2 matrix system

$$\begin{cases} \Psi_{m+1} = L_m(\lambda)\Psi_m, \\ \partial_x \Psi_m = M_m(\lambda)\Psi_m, \end{cases} \qquad \Psi_m = \Psi_m(x) := (\psi_m \ \psi_{m-1})^T. \tag{9}$$

The reduction can be extended for the Lax pairs and leads to the system

$$\begin{cases} \partial_{\lambda} \Phi_m &= A_m(\lambda) \Phi_m, \\ \Phi_{m+1} &= B_m(\lambda) \Phi_m, \end{cases} \qquad \Phi_m = \Phi_m(\lambda) \in \mathsf{Mat}_2(\mathbb{C}). \tag{10}$$

• E.g., for the dP_1^1 , we have

L

$$A_m = \begin{pmatrix} \lambda^2 + \lambda(u_m + x) - \gamma_{m+1} & \lambda^2 u_m - \lambda(u_m u_{m-1} - \gamma_m) \\ -\lambda - u_m - u_{m-1} - x & -\lambda u_m - \gamma_m \end{pmatrix}, \quad B_m = \begin{pmatrix} \lambda & \lambda u_m \\ -1 & 0 \end{pmatrix}.$$
(11)

Some observations

- ► All considered matrix ODEs and O∆Es coincide with the well-known scalar analogs.
- All of them are the reductions of the integrable matrix PDEs or $P\Delta Es$.
- ► Thanks to the reductions, one can justify the integrability of the reduced matrix ODEs or O∆Es by using the Lax pairs.
- These systems might contain arbitrary matrix constants or even might be generalised to the fully non-commutative case.
- In the equations P₁, dP₁¹ and their Lax pairs we do not use the matrix setting explicitly. So, they can be extended to the case of an associative unital algebra A with a derivation.
- ln order to deal with the dP_1^2 , one needs to introduce an involution on \mathcal{A} .
- Regarding the discrete systems, it is natural to study continuous limits. Indeed, one can consider the change with the commutative parameter ε

$$z = \varepsilon m$$
 (12)

supplemented by the maps

$$u_m \mapsto u, \qquad u_{m+k} \mapsto u + k \varepsilon u' + \frac{1}{2} k^2 \varepsilon^2 u'' + O(\varepsilon^3).$$
 (13)

The latter must be chosen in such a way that the limit $\varepsilon
ightarrow 0$ exists.

Some observations

- ► All considered matrix ODEs and O∆Es coincide with the well-known scalar analogs.
- All of them are the reductions of the integrable matrix PDEs or $P\Delta Es$.
- ► Thanks to the reductions, one can justify the integrability of the reduced matrix ODEs or O∆Es by using the Lax pairs.
- These systems might contain arbitrary matrix constants or even might be generalised to the fully non-commutative case.
- In the equations P₁, dP₁¹ and their Lax pairs we do not use the matrix setting explicitly. So, they can be extended to the case of an associative unital algebra A with a derivation.
- ln order to deal with the dP_1^2 , one needs to introduce an involution on A.

Regarding the discrete systems, it is natural to study continuous limits. Indeed, one can consider the change with the commutative parameter ε

$$z = \varepsilon m$$
 (12)

supplemented by the maps

$$u_m \mapsto u, \qquad u_{m+k} \mapsto u + k \varepsilon u' + \frac{1}{2} k^2 \varepsilon^2 u'' + O(\varepsilon^3).$$
 (13)

The latter must be chosen in such a way that the limit arepsilon o 0 exists.

Some observations

- ► All considered matrix ODEs and O∆Es coincide with the well-known scalar analogs.
- All of them are the reductions of the integrable matrix PDEs or $P\Delta Es$.
- ► Thanks to the reductions, one can justify the integrability of the reduced matrix ODEs or O∆Es by using the Lax pairs.
- These systems might contain arbitrary matrix constants or even might be generalised to the fully non-commutative case.
- In the equations P₁, dP₁¹ and their Lax pairs we do not use the matrix setting explicitly. So, they can be extended to the case of an associative unital algebra A with a derivation.
- In order to deal with the dP_1^2 , one needs to introduce an involution on A.
- Regarding the discrete systems, it is natural to study continuous limits. Indeed, one can consider the change with the commutative parameter ε

$$z = \varepsilon m$$
 (12)

supplemented by the maps

$$u_m \mapsto u, \qquad u_{m+k} \mapsto u + k \varepsilon u' + \frac{1}{2} k^2 \varepsilon^2 u'' + O(\varepsilon^3).$$
 (13)

The latter must be chosen in such a way that the limit $\varepsilon \rightarrow 0$ exists.

Non-Abelian ODEs

Setting (1)

• Let G_i , i = 0, 1, 2, ... be a free group generated by the set $\bar{x}_i = \{x_{1,i}, x_{2,i}, ..., x_{N,i}\}$:

$$G_i = \langle x_{1,i}, x_{2,i}, \dots, x_{N,i} \rangle.$$
(14)

We set $x_{k,0} =: x_k$.

• Let A be a unital associative group algebra over the field \mathbb{C} (or any other field of *char* = 0):

$$\mathcal{A} = \bigoplus_{i \ge 0} \mathbb{C}G_i.$$
⁽¹⁵⁾

Definition 1. An involution $\tau : \mathcal{A} \to \mathcal{A}$ defining by

$$\tau(x_k) = x_k, \qquad \tau(PQ) = \tau(Q)\tau(P), \qquad P, Q \in \mathcal{A}$$
(16)

is called a *transposition*. Its action on $M = (m_{i,j}) \in Mat_n(\mathcal{A})$ is extended as follows

$$\tau(m_{i,j}) = (\tau(m_{j,i})). \tag{17}$$

Let z be a central element of A and all parameters α_i belong to the field. **Remark 1.** One can extend A in order to include z, α_i .

Example 1. Let N = 3 and $P = x_1 x_2^2 x_3$. Then

$$\tau(P) \equiv \tau \left(x_1 \, x_2^2 \, x_3 \right) = \tau(x_3) \, \tau(x_2)^2 \, \tau(x_1) = x_3 \, x_2^2 \, x_1. \tag{18}$$

Setting (2)

Remark 2. We identify the unit of A with the unit of the field \mathbb{C} .

Definition 2. A \mathbb{C} -linear map $d_z : \mathcal{A} \to \mathcal{A}$ satisfying the properties

$$d_z(\alpha_i) = 0, \qquad d_z(z) = 1, \qquad d_z(x_{k,i}) = x_{k,i+1},$$
 (19)

$$d_z(PQ) = d_z(P)Q + Pd_z(Q) \quad P, Q \in \mathcal{A}$$
⁽²⁰⁾

is called a *derivation* of A. We denote $d_z(x_k) = x'_k$, $d_z^2(x_k) = x''_k$, and so on. **Remark 3.** τ and d_z commute with each other.

Example 1. Consider N = 2 and $P = x_1 x_2^2 x_1$. Then $d_z(P)$ is

$$d_z(P) = d_z \left(x_1 \, x_2^2 \, x_1 \right) = x_1' \, x_2^2 \, x_1 + x_1 \, x_2' \, x_2 \, x_1 + x_1 \, x_2 \, x_2' \, x_1 + x_1 \, x_2^2 \, x_1'.$$
(21)

Example 2. Let N = 1. Find $d_z(x_1^{-1})$. Since $x_1 x_1^{-1} = x_1^{-1} x_1 = 1$, we have

$$d_{z}\left(x_{1}x_{1}^{-1}\right) = d_{z}\left(x_{1}\right)x_{1}^{-1} + x_{1}d_{z}\left(x_{1}^{-1}\right) \equiv d_{z}\left(1\right) = 0.$$
(22)

Therefore,

$$d_z\left(x_1^{-1}\right) = -x_1^{-1} x_1' x_1^{-1}.$$
(23)

Setting (2)

Remark 2. We identify the unit of A with the unit of the field \mathbb{C} .

Definition 2. A \mathbb{C} -linear map $d_z : \mathcal{A} \to \mathcal{A}$ satisfying the properties

$$d_z(\alpha_i) = 0, \qquad d_z(z) = 1, \qquad d_z(x_{k,i}) = x_{k,i+1},$$
 (19)

$$d_z(PQ) = d_z(P)Q + Pd_z(Q) \quad P, Q \in \mathcal{A}$$
⁽²⁰⁾

is called a *derivation* of A. We denote $d_z(x_k) = x'_k$, $d_z^2(x_k) = x''_k$, and so on. **Remark 3.** τ and d_z commute with each other.

Example 1. Consider N = 2 and $P = x_1 x_2^2 x_1$. Then $d_z(P)$ is

$$d_z(P) = d_z \left(x_1 \, x_2^2 \, x_1 \right) = x_1' \, x_2^2 \, x_1 + x_1 \, x_2' \, x_2 \, x_1 + x_1 \, x_2 \, x_2' \, x_1 + x_1 \, x_2^2 \, x_1'. \tag{21}$$

Example 2. Let N = 1. Find $d_z(x_1^{-1})$. Since $x_1 x_1^{-1} = x_1^{-1} x_1 = 1$, we have

$$d_{z}\left(x_{1} x_{1}^{-1}\right) = d_{z}\left(x_{1}\right) x_{1}^{-1} + x_{1} d_{z}\left(x_{1}^{-1}\right) \equiv d_{z}\left(1\right) = 0.$$
(22)

Therefore,

$$d_z\left(x_1^{-1}\right) = -x_1^{-1}x_1'x_1^{-1}.$$
(23)

Setting (2)

Remark 2. We identify the unit of A with the unit of the field \mathbb{C} .

Definition 2. A \mathbb{C} -linear map $d_z : \mathcal{A} \to \mathcal{A}$ satisfying the properties

$$d_z(\alpha_i) = 0, \qquad d_z(z) = 1, \qquad d_z(x_{k,i}) = x_{k,i+1},$$
 (19)

$$d_z(PQ) = d_z(P)Q + Pd_z(Q) \quad P, Q \in \mathcal{A}$$
⁽²⁰⁾

is called a *derivation* of A. We denote $d_z(x_k) = x'_k$, $d_z^2(x_k) = x''_k$, and so on. **Remark 3.** τ and d_z commute with each other.

Example 1. Consider N = 2 and $P = x_1 x_2^2 x_1$. Then $d_z(P)$ is

$$d_z(P) = d_z \left(x_1 \, x_2^2 \, x_1 \right) = x_1' \, x_2^2 \, x_1 + x_1 \, x_2' \, x_2 \, x_1 + x_1 \, x_2 \, x_2' \, x_1 + x_1 \, x_2^2 \, x_1'. \tag{21}$$

Example 2. Let N = 1. Find $d_z(x_1^{-1})$. Since $x_1 x_1^{-1} = x_1^{-1} x_1 = 1$, we have

$$d_{z}\left(x_{1} x_{1}^{-1}\right) = d_{z}\left(x_{1}\right) x_{1}^{-1} + x_{1} d_{z}\left(x_{1}^{-1}\right) \equiv d_{z}\left(1\right) = 0.$$
(22)

Therefore,

$$d_z\left(x_1^{-1}\right) = -x_1^{-1} x_1' x_1^{-1}.$$
(23)

Main definition

Definition 3. A set of relations of the form

 $d_z(x_k) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N$ (24)

we call a system of non-abelian ODEs. If for some k the element F_k depends on z explicitly, the system is non-autonomous, otherwise – autonomous.

Remark 4. The system (24) is a non-abelian generalization of a system of first order ODEs. It is also easy to introduce a non-abelian analog for a system of the higher order ODEs.

Remark 5. Note that we can introduce a set of derivations d_{z_1} , d_{z_2} , Then, the system it is easy to define a system of non-abelian PDEs just by considering different d_{z_l} in (24).

Example 3. Let N = 1 in (24). Then the following equations

$$x'_1 = x_1, \qquad x'_1 = z x_1$$
 (25)

are autonomous and non-autonomous, respectively. These equations are invariant under the au-action, since, for instance,

$$\tau(x_1') = (\tau(x_1))' = x_1' \equiv \tau(z \, x_1) = \tau(x_1) \, \tau(z) = x_1 \, z = z \, x_1.$$
(26)

Main definition

Definition 3. A set of relations of the form

 $d_z(x_k) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N$ (24)

we call a system of non-abelian ODEs. If for some k the element F_k depends on z explicitly, the system is non-autonomous, otherwise – autonomous.

Remark 4. The system (24) is a non-abelian generalization of a system of first order ODEs. It is also easy to introduce a non-abelian analog for a system of the higher order ODEs.

Remark 5. Note that we can introduce a set of derivations d_{z_1} , d_{z_2} , Then, the system it is easy to define a system of non-abelian PDEs just by considering different d_{z_l} in (24).

Example 3. Let N = 1 in (24). Then the following equations

$$x'_1 = x_1, \qquad x'_1 = z x_1$$
 (25)

are autonomous and non-autonomous, respectively. These equations are invariant under the au-action, since, for instance,

$$\tau(x_1') = (\tau(x_1))' = x_1' \equiv \tau(z \, x_1) = \tau(x_1) \, \tau(z) = x_1 \, z = z \, x_1.$$
(26)

First integrals (1)

$$d_z(x_k) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N.$$
(24)

Definition 4. An element $I \in A$ is a *first integral* for system (24) if

$$d_z(I) = 0. \tag{27}$$

Example 4. Consider N = 2 and set $I = x_1 x_2 - x_2 x_1$. For the system

$$\begin{cases} x_1' = x_1 x_2 x_1, \\ x_2' = -x_2 x_1 x_2 \end{cases}$$
(28)

the element I is a first integral:

$$d_z(I) = x'_1 x_2 + x_1 x'_2 - x'_2 x_1 - x_2 x'_1 = x_1 x_2 x_1 x_2 - x_1 x_2 x_1 x_2 + x_2 x_1 x_2 x_1 - x_2 x_1 x_2 x_1 = 0,$$
(29)

while for the system

$$\begin{cases} x_1' = x_1^2 x_2, \\ x_2' = -x_1 x_2^2 \end{cases}$$
(30)

we have

$$d_z(l) = x'_1 x_2 + x_1 x'_2 - x'_2 x_1 - x_2 x'_1 = x_1^2 x_2^2 - x_1^2 x_2^2 + x_1 x_2^2 x_1 - x_2 x_1^2 x_2 = x_1 x_2^2 x_1 - x_2 x_1^2 x_2 \neq 0. \quad (= 0 \text{ up to } [x_1, x_2])$$
(31)

First integrals (1)

$$d_z(x_k) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N.$$
(24)

Definition 4. An element $I \in A$ is a *first integral* for system (24) if

$$d_z(I) = 0. \tag{27}$$

Example 4. Consider N = 2 and set $I = x_1 x_2 - x_2 x_1$. For the system

$$\begin{cases} x_1' = x_1 x_2 x_1, \\ x_2' = -x_2 x_1 x_2 \end{cases}$$
(28)

the element I is a first integral:

$$d_z(I) = x'_1 x_2 + x_1 x'_2 - x'_2 x_1 - x_2 x'_1 = x_1 x_2 x_1 x_2 - x_1 x_2 x_1 x_2 + x_2 x_1 x_2 x_1 - x_2 x_1 x_2 x_1 = 0,$$
(29)

while for the system

$$\begin{cases} x_1' = x_1^2 x_2, \\ x_2' = -x_1 x_2^2 \end{cases}$$
(30)

we have

$$d_{z}(I) = x'_{1} x_{2} + x_{1} x'_{2} - x'_{2} x_{1} - x_{2} x'_{1} = x_{1}^{2} x_{2}^{2} - x_{1}^{2} x_{2}^{2} + x_{1} x_{2}^{2} x_{1} - x_{2} x_{1}^{2} x_{2}$$

$$= x_{1} x_{2}^{2} x_{1} - x_{2} x_{1}^{2} x_{2} \neq 0. \quad (= 0 \text{ up to } [x_{1}, x_{2}])$$
(31)

First integrals (1)

$$d_z(x_k) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N.$$
(24)

Definition 4. An element $I \in A$ is a *first integral* for system (24) if

$$d_z(I) = 0. \tag{27}$$

Example 4. Consider N = 2 and set $I = x_1 x_2 - x_2 x_1$. For the system

$$\begin{cases} x_1' = x_1 x_2 x_1, \\ x_2' = -x_2 x_1 x_2 \end{cases}$$
(28)

the element I is a first integral:

$$d_z(I) = x'_1 x_2 + x_1 x'_2 - x'_2 x_1 - x_2 x'_1 = x_1 x_2 x_1 x_2 - x_1 x_2 x_1 x_2 + x_2 x_1 x_2 x_1 - x_2 x_1 x_2 x_1 = 0,$$
(29)

while for the system

$$\begin{cases} x_1' = x_1^2 x_2, \\ x_2' = -x_1 x_2^2 \end{cases}$$
(30)

we have

$$d_z(I) = x'_1 x_2 + x_1 x'_2 - x'_2 x_1 - x_2 x'_1 = x_1^2 x_2^2 - x_1^2 x_2^2 + x_1 x_2^2 x_1 - x_2 x_1^2 x_2 = x_1 x_2^2 x_1 - x_2 x_1^2 x_2 \neq 0. \quad (= 0 \text{ up to } [x_1, x_2])$$
(31)

First integrals (2)

$$d_z(x_k) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N.$$
(24)

Definition 5. If $P - Q \in [\mathcal{A}, \mathcal{A}]$ for $P, Q \in \mathcal{A}$, then we write $P \sim Q$. **Example 5.** $x_1 x_2^2 x_1 \sim x_2 x_1^2 x_2$.

Definition 6. A class of $P \in \mathcal{A}$ in the space $\mathcal{A}/[\mathcal{A}, \mathcal{A}]$ is denoted by Tr P.

Definition 7. An element $I \in A$ is a *first trace-integral* for system (24) if

$$d_z \left(\operatorname{Tr} I \right) = 0. \tag{32}$$

Example 6. Under Example 4, the element $I = x_1 x_2 - x_2 x_1$ is a trivial trace-integral for both systems (moreover, for any non-abelian system), since $I \sim 0$.

Remark 6. The trace-integrals are necessary for introducing a non-abelian Hamiltonian formalism. We will not consider such a formalism in this series of lectures. For more details, see the original paper [Kontsevich, 1993] where this formalism was introduced for the first time. See also [Olver and Sokolov, 1998] and [Mikhailov and Sokolov, 2000].

Lax pairs (1)

$d_z(x_k) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1,$, <i>N</i> . (2	24)
---	-----------------	-----

▶ In addition to d_z , consider a derivation d_λ and $\lambda \in \mathcal{Z}(\mathcal{A})$ such that

 $d_{\lambda}(\lambda) = 1,$ $d_{\lambda}(z) = 0,$ $d_{\lambda}(\alpha_i) = 0,$ $d_{\lambda}(x_k) = 0.$ (33)

The parameter λ is a spectral parameter.

• Let $A = A(\lambda, z)$, $B = B(\lambda, z)$ and $L = L(\lambda, z)$, $M = M(\lambda, z)$ be $n \times n$ matrices over A.

Definition 8. If the non-autonomous system (24) is equivalent to the equation

$$d_z \mathbf{A} - d_\lambda \mathbf{B} = \mathbf{B} \mathbf{A} - \mathbf{A} \mathbf{B},\tag{34}$$

then the matrices A, B and condition (34) are called an *isomonodromic Lax pair* and an *isomonodromic representation* for system (24).

Definition 9. If the autonomous system (24) is equivalent to the equation

$$d_z \mathsf{L} = \mathsf{M} \mathsf{L} - \mathsf{L} \mathsf{M}, \tag{35}$$

then the matrices L, M and condition (35) are called an *isospectral Lax pair* and a *Lax equation* for system (24).

Remark 7. The existence of a Lax pair is invariant under the τ -action. Note that the matrices change as follows

 $A\mapsto -A, \qquad B\mapsto -B; \qquad \qquad L\mapsto L, \qquad M\mapsto -M. \tag{36}$

Lax pairs (2)

Example 7. Let N = 2. The system

$$\begin{cases} x_1' = x_1 x_2 x_1, \\ x_2' = -x_2 x_1 x_2 \end{cases}$$
(37)

has the following isospectral Lax pair

$$\mathsf{L} = \begin{pmatrix} 0 & -x_1 \\ -x_2 x_1 x_2 & 0 \end{pmatrix} \lambda^{-1} + \begin{pmatrix} x_2 & -1 \\ x_2^2 & -x_2 \end{pmatrix} \lambda^{-2}, \quad \mathsf{M} = \frac{1}{2} \begin{pmatrix} x_1 x_2 & -x_1 \\ -x_2 x_1 x_2 & -x_2 x_1 \end{pmatrix}.$$
(38)

Definition 10. A non-autonomous system turns to be autonomous by replacing z with $t \in \mathcal{Z}(\mathcal{A})$ in all right-hand sides F_k and assuming $d_z(t) = 0$. We call this procedure an *autonomization*.

Proposition 1. [Bobrova, 2023] If a non-autonomous system has an isomonodromic Lax pair, then the corresponding autonomous system has an isospectral Lax pair.

Example 8. An autonomous version of the P₁ system

$$\begin{cases} u' = v, \\ v' = 6u^2 + z, \end{cases} \Leftrightarrow \qquad u'' = 6u^2 + z$$
(39)

has the following isospectral Lax pair

$$\mathsf{L} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \lambda^2 + \begin{pmatrix} 0 & -2u \\ -2 & 0 \end{pmatrix} \lambda + \begin{pmatrix} v & 2u^2 + t \\ -2u & -v \end{pmatrix}, \ \mathsf{M} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \lambda + \begin{pmatrix} 0 & -2u \\ -1 & 0 \end{pmatrix}.$$
(40)

Remark 8. An autonomous version of the P_1 equation is solved in terms of the \wp -function.

Lax pairs (2)

Example 7. Let N = 2. The system

$$\begin{cases} x'_{1} = x_{1} x_{2} x_{1}, \\ x'_{2} = -x_{2} x_{1} x_{2} \end{cases}$$
(37)

has the following isospectral Lax pair

$$\mathsf{L} = \begin{pmatrix} 0 & -x_1 \\ -x_2 x_1 x_2 & 0 \end{pmatrix} \lambda^{-1} + \begin{pmatrix} x_2 & -1 \\ x_2^2 & -x_2 \end{pmatrix} \lambda^{-2}, \quad \mathsf{M} = \frac{1}{2} \begin{pmatrix} x_1 x_2 & -x_1 \\ -x_2 x_1 x_2 & -x_2 x_1 \end{pmatrix}.$$
(38)

Definition 10. A non-autonomous system turns to be autonomous by replacing z with $t \in \mathcal{Z}(\mathcal{A})$ in all right-hand sides F_k and assuming $d_z(t) = 0$. We call this procedure an *autonomization*.

Proposition 1. [Bobrova, 2023] If a non-autonomous system has an isomonodromic Lax pair, then the corresponding autonomous system has an isospectral Lax pair.

Example 8. An autonomous version of the P_1 system

$$\begin{cases} u' = v, \\ v' = 6u^2 + z, \end{cases} \Leftrightarrow \qquad u'' = 6u^2 + z$$
(39)

has the following isospectral Lax pair

$$\mathsf{L} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \lambda^2 + \begin{pmatrix} 0 & -2u \\ -2 & 0 \end{pmatrix} \lambda + \begin{pmatrix} v & 2u^2 + t \\ -2u & -v \end{pmatrix}, \ \mathsf{M} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \lambda + \begin{pmatrix} 0 & -2u \\ -1 & 0 \end{pmatrix}.$$
(40)

Remark 8. An autonomous version of the P_1 equation is solved in terms of the \wp -function.

Non-Abelian $O\Delta Es$

Setting and definitions (1)

► Let A be as before a unital associative group algebra over C:

$$\mathcal{A} = \bigoplus_{i \ge 0} \mathbb{C}G_i, \qquad \qquad i = 0, 1, 2, \dots,$$
(41)

where $G_i = \langle x_{1,i}, x_{2,i}, \ldots, x_{N,i} \rangle$.

• Instead of a derivation of A, we introduce a translation operator on A.

Definition 1. A homomorphism $T : A \to A$ satisfying the properties

$$T(z) = z,$$
 $T(\alpha_i) = f(\alpha_i),$ $T(x_{k,i}) = x_{k,i+1},$ (42)

where $f(\alpha_i)$ is a certain function, is called a *shift operator* on \mathcal{A} .

Definition 2. A set of relations of the form

$$T(x_{k,i}) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N$$
(43)

we call a discrete non-abelian system. It can be classified into three types:

- if $f(\alpha_i) = \alpha_i$ for any *i*, then (43) is autonomous;
- if $f(\alpha_i) = \alpha_i \pm 1$ for some *i*, then (43) is non-autonomous and of additive type (*d*);
- if $f(\alpha_i) = q^{\pm 1} \alpha_i$ for some *i*, then (43) is non-autonomous and of multiplicative type (q).

Remark 1. In abelian case, there exist discrete elliptic systems. We do not consider this case, since we are not aware of examples of such systems (yet).

Setting and definitions (2)

$$T(x_{k,i}) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N$$
(43)

Remark 2. Considering the notation

$$T^{m}(x_{k}) \equiv T(T \dots T(T(x_{k})) \dots) =: x_{k,m},$$
(44)

(43) can be rewritten in a difference form that we will call a system of non-abelian $O\Delta Es$.

Example 1. Let N = 1 in (43). Then the following equations

$$x_{m+1} = \alpha x_m, \qquad x_{m+1} = (\alpha + m) x_m, \qquad x_{m+1} = \alpha q^m x_m$$
 (45)

are autonomous and non-autonomous of additive and multiplicative type respectively.

Remark 3. A discrete dynamic might be considered as a map

$$\varphi: \mathcal{A}^N \to \mathcal{A}^N. \tag{46}$$

In particular, considering the precious example, we have for the autonomous system the map

$$\rho: \mathcal{A} \to \mathcal{A}, \qquad \qquad x \mapsto \alpha x, \qquad (47)$$

where $x := x_1$

Setting and definitions (2)

$$T(x_{k,i}) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N$$
 (43)

Remark 2. Considering the notation

$$T^{m}(x_{k}) \equiv T(T \dots T(T(x_{k})) \dots) =: x_{k,m},$$
(44)

(43) can be rewritten in a difference form that we will call a system of non-abelian $O\Delta Es$. Example 1. Let N = 1 in (43). Then the following equations

$$x_{m+1} = \alpha x_m, \qquad x_{m+1} = (\alpha + m) x_m, \qquad x_{m+1} = \alpha q^m x_m \tag{45}$$

are autonomous and non-autonomous of additive and multiplicative type respectively.

Remark 3. A discrete dynamic might be considered as a map

$$\varphi: \mathcal{A}^N \to \mathcal{A}^N. \tag{46}$$

In particular, considering the precious example, we have for the autonomous system the map

$$\varphi: \mathcal{A} \to \mathcal{A}, \qquad \qquad x \mapsto \alpha x, \qquad (47)$$

where $x := x_1$.

First integrals

$$T(x_{k,i}) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N$$
(43)

Definition 3. An element $I \in A$ is a *first integral* for system (43) if

$$\varphi(I) = I. \tag{48}$$

Example 4. Let N = 4. Consider the discrete map

$$y_{m+4} = y_{m+1} + y_{m+2} \left(y_m^{-1} - y_{m+3}^{-1} \right) y_{m+2}.$$
 (49)

The map $\varphi : \mathcal{A}^4 \to \mathcal{A}^4$

$$(y_1, y_2, y_3, y_4) \mapsto \left(y_2, y_3, y_4, y_2 + y_3 \left(y_1^{-1} - y_4^{-1}\right) y_3\right)$$
(50)

preserves the function

$$I = y_2 y_3^{-1} + y_3 y_1^{-1} + y_4 y_2^{-1}.$$
 (51)

Remark 4. (49) is a non-abelian analog [Bobrova et al., 2023] for the Somos-4 equation:

$$x_{m+4} x_m = x_{m+3} x_{m+1} + x_{m+2}^2.$$
(52)

In this case, $I = x_2^2(x_1x_3)^{-1} + x_3^2(x_2x_4)^{-1} + x_1x_4(x_2x_3)^{-1} + x_2x_3(x_1x_4)^{-1}$.

17 / 25

Lax pairs (1)

$$T(x_{k,i}) = F_k, \qquad F_k \in \mathcal{A}, \qquad k = 1, \dots, N$$
(43)

• λ , q are central elements of A.

Definition 4. If the autonomous system (43) is equivalent to the equation

$$\mathsf{L}_{m+1}(\lambda)\,\mathsf{M}_m(\lambda) = \mathsf{M}_m(\lambda)\,\mathsf{L}_m(\lambda),\tag{53}$$

then the matrices $L_m = L_m(\lambda)$, $M_m = M_m(\lambda)$ and condition (53) are called a *discrete Lax pair* and a *discrete Lax equation* for system (43).

Definition 5. If the non-autonomous d-system (43) is equivalent to the equation

$$d_{\lambda}B_{m}(\lambda) = A_{m+1}(\lambda)B_{m}(\lambda) - B_{m}(\lambda)A_{m}(\lambda), \qquad (54)$$

then the matrices $A_m = A_m(\lambda)$, $B_m = B_m(\lambda)$ and condition (54) are called an *isomonodromic d-pair* and an *isomonodromic d-representation* for system (43).

Definition 6. If the non-autonomous q-system (43) is equivalent to the equation

$$\mathsf{B}_{m}(q\,\lambda)\,\mathsf{A}_{m}(\lambda) = \mathsf{A}_{m+1}(\lambda)\,\mathsf{B}_{m}(\lambda),\tag{55}$$

then the matrices $A_m = A_m(\lambda)$, $B_m = B_m(\lambda)$ and condition (55) are called an *isomonodromic q-pair* and an *isomonodromic q-representation* for system (43).

Lax pairs (2)

$\mathsf{L}_{m+1}(\lambda)\,\mathsf{M}_m(\lambda)=\mathsf{M}_m(\lambda)\,\mathsf{L}_m(\lambda),$

(53)

Example 5. Let N = 4 and $a_m = y_{m+2} y_m^{-1}$, $b_m = y_m y_{m+1}^{-1}$. Consider the matrices

$$\mathsf{L}_{m} = \begin{pmatrix} \lambda \left(\lambda^{2} + b_{m+1} + a_{m+1} \right) & \left(\lambda^{2} + b_{m+1} \right) a_{m} \\ \lambda^{2} + b_{m} & \lambda a_{m} \end{pmatrix}, \qquad \mathsf{M}_{m} = \begin{pmatrix} \lambda & a_{m} \\ 1 & 0 \end{pmatrix}. \tag{56}$$

Then, the compatibility condition (53) is equivalent to the non-abelian Somos-4 equations:

$$y_{m+4} = y_{m+1} + y_{m+2} \left(y_m^{-1} - y_{m+3}^{-1} \right) y_{m+2}.$$
 (57)

Example 6. Let N = 5, $a_m = y_{m+3} y_m^{-1}$ and $b_m = y_m y_{m+1}^{-1}$. The matrices [Bobrova et al., 2023]

$$L_{m} = \begin{pmatrix} \lambda^{2} & \lambda (b_{m+2} + a_{m+1}) & b_{m+2} a_{m} \\ b_{m+1} & \lambda^{2} & \lambda a_{m} \\ \lambda & b_{m} & 0 \end{pmatrix}, \qquad M_{m} = \begin{pmatrix} 0 & \lambda & a_{m} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
(58)

leads to a non-abelian version of the Somos-5 equation:

$$y_{m+5} = y_{m+1} + y_{m+3} \left(y_m^{-1} - y_{m+4}^{-1} \right) y_{m+2}.$$
 (59)

19 / 25

Continuous limits

Commutative case

- Set $z = \varepsilon m$ and $x_m = x(z)$.
- ▶ Then, $x_{m+k} = x(z + \varepsilon k)$ and one can consider the formal Taylor series near $\varepsilon = 0$.
- ▶ Under the limit $\varepsilon \rightarrow 0$ (if it exists), the discrete equation becomes a continuous one.

Example 7. Consider the so-called q-P₁ equation

$$u_{m+1} u_m^2 u_{m-1} = \alpha q^m u_m + \beta. \qquad q-\mathsf{P}_1$$

After the change

$$u_m = 1 - \varepsilon^2 y(z), \qquad z = \varepsilon m, \qquad \alpha = 4, \qquad \beta = -3, \qquad q = 1 - \frac{1}{4} \varepsilon^5,$$
 (60)

we can take the limit $\varepsilon \rightarrow 0$ and, thus, it becomes the first Painlevé equation:

$$y'' = 6y^2 + z. (61)$$

Non-commutative case

- Similar to the commutative case, we set $z = \varepsilon m$ and $x_m = x$.
- ▶ Instead of the Taylor series, we use the change $x_{m+k} = x + k \varepsilon x' + \frac{1}{2}k^2 \varepsilon^2 x'' + O(\varepsilon^3)$.

Example 9. Consider a non-abelian analog for the q-P₁ [Bobrova et al., 2023]

$$u_{m+1}u_m - u_{m-1}u_{m-2} = \alpha_m u_{m-1}^{-1} - u_m^{-1} \alpha_{m-1}, \qquad \alpha_m = \alpha q^m \qquad q-P_1[1]$$

and a straightforward generalisation of change (60). Taking the limit arepsilon o 0, it turns to

$$y''' = 6 y y' + 6 y' y + 1,$$
(62)

or, after the integration, to the P_1 .

Continuous limits

Commutative case

- Set $z = \varepsilon m$ and $x_m = x(z)$.
- ▶ Then, $x_{m+k} = x(z + \varepsilon k)$ and one can consider the formal Taylor series near $\varepsilon = 0$.
- ▶ Under the limit $\varepsilon \rightarrow 0$ (if it exists), the discrete equation becomes a continuous one.

Example 7. Consider the so-called q-P₁ equation

$$u_{m+1} u_m^2 u_{m-1} = \alpha q^m u_m + \beta. \qquad q-P_1$$

After the change

$$u_m = 1 - \varepsilon^2 y(z), \qquad z = \varepsilon m, \qquad \alpha = 4, \qquad \beta = -3, \qquad q = 1 - \frac{1}{4} \varepsilon^5,$$
 (60)

we can take the limit $\varepsilon \rightarrow 0$ and, thus, it becomes the first Painlevé equation:

$$y'' = 6y^2 + z. (61)$$

Non-commutative case

- Similar to the commutative case, we set $z = \varepsilon m$ and $x_m = x$.
- ▶ Instead of the Taylor series, we use the change $x_{m+k} = x + k \varepsilon x' + \frac{1}{2}k^2 \varepsilon^2 x'' + O(\varepsilon^3)$.

Example 9. Consider a non-abelian analog for the q-P₁ [Bobrova et al., 2023]

$$u_{m+1}u_m - u_{m-1}u_{m-2} = \alpha_m u_{m-1}^{-1} - u_m^{-1} \alpha_{m-1}, \qquad \alpha_m = \alpha q^m \qquad q^{-1} P_1[1]$$

and a straightforward generalisation of change (60). Taking the limit $\varepsilon \to 0$, it turns to

$$y''' = 6 y y' + 6 y' y + 1,$$
 (62)

or, after the integration, to the P_1 .

Methods & Examples

Statement of the problem

The matrix P₁ equation

$$y'' = 6y^2 + z \mathbb{I} + a,$$
 $y(z), a \in Mat_n(\mathbb{C}),$ $z \in \mathbb{C}.$ P_1

How to detect non-abelian integrable analogs for the Painlevé equations?

Classification steps

- (i) Construct a criterion allowing to select a finite list of non-abelian analogs such that under the commutative reduction the generalizations coincide with a given Painlevé equation.
- (ii) For the obtained analogs find their zero-curvature representation.

Definition 1. A matrix or a non-abelian generalization of a Painlevé equation is integrable, if it satisfies a criterion from item (i) and admits the zero-curvature representation.

Some methods

 Matrix Painlevé-Kovalevskaya test ⇒ matP₁, matP₂ [Balandin and Sokolov, 1998]: matP₂: y" = 2y³ + zy + α I, matP₁: y" = 6y² + z I + a; y(z), a ∈ Mat_n(ℂ), z, α ∈ ℂ.
 Quantization of Poisson brackets ⇒ gP₂, gP₄, gP₅ [Nagoya et al., 2008]:

$${}_{\mathsf{q}}\mathsf{P}_{4}: \quad y'' = \frac{1}{2}y'\,y^{-1}\,y' + \frac{3}{2}y^{3} - 2zy^{2} + \left(\frac{1}{2}z^{2} + 1 - 2\alpha_{0} - \alpha_{1}\right)y - \frac{1}{2}\left(\alpha_{1}^{2} - \hbar^{2}\right)y^{-1},$$
$$y \in \mathcal{A}_{\mathbb{C}}, \quad z, \ \alpha_{i} \in \mathbb{C}.$$

► An infinite ncToda system \Rightarrow ncP₂ [Retakh and Rubtsov, 2010]: ncP₂: $y'' = 2y^3 + \frac{1}{2}zy + \frac{1}{2}yz + \alpha$, $y, z \in \Re_{\mathbb{F}}, \alpha \in \mathbb{F}$.

► Matrix Schlesinger deformation $\Rightarrow _{mat}P_6^H$ [Kawakami, 2015]. Also $_{mat}P_5^H$, $_{mat}P_4^H$, $_{mat}P_3^H(D_6)$, $_{mat}P_3^H(D_7)$, $_{mat}P_3^H(D_8)$, $_{mat}P_2^H$, $_{mat}P_1^H$ systems.

Recent results

- ▶ Matrix P₂ type systems with matrix coefficients [Adler and Sokolov, 2021].
- ▶ Matrix P₄ type systems with matrix coefficients [Bobrova and Sokolov, 2022].
- ► A fully non-commutative P₄ system [Bobrova et al., 2022].
- Hamiltonian non-abelian Painlevé type systems [Bobrova and Sokolov, 2023a].
- Non-abelian Painlevé systems with Okamoto integral [Bobrova and Sokolov, 2023b].
- A symmetry approach to non-abelian Painlevé systems [Bobrova and Sokolov, 2023c].
- Reductions of a non-abelian Hirota equation [Bobrova et al., 2023].

Non-Abelian Okamoto integrals [Bobrova and Sokolov, 2023b]

Description of the method

- ► Construct non-abelian ansatz for the auxiliary system and the Okamoto integral J.
- ▶ Require that the generalized Okamoto integral $J \in A$ should be a first integral of the system. This leads to the restrictions on the unknown coefficients.
- ► For a given (finite) list of non-abelian systems reconstruct non-abelian Painlevé systems:
 - (a) replace t by z,
 - (b) reconstruct f(z) in the system.

Example 1.

The commutative Hamiltonian P₂ system:

$$\begin{aligned} H &= -u^2 v + \frac{1}{2} v^2 - \kappa u - \frac{1}{2} z v, \\ \{u, v\} &= 1, \quad \{u, u\} = \{v, v\} = 0; \end{aligned} \begin{cases} u' &= -u^2 + v - \frac{1}{2} z, \qquad u(z), \ v(z), \\ v' &= 2uv + \kappa, \qquad z, \ \kappa \in \mathbb{C}. \end{aligned}$$

Non-abelian Okamoto integral:

$$J(u,v) = a_1 u^2 v + a_2 u v u + (-1 - a_1 - a_2) v u^2 + \frac{1}{2} v^2 - \kappa u - \frac{1}{2} t v.$$
(63)

Non-abelian autonomous system:

$$\begin{cases} u' = -u^2 + v - \frac{1}{2}t, \\ v' = 2vu + \beta[v, u] + \kappa, \end{cases} \quad \beta \in \mathbb{C}.$$
(64)

► $d_z(J(u,v)) = 0$ \iff $\beta = 0, a_1 = 0, a_2 = -1$ or $\beta = -2, a_1 = -1, a_2 = 0.$

2d dToda \rightarrow Somos- $N \rightarrow q$ -Painlevé

Commutative case

discrete Toda equations $\xrightarrow{[\text{Hone et al., 2017}]}$ Somos-*N* equations [Hone and Inoue, 2014] discrete Painlevé equations.

Non-commutative case [Bobrova et al., 2023]

Consider the non-abelian 2ddTL:

$$\theta_{l+1,m+1,n} = \theta_{l,m,n+1} + \theta_{l+1,m,n} \left(\theta_{l,m,n}^{-1} - \theta_{l+1,m+1,n-1}^{-1} \right) \theta_{l,m+1,n}.$$
 2ddTL

One may introduce a non-autonomous constant into the 2ddTL by a scaling.

$$\theta_{l+1,m+1,n} = \alpha_{l,m,n} \theta_{l,m,n+1} + \theta_{l,m+1,n} \left(\theta_{l,m,n}^{-1} - \theta_{l+1,m+1,n-1}^{-1} \alpha_{l,m,n-1} \right) \theta_{l+1,m,n}, \\ \alpha_{l,m,n} = \alpha \, q^{k_1 l + k_2 m + k_3 n},$$
(65)

where lpha is a non-abelian constant parameter and $k_i, \ q$ are commutative ones.

▶ By a plane-wave reduction, (65) reduces to a non-abelian Somos-*N* like equation

$$y_{M+N} = \alpha_M y_{M+r} + y_{M+s} \left(y_M^{-1} - y_{M+N-r}^{-1} \alpha_{M-r} \right) y_{M+N-s}, \quad \alpha_M = \alpha q^M,$$

$$N \in \mathbb{N}_{>3}, \quad 1 \le r < s \le \left[\frac{N}{2} \right].$$
(66)

Let r = 1 and s = 2. Then, for even $N \ge 4$ and odd $N \ge 5$ consider the changes $u_M = y_{M+3} y_{M+2}^{-1}, \qquad u_M = y_{M+4} y_{M+2}^{-1}.$ (6)

They lead to q-P₁[n] and q-P₂[n] hierarchies, respectively.

2d dToda \rightarrow Somos- $N \rightarrow q$ -Painlevé

Commutative case

discrete Toda equations

[Hone et al., 2017] [Hone and Inoue, 2014]

Somos-N equations

discrete Painlevé equations.

Non-commutative case [Bobrova et al., 2023]

Consider the non-abelian 2ddTL:

$$\theta_{l+1,m+1,n} = \theta_{l,m,n+1} + \theta_{l+1,m,n} \left(\theta_{l,m,n}^{-1} - \theta_{l+1,m+1,n-1}^{-1} \right) \theta_{l,m+1,n}.$$
 2ddTL

One may introduce a non-autonomous constant into the 2ddTL by a scaling:

$$\theta_{l+1,m+1,n} = \alpha_{l,m,n} \theta_{l,m,n+1} + \theta_{l,m+1,n} \left(\theta_{l,m,n}^{-1} - \theta_{l+1,m+1,n-1}^{-1} \alpha_{l,m,n-1} \right) \theta_{l+1,m,n}, \\ \alpha_{l,m,n} = \alpha q^{k_1 l + k_2 m + k_3 n},$$
(65)

where α is a non-abelian constant parameter and k_i , q are commutative ones.

• By a plane-wave reduction, (65) reduces to a non-abelian Somos-N like equation:

$$y_{M+N} = \alpha_M y_{M+r} + y_{M+s} \left(y_M^{-1} - y_{M+N-r}^{-1} \alpha_{M-r} \right) y_{M+N-s}, \quad \alpha_M = \alpha q^M,$$

$$N \in \mathbb{N}_{>3}, \quad 1 \le r < s \le \left\lceil \frac{N}{2} \right\rceil.$$
(66)

► Let r = 1 and s = 2. Then, for even $N \ge 4$ and odd $N \ge 5$ consider the changes $u_M = y_{M+3} y_{M+2}^{-1}, \qquad u_M = y_{M+4} y_{M+2}^{-1}.$ (67)

They lead to q-P₁[n] and q-P₂[n] hierarchies, respectively.

A non-abelian q-P₁

Recall the non-abelian Somos-4 equation:

$$y_{M+4} = \alpha_M y_{M+1} + y_{M+2} \left(y_M^{-1} - y_{M+3}^{-1} \alpha_{M-1} \right) y_{M+2}.$$
 (68)

It can be rewritten as

$$y_{M+4}y_{M+2}^{-1} - y_{M+2}y_{M}^{-1} = \alpha_{M} y_{M+1}y_{M+2}^{-1} - y_{M+2}y_{M+3}^{-1} \alpha_{M-1}.$$
 (69)

• Consider the change $u_M = y_{M+3} y_{M+2}^{-1}$. Then, the latter becomes

$$u_{M+1}u_M - u_{M-1}u_{M-2} = \alpha_M u_{M-1}^{-1} - u_M^{-1} \alpha_{M-1}. \qquad q-P_1[1]$$

The second member of the hierarchy:

$$u_{M+3} u_{M+2} - u_{M-1} u_{M-2} = \alpha_M \ u_{M-1}^{-1} u_M^{-1} u_{M+1}^{-1} - u_M^{-1} u_{M+1}^{-1} u_{M+2}^{-1} \alpha_{M-1}. \qquad q-P_1[2]$$

Remark 1. In the abelian case, the q- $P_1[1]$ can be derived as follows. Let us take two q- P_1 :

$$u_{M+1} u_M^2 u_{M-1} = \beta + \alpha_M u_M, \qquad u_M u_{M-1}^2 u_{M-2} = \beta + \alpha_{M-1} u_{M-1}, \tag{70}$$

or, equivalently,

$$u_{M+1} u_M = \beta u_M^{-1} u_{M-1}^{-1} + \alpha_M u_{M-1}^{-1}, \qquad u_{M-1} u_{M-2} = \beta u_M^{-1} u_{M-1}^{-1} + \alpha_{M-1} u_M^{-1}.$$
(71)
en their difference leads to *a*-P₁[1].

A non-abelian q-P₁

Recall the non-abelian Somos-4 equation:

$$y_{M+4} = \alpha_M y_{M+1} + y_{M+2} \left(y_M^{-1} - y_{M+3}^{-1} \alpha_{M-1} \right) y_{M+2}.$$
 (68)

It can be rewritten as

$$y_{M+4}y_{M+2}^{-1} - y_{M+2}y_{M}^{-1} = \alpha_{M} y_{M+1}y_{M+2}^{-1} - y_{M+2}y_{M+3}^{-1} \alpha_{M-1}.$$
 (69)

• Consider the change $u_M = y_{M+3} y_{M+2}^{-1}$. Then, the latter becomes

$$u_{M+1}u_M - u_{M-1}u_{M-2} = \alpha_M u_{M-1}^{-1} - u_M^{-1} \alpha_{M-1}. \qquad q-P_1[1]$$

The second member of the hierarchy:

$$u_{M+3} u_{M+2} - u_{M-1} u_{M-2} = \alpha_M \ u_{M-1}^{-1} u_M^{-1} u_{M+1}^{-1} - u_M^{-1} u_{M+1}^{-1} u_{M+2}^{-1} \alpha_{M-1}. \qquad q-P_1[2]$$

Remark 1. In the abelian case, the q-P₁[1] can be derived as follows. Let us take two q-P₁:

$$u_{M+1} u_M^2 u_{M-1} = \beta + \alpha_M u_M, \qquad u_M u_{M-1}^2 u_{M-2} = \beta + \alpha_{M-1} u_{M-1}, \tag{70}$$

or, equivalently,

$$u_{M+1} u_M = \beta u_M^{-1} u_{M-1}^{-1} + \alpha_M u_{M-1}^{-1}, \qquad u_{M-1} u_{M-2} = \beta u_M^{-1} u_{M-1}^{-1} + \alpha_{M-1} u_M^{-1}.$$
(71)

Then their difference leads to $q-P_1[1]$.

Many thanks!

References I

[Ablowitz et al., 1980] Ablowitz, M. J., Ramani, A., and Segur, H. (1980). A connection between nonlinear evolution equations and ordinary differential equations of P-type. II. Journal of Mathematical Physics, 21(5):1006–1015.

[Adler, 2020] Adler, V. E. (2020).

Painlevé type reductions for the non-Abelian Volterra lattices. Journal of Physics A: Mathematical and Theoretical, 54(3):035204. arXiv:2010.09021.

[Adler and Sokolov, 2021] Adler, V. E. and Sokolov, V. V. (2021). On matrix Painlevé II equations. *Theoret. and Math. Phys.*, 207(2):188–201. arXiv:2012.05639.

[Balandin and Sokolov, 1998] Balandin, S. P. and Sokolov, V. V. (1998). On the Painlevé test for non-Abelian equations. *Physics letters A*, 246(3-4):267–272.

[Bobrova, 2023] Bobrova, I. (2023). Équations de Painlevé non abéliennes. PhD thesis, Reims.

[Bobrova et al., 2022] Bobrova, I., Retakh, V., Rubtsov, V., and Sharygin, G. (2022). A fully noncommutative analog of the Painlevé IV equation and a structure of its solutions. *Journal of Physics A: Mathematical and Theoretical*, 55(47):475205. arXiv:2205.05107.

References II

[Bobrova et al., 2023] Bobrova, I., Retakh, V., Rubtsov, V., and Sharygin, G. (2023). Non-Abelian discrete Toda chains and related lattices. *Physica D: Nonlinear Phenomena (under review)*. arXiv:2311.11124.

[Bobrova and Sokolov, 2023a] Bobrova, I. and Sokolov, V. (2023a). Classification of Hamiltonian non-abelian Painlevé type systems. *Journal of Nonlinear Mathematical Physics*, 30:646–662. arXiv:2209.00258.

[Bobrova and Sokolov, 2023b] Bobrova, I. and Sokolov, V. (2023b). Non-abelian Painlevé systems with generalized Okamoto integral.

In The Diverse World of PDEs: Algebraic and Cohomological Aspects, volume 789 of Contemporary Mathemaics, pages 41–76. American Mathematical Society. arXiv:2206.10580.

[Bobrova and Sokolov, 2023c] Bobrova, I. and Sokolov, V. (2023c). On classification of non-abelian Painlevé type systems. *Journal of Geometry and Physics*, 191:104885. arXiv:2303.10347.

[Bobrova and Sokolov, 2022] Bobrova, I. A. and Sokolov, V. V. (2022). On matrix Painlevé-4 equations. Nonlinearity, 35(12):6528. arXiv:2107.11680, arXiv:2110.12159.

References III

[Hone and Inoue, 2014] Hone, A. N. W. and Inoue, R. (2014). Discrete Painlevé equations from Y-systems. Journal of Physics A: Mathematical and Theoretical, 47(47):474007. arXiv:1911.03320.

[Hone et al., 2017] Hone, A. N. W., Kouloukas, T. E., and Ward, C. (2017). On reductions of the Hirota-Miwa equation. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 13:057. arXiv:1705.01094.

[Kawakami, 2015] Kawakami, H. (2015). Matrix Painlevé systems. Journal of Mathematical Physics, 56(3):033503.

[Kontsevich, 1993] Kontsevich, M. (1993).

Formal (non)-commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990–1992. Fields Institute Communications, Birkhäuser Boston, pages 173–187.

[Mikhailov and Sokolov, 2000] Mikhailov, A. V. and Sokolov, V. V. (2000). Integrable ODEs on associative algebras. Communications in Mathematical Physics, 211:231–251. arXiv:solv-int/9908004.

[Nagoya et al., 2008] Nagoya, H., Grammaticos, B., Ramani, A., et al. (2008). Quantum Painlevé equations: from Continuous to discrete. SIGMA. Symmetry. Integrability and Geometry: Methods and Applications, 4:051.

References IV

[Olver and Sokolov, 1998] Olver, P. J. and Sokolov, V. V. (1998). Integrable evolution equations on associative algebras. Communications in Mathematical Physics, 193(2):245–268.

[Olver and Wang, 2000] Olver, P. J. and Wang, J. P. (2000). Classification of integrable one-component systems on associative algebras. *Proceedings of the London Mathematical Society*, 81(3):566–586.

[Retakh and Rubtsov, 2010] Retakh, V. S. and Rubtsov, V. N. (2010). Noncommutative Toda Chains, Hankel Quasideterminants and Painlevé II Equation. Journal of Physics. A, Mathematical and Theoretical, 43(50):505204. arXiv:1007.4168.

[Wadati and Kamijo, 1974] Wadati, M. and Kamijo, T. (1974). On the extension of inverse scattering method. Progress of theoretical Physics, 52(2):397-414.

[Zakharov and Shabat, 1974] Zakharov, V. E. and Shabat, A. B. (1974).

A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I.

Functional Analysis and Its Applications, 8(3):43-53.