Noncommutative surfaces, clusters, and their symmetries

Noncommutative Integrable Systems
Nagoya, March 13, 2024

Noncommutative surfaces, clusters, and their symmetries

- A. Berenstein, V. Retakh, Noncommutative marked surfaces, Adv. Math. 328 (2018).
- A. Berenstein, M. Huang, V. Retakh, Noncommutative marked surfaces II: tagged triangulations, clusters, and their symmetries, in progress.

Noncommutative Integrable Systems

Nagoya, March 13, 2024

Noncommutative clusters, informal introduction

A noncommutative cluster structure on a graded \mathbb{Q}-algebra \mathcal{A} consists of a certain graded group $B r_{\mathcal{A}}$ together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid \mathcal{A}^{\times}(these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \triangleright_{ι} of $B r_{\mathcal{A}}$ on G for any ι such that:

Noncommutative clusters, informal introduction

A noncommutative cluster structure on a graded \mathbb{Q}-algebra \mathcal{A} consists of a certain graded group $B r_{\mathcal{A}}$ together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid \mathcal{A}^{\times}(these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \triangleright_{ι} of $B r_{\mathcal{A}}$ on G for any ι such that:

- The extensions $\iota: \mathbb{Q} G \rightarrow \mathcal{A}$ are injective and their images generate \mathcal{A} (and \mathcal{A} is a isomorphic to a noncommutative localization of $\mathbb{Q} G$).

Noncommutative clusters, informal introduction

A noncommutative cluster structure on a graded \mathbb{Q}-algebra \mathcal{A} consists of a certain graded group $B r_{\mathcal{A}}$ together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid \mathcal{A}^{\times}(these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \triangleright_{ι} of $B r_{\mathcal{A}}$ on G for any ι such that:

- The extensions $\iota: \mathbb{Q} G \rightarrow \mathcal{A}$ are injective and their images generate \mathcal{A} (and \mathcal{A} is a isomorphic to a noncommutative localization of $\mathbb{Q} G$).
- (monomial mutation) For any ι and ι^{\prime} we expect a (unique) automorphism $\mu_{\iota, \iota^{\prime}}$ of G which intertwines between ι and ι^{\prime} as well as between $B r_{\mathcal{A}^{-}}$-actions \triangleright_{ι} and $\triangleright_{\iota^{\prime}}$.
- For any cluster homomorphism $f: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ we expect a unique (up to conjugation) group homomorphism $f_{*}: G \rightarrow G^{\prime}$ so that the induced homomorphism $B r_{\mathcal{A}}^{f}:=\left\{T \in B r_{\mathcal{A}}: T\left(\operatorname{Ker} f_{*}\right)=\operatorname{Ker} f_{*}\right\} \rightarrow B r_{\mathcal{A}^{\prime}}$ is injective.

Noncommutative clusters, informal introduction

In many cases we expect a (noncommutative) Laurent Phenomenon:

- Given a cluster $\iota: G \hookrightarrow \mathcal{A}^{\times}$, for any cluster $\iota^{\prime}: G \hookrightarrow \mathcal{A}^{\times}$there is a submonoid $M_{\iota^{\prime}} \subset G$ generating G such that $\iota^{\prime}\left(M_{\iota^{\prime}}\right)$ is in the semiring $\mathbb{Z}_{\geq 0} \iota(G)$, moreover,

$$
\iota^{\prime}(m)=\iota\left(\mu_{\iota, \iota^{\prime}}(m)\right)+\text { lower terms in } \iota(G)
$$

for any $m \in M_{\iota^{\prime}}$.

Examples: Ordinary and quantum cluster structures

The localization \mathcal{A} of a (quantum) cluster algebra \mathcal{A}, determined by an $m \times n$ exchange matrix \tilde{B} (and compatible $m \times m$ skew-symmetric matrix Λ), by the set X of all of its cluster variables satisfies all of the above requirements with $G \cong \mathbb{Z}^{m}$ (or its central extension G_{q} in quantum case) so that $\mathbb{Q} G=\mathbb{Q}\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}\right]$ for a given cluster $\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathcal{A}. The well-known commutative/quantum Laurent Phenomenon asserts that the set of all (quantum) cluster variables belongs to the group algebra $\mathbb{Q} G$ which is an instance of its noncommutative counterpart stated above. In these cases, $B r_{\mathcal{A}}$ is essentially the group of symplectic transvections introduced by B. Shapiro, M. Shapiro, A. Vainshtein, A. Zelevinsky in 2000) and it is always a quotient of an appropriate Artin braid group.

Examples: Rank 2 noncommutative cluster structure

First, fix $r_{1}, r_{2}>0$ and let $\mathcal{A}_{r_{1}, r_{2}}$ be the subalgebra of the free skew field $\mathcal{F}_{2}=<y_{1}, y_{2}>$ generated by $z:=y_{2}^{-1} y_{1} y_{2} y_{1}^{-1}, y_{k}^{ \pm 1}, k \in \mathbb{Z}$, where y_{k} is given by $y_{k+1} z y_{k-1}=\left\{\begin{array}{ll}1+y_{k}^{r_{1}} & \text { if } k \text { is odd } \\ 1+y_{k}^{r_{2}} & \text { if } k \text { is even }\end{array}\right.$. In fact, $y_{k+1} z y_{k}=y_{k} y_{k+1}$.

Examples: Rank 2 noncommutative cluster structure

First, fix $r_{1}, r_{2}>0$ and let $\mathcal{A}_{r_{1}, r_{2}}$ be the subalgebra of the free skew field $\mathcal{F}_{2}=<y_{1}, y_{2}>$ generated by $z:=y_{2}^{-1} y_{1} y_{2} y_{1}^{-1}, y_{k}^{ \pm 1}, k \in \mathbb{Z}$, where y_{k} is given by $y_{k+1} z y_{k-1}=\left\{\begin{array}{ll}1+y_{k}^{r_{1}} & \text { if } k \text { is odd } \\ 1+y_{k}^{r_{2}} & \text { if } k \text { is even }\end{array}\right.$. In fact, $y_{k+1} z y_{k}=y_{k} y_{k+1}$. $G=F_{2}=\left\langle y_{1}, y_{2}\right\rangle$ the free group of rank 2 , a cluster $\iota_{k}: G \hookrightarrow \mathcal{A}_{r_{1}, r_{2}}$ is given by $y_{1} \mapsto y_{k}, y_{2} \mapsto y_{k+1}$. The $B r_{\mathcal{A}_{r_{1}, r_{2}}}=<T_{1}, T_{2}>$-action $\triangleright_{\iota_{1}}$ on G is given by

Examples: Rank 2 noncommutative cluster structure

First, fix $r_{1}, r_{2}>0$ and let $\mathcal{A}_{r_{1}, r_{2}}$ be the subalgebra of the free skew field $\mathcal{F}_{2}=<y_{1}, y_{2}>$ generated by $z:=y_{2}^{-1} y_{1} y_{2} y_{1}^{-1}, y_{k}^{ \pm 1}, k \in \mathbb{Z}$, where y_{k} is given by $y_{k+1} z y_{k-1}=\left\{\begin{array}{ll}1+y_{k}^{r_{1}} & \text { if } k \text { is odd } \\ 1+y_{k}^{r_{2}} & \text { if } k \text { is even }\end{array}\right.$. In fact, $y_{k+1} z y_{k}=y_{k} y_{k+1}$. $G=F_{2}=\left\langle y_{1}, y_{2}\right\rangle$ the free group of rank 2 , a cluster $\iota_{k}: G \hookrightarrow \mathcal{A}_{r_{1}, r_{2}}$ is given by $y_{1} \mapsto y_{k}, y_{2} \mapsto y_{k+1}$. The $B r_{\mathcal{A}_{r_{1}, r_{2}}}=<T_{1}, T_{2}>$-action $\triangleright_{\iota_{1}}$ on G is given by $T_{1}\left(y_{1}\right)=y_{1} y_{2}^{r_{2}}, T_{2}\left(y_{2}\right)=y_{1}^{-r_{1}} y_{2}$ with $\underbrace{T_{1} T_{2} T_{1} \cdots}_{m}=\underbrace{T_{2} T_{1} T_{2} \cdots}_{m}$ where $m=\left\{\begin{array}{ll}3 & \text { if } r_{1} r_{2}=1 \\ 4 & \text { if } r_{1} r_{2}=2 \\ 6 & \text { if } r_{1} r_{2}=3 \\ 0 & \text { if } r_{1} r_{2}>3\end{array}\right.$, which justifies the name.

Examples: Rank 2 noncommutative cluster structure

First, fix $r_{1}, r_{2}>0$ and let $\mathcal{A}_{r_{1}, r_{2}}$ be the subalgebra of the free skew field $\mathcal{F}_{2}=<y_{1}, y_{2}>$ generated by $z:=y_{2}^{-1} y_{1} y_{2} y_{1}^{-1}, y_{k}^{ \pm 1}, k \in \mathbb{Z}$, where y_{k} is given by $y_{k+1} z y_{k-1}=\left\{\begin{array}{ll}1+y_{k}^{r_{1}} & \text { if } k \text { is odd } \\ 1+y_{k}^{r_{2}} & \text { if } k \text { is even }\end{array}\right.$. In fact, $y_{k+1} z y_{k}=y_{k} y_{k+1}$. $G=F_{2}=\left\langle y_{1}, y_{2}\right\rangle$ the free group of rank 2, a cluster $\iota_{k}: G \hookrightarrow \mathcal{A}_{r_{1}, r_{2}}$ is given by $y_{1} \mapsto y_{k}, y_{2} \mapsto y_{k+1}$. The $B r_{\mathcal{A}_{r_{1}, r_{2}}}=<T_{1}, T_{2}>$-action $\triangleright_{\iota_{1}}$ on G is given by $T_{1}\left(y_{1}\right)=y_{1} y_{2}^{r_{2}}, T_{2}\left(y_{2}\right)=y_{1}^{-r_{1}} y_{2}$ with $\underbrace{T_{1} T_{2} T_{1} \cdots}_{m}=\underbrace{T_{2} T_{1} T_{2} \cdots}_{m}$
where $m=\left\{\begin{array}{ll}3 & \text { if } r_{1} r_{2}=1 \\ 4 & \text { if } r_{1} r_{2}=2 \\ 6 & \text { if } r_{1} r_{2}=3 \\ 0 & \text { if } r_{1} r_{2}>3\end{array}\right.$, which justifies the name.
The noncommutative Laurent Phenomenon is the embeddings $\iota_{k}: \mathbb{Q} G \hookrightarrow \mathcal{A}_{r_{1}, r_{2}}$ for all k whose image contains all y_{n}.

Main example: noncommutative polygon

\mathcal{A}_{n} is generated by $x_{i j}^{ \pm 1}$ for distinct $i, j \in[1, n]=\{1, \ldots, n\}$ subject to

Main example: noncommutative polygon

\mathcal{A}_{n} is generated by $x_{i j}^{ \pm 1}$ for distinct $i, j \in[1, n]=\{1, \ldots, n\}$ subject to

- (Triangle relations) $x_{i j} x_{k j}^{-1} x_{k i}=x_{i k} x_{j k}^{-1} x_{j i}$ for $i, j, k \in[1, n]$

Main example: noncommutative polygon

\mathcal{A}_{n} is generated by $x_{i j}^{ \pm 1}$ for distinct $i, j \in[1, n]=\{1, \ldots, n\}$ subject to

- (Triangle relations) $x_{i j} x_{k j}^{-1} x_{k i}=x_{i k} x_{j k}^{-1} x_{j i}$ for $i, j, k \in[1, n]$
- (Ptolemy relations) $x_{l j}=x_{l k} x_{i k}^{-1} x_{i j}+x_{l i} x_{k i}^{-1} x_{k j}$ for $i, j, k, l \in[1, n]$ in a cyclic order.

Main example: noncommutative polygon

\mathcal{A}_{n} is generated by $x_{i j}^{ \pm 1}$ for distinct $i, j \in[1, n]=\{1, \ldots, n\}$ subject to

- (Triangle relations) $x_{i j} x_{k j}^{-1} x_{k i}=x_{i k} x_{j k}^{-1} x_{j i}$ for $i, j, k \in[1, n]$
- (Ptolemy relations) $x_{l j}=x_{l k} x_{i k}^{-1} x_{i j}+x_{l i} x_{k i}^{-1} x_{k j}$ for $i, j, k, l \in[1, n]$ in a cyclic order.

The algebra admits an anti-involution given by $\bar{x}_{i j}=x_{j i}$.

Main example: noncommutative polygon

\mathcal{A}_{n} is generated by $x_{i j}^{ \pm 1}$ for distinct $i, j \in[1, n]=\{1, \ldots, n\}$ subject to

- (Triangle relations) $x_{i j} x_{k j}^{-1} x_{k i}=x_{i k} x_{j k}^{-1} x_{j i}$ for $i, j, k \in[1, n]$
- (Ptolemy relations) $x_{l j}=x_{l k} x_{i k}^{-1} x_{i j}+x_{l i} x_{k i}^{-1} x_{k j}$ for $i, j, k, l \in[1, n]$ in a cyclic order.

The algebra admits an anti-involution given by $\bar{x}_{i j}=x_{j i}$.
Clusters are labeled by triangulations Δ of the n-gon.

Main example: noncommutative polygon

\mathcal{A}_{n} is generated by $x_{i j}^{ \pm 1}$ for distinct $i, j \in[1, n]=\{1, \ldots, n\}$ subject to

- (Triangle relations) $x_{i j} x_{k j}^{-1} x_{k i}=x_{i k} x_{j k}^{-1} x_{j i}$ for $i, j, k \in[1, n]$
- (Ptolemy relations) $x_{l j}=x_{l k} x_{i k}^{-1} x_{i j}+x_{l i} x_{k i}^{-1} x_{k j}$ for $i, j, k, l \in[1, n]$ in a cyclic order.

The algebra admits an anti-involution given by $\bar{x}_{i j}=x_{j i}$.
Clusters are labeled by triangulations Δ of the n-gon.
$G \cong F_{3 n-4}$ is free, we identify a noncommutative cluster ι_{Δ} for any Δ with its isomorphic image $\mathbb{T}_{\Delta}=<t_{i j},(i j) \in \Delta>$ subject to

$$
t_{i j} t_{k j}^{-1} t_{k i}=t_{i k} t_{j k}^{-1} t_{j i}
$$

for $i, j, k \in[1, n]$.

Main example: noncommutative polygon

\mathcal{A}_{n} is generated by $x_{i j}^{ \pm 1}$ for distinct $i, j \in[1, n]=\{1, \ldots, n\}$ subject to

- (Triangle relations) $x_{i j} x_{k j}^{-1} x_{k i}=x_{i k} x_{j k}^{-1} x_{j i}$ for $i, j, k \in[1, n]$
- (Ptolemy relations) $x_{l j}=x_{l k} x_{i k}^{-1} x_{i j}+x_{l i} x_{k i}^{-1} x_{k j}$ for $i, j, k, l \in[1, n]$ in a cyclic order.

The algebra admits an anti-involution given by $\bar{x}_{i j}=x_{j i}$.
Clusters are labeled by triangulations Δ of the n-gon.
$G \cong F_{3 n-4}$ is free, we identify a noncommutative cluster ι_{Δ} for any Δ with its isomorphic image $\mathbb{T}_{\Delta}=<t_{i j},(i j) \in \Delta>$ subject to

$$
t_{i j} t_{k j}^{-1} t_{k i}=t_{i k} t_{j k}^{-1} t_{j i}
$$

for $i, j, k \in[1, n]$.
$B r_{\mathcal{A}_{n}}$ is the ordinary braid group $B r_{n-2}$ on $n-2$ strands which acts on each \mathbb{T}_{Δ} by ${ }^{-}$-equivariant automorphisms via

Main example: noncommutative polygon

$$
T_{i k}\left(t_{\gamma}\right)= \begin{cases}t_{i j} t_{k j}^{-1} t_{k l} t_{i l}^{-1} t_{\gamma} & \text { if } \gamma=(i k) \\ t_{\gamma} t_{l i}^{-1} t_{l k} t_{j k}^{-1} t_{j i} & \text { if } \gamma=(k i) \\ t_{\gamma} & \text { otherwise }\end{cases}
$$

for any internal edge $(i k)$ of Δ where $(i j k l)$ is a cyclic quadrilateral containing $(i k)$ as a diagonal.

Main example: noncommutative polygon

$$
T_{i k}\left(t_{\gamma}\right)= \begin{cases}t_{i j} t_{k j}^{-1} t_{k l} t_{i l}^{-1} t_{\gamma} & \text { if } \gamma=(i k) \\ t_{\gamma} t_{l i}^{-1} t_{l k} t_{j k}^{1} t_{j i} & \text { if } \gamma=(k i) \\ t_{\gamma} & \text { otherwise }\end{cases}
$$

for any internal edge $(i k)$ of Δ where $(i j k l)$ is a cyclic quadrilateral containing (ik) as a diagonal.

Theorem

The group $B r_{\mathcal{A}_{n}}=B r_{n-2}$ has a presentation for each triangulation Δ of the n-gon: generators $T_{i k}=T_{k i}$ for all internal edges $(i k) \in \Delta$, relations:

Main example: noncommutative polygon

$$
T_{i k}\left(t_{\gamma}\right)= \begin{cases}t_{i j} t_{k j}^{-1} t_{k l} t_{i l}^{-1} t_{\gamma} & \text { if } \gamma=(i k) \\ t_{\gamma} t_{l i}^{-1} t_{l k} t_{j k}^{-1} t_{j i} & \text { if } \gamma=(k i) \\ t_{\gamma} & \text { otherwise }\end{cases}
$$

for any internal edge $(i k)$ of Δ where $(i j k l)$ is a cyclic quadrilateral containing ($i k$) as a diagonal.

Theorem

The group $B r_{\mathcal{A}_{n}}=B r_{n-2}$ has a presentation for each triangulation Δ of the n-gon: generators $T_{i k}=T_{k i}$ for all internal edges $(i k) \in \Delta$, relations:

$$
\begin{cases}T_{i j} T_{k \ell} T_{i j}=T_{k \ell} T_{i j} T_{k \ell} & \text { if }(i j) \text { and }(k \ell) \text { are sides of a triangle } \\ T_{i j} T_{j k} T_{k i} T_{i j}=T_{j k} T_{k i} T_{i j} T_{j k} & \text { if }(i j k) \text { is an internal triangle } \\ T_{i j} T_{k \ell}=T_{k \ell} T_{i j} & \text { otherwise }\end{cases}
$$

Main example: noncommutative polygon

If Δ is a triangulation of the hexagon as in the picture

Main example: noncommutative polygon

If Δ is a triangulation of the hexagon as in the picture

then $B r_{\mathcal{A}_{6}}=B r_{4}$ is generated by T_{13}, T_{15}, and T_{35} subject to $T_{13} T_{35} T_{13}=T_{35} T_{13} T_{35}, T_{35} T_{15} T_{35}=T_{15} T_{35} T_{15}, T_{35} T_{15} T_{35}=T_{15} T_{35} T_{15}$
and $T_{13} T_{15} T_{35} T_{13}=T_{15} T_{35} T_{13} T_{15}=T_{35} T_{13} T_{15} T_{35}$.

Main example: noncommutative polygon

A noncommutative angle $T_{i}^{j k} \in \mathcal{A}_{n}$ in a triangle $(i j k)$ at the vertex $i \in[1, n]$ is defined by $T_{i}^{j k}=x_{j i}^{-1} x_{j k} x_{i k}^{-1}$
This gives a new presentation of \mathcal{A}_{n} :

- (Triangle relations) $T_{i}^{j k}=T_{i}^{k j}$ for distinct i, j, k.

Main example: noncommutative polygon

A noncommutative angle $T_{i}^{j k} \in \mathcal{A}_{n}$ in a triangle $(i j k)$ at the vertex $i \in[1, n]$ is defined by $T_{i}^{j k}=x_{j i}^{-1} x_{j k} x_{i k}^{-1}$
This gives a new presentation of \mathcal{A}_{n} :

- (Triangle relations) $T_{i}^{j k}=T_{i}^{k j}$ for distinct i, j, k.
- (Ptolemy relations) $T_{i}^{j l}=T_{i}^{j k}+T_{i}^{k l}$ for i, j, k, l in a cyclic order.

Main example: noncommutative polygon

A noncommutative angle $T_{i}^{j k} \in \mathcal{A}_{n}$ in a triangle $(i j k)$ at the vertex $i \in[1, n]$ is defined by $T_{i}^{j k}=x_{j i}^{-1} x_{j k} x_{i k}^{-1}$
This gives a new presentation of \mathcal{A}_{n} :

- (Triangle relations) $T_{i}^{j k}=T_{i}^{k j}$ for distinct i, j, k.
- (Ptolemy relations) $T_{i}^{j l}=T_{i}^{j k}+T_{i}^{k l}$ for i, j, k, l in a cyclic order.

Main example: noncommutative polygon

A noncommutative angle $T_{i}^{j k} \in \mathcal{A}_{n}$ in a triangle $(i j k)$ at the vertex $i \in[1, n]$ is defined by $T_{i}^{j k}=x_{j i}^{-1} x_{j k} x_{i k}^{-1}$
This gives a new presentation of \mathcal{A}_{n} :

- (Triangle relations) $T_{i}^{j k}=T_{i}^{k j}$ for distinct i, j, k.
- (Ptolemy relations) $T_{i}^{j l}=T_{i}^{j k}+T_{i}^{k l}$ for i, j, k, l in a cyclic order.

Thus, the total noncommutative angle $T_{i} \in \mathcal{A}_{n}$ is well-defined at any vertex i and is equal $T_{i}^{i-1, i+1}$.

Main example: noncommutative polygon

A noncommutative angle $T_{i}^{j k} \in \mathcal{A}_{n}$ in a triangle $(i j k)$ at the vertex $i \in[1, n]$ is defined by $T_{i}^{j k}=x_{j i}^{-1} x_{j k} x_{i k}^{-1}$
This gives a new presentation of \mathcal{A}_{n} :

- (Triangle relations) $T_{i}^{j k}=T_{i}^{k j}$ for distinct i, j, k.
- (Ptolemy relations) $T_{i}^{j l}=T_{i}^{j k}+T_{i}^{k l}$ for i, j, k, l in a cyclic order.

Thus, the total noncommutative angle $T_{i} \in \mathcal{A}_{n}$ is well-defined at any vertex i and is equal $T_{i}^{i-1, i+1}$.
All T_{i} are in the image $\mathbb{Q} \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$ for any triangulation Δ of the n-gon, where $\iota_{\Delta}: \mathbb{T}_{\Delta} \rightarrow \mathcal{A}_{n}^{\times}$is given by $t_{\gamma} \mapsto x_{\gamma}, \gamma \in \Delta$.

Main example: noncommutative polygon

Theorem (Noncommutative Laurent Phenomenon)

$\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{n}$ is injective for any triangulation Δ of the n-gon and $x_{i j} \in \mathbb{Q} \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$ for any distinct $i, j \in[1, n]$. More precisely,

Main example: noncommutative polygon

Theorem (Noncommutative Laurent Phenomenon)
$\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{n}$ is injective for any triangulation Δ of the n-gon and $x_{i j} \in \mathbb{Q} \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$ for any distinct $i, j \in[1, n]$. More precisely,

$$
x_{i j}=\sum_{\mathbf{i}=\left(i_{1}, \ldots, i_{2 m}\right)} x_{\mathbf{i}} .
$$

where the summation is over all ($i j$)-admissible sequences \mathbf{i} in Δ, i.e.,

Main example: noncommutative polygon

Theorem (Noncommutative Laurent Phenomenon)

$\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{n}$ is injective for any triangulation Δ of the n-gon and $x_{i j} \in \mathbb{Q} \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$ for any distinct $i, j \in[1, n]$. More precisely,

$$
x_{i j}=\sum_{\mathbf{i}=\left(i_{1}, \ldots, i_{2 m}\right)} x_{\mathbf{i}}
$$

where the summation is over all $(i j)$-admissible sequences \mathbf{i} in Δ, i.e.,

- $i_{1}=i, i_{2 m}=j$ and $\left(i_{s}, i_{s+1}\right) \in \Delta$ for $s=1, \ldots, 2 m-1$;

Main example: noncommutative polygon

Theorem (Noncommutative Laurent Phenomenon)

$\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{n}$ is injective for any triangulation Δ of the n-gon and $x_{i j} \in \mathbb{Q} \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$ for any distinct $i, j \in[1, n]$. More precisely,

$$
x_{i j}=\sum_{\mathbf{i}=\left(i_{1}, \ldots, i_{2 m}\right)} x_{\mathbf{i}}
$$

where the summation is over all $(i j)$-admissible sequences \mathbf{i} in Δ, i.e.,

- $i_{1}=i, i_{2 m}=j$ and $\left(i_{s}, i_{s+1}\right) \in \Delta$ for $s=1, \ldots, 2 m-1$;
- an edge $\left(i_{s}, i_{s+1}\right)$ intersects (i, j) iff s is even;

Main example: noncommutative polygon

Theorem (Noncommutative Laurent Phenomenon)

$\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{n}$ is injective for any triangulation Δ of the n-gon and $x_{i j} \in \mathbb{Q} \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$ for any distinct $i, j \in[1, n]$. More precisely,

$$
x_{i j}=\sum_{\mathbf{i}=\left(i_{1}, \ldots, i_{2 m}\right)} x_{\mathbf{i}}
$$

where the summation is over all $(i j)$-admissible sequences \mathbf{i} in Δ, i.e.,

- $i_{1}=i, i_{2 m}=j$ and $\left(i_{s}, i_{s+1}\right) \in \Delta$ for $s=1, \ldots, 2 m-1$;
- an edge $\left(i_{s}, i_{s+1}\right)$ intersects (i, j) iff s is even;
- If $\mathbf{p}:=\left(i_{k}, i_{k+1}\right) \cap(i, j) \neq \emptyset$ and $\mathbf{q}:=\left(i_{\ell}, i_{\ell+1}\right) \cap(i j) \neq \emptyset$ for some $k<\ell$, then the point \mathbf{p} of $(i j)$ is closer to i than \mathbf{q}.

Main example: noncommutative polygon

Theorem (Noncommutative Laurent Phenomenon)

$\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{n}$ is injective for any triangulation Δ of the n-gon and $x_{i j} \in \mathbb{Q} \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$ for any distinct $i, j \in[1, n]$. More precisely,

$$
x_{i j}=\sum_{\mathbf{i}=\left(i_{1}, \ldots, i_{2 m}\right)} x_{\mathbf{i}}
$$

where the summation is over all $(i j)$-admissible sequences \mathbf{i} in Δ, i.e.,

- $i_{1}=i, i_{2 m}=j$ and $\left(i_{s}, i_{s+1}\right) \in \Delta$ for $s=1, \ldots, 2 m-1$;
- an edge $\left(i_{s}, i_{s+1}\right)$ intersects (i, j) iff s is even;
- If $\mathbf{p}:=\left(i_{k}, i_{k+1}\right) \cap(i, j) \neq \emptyset$ and $\mathbf{q}:=\left(i_{\ell}, i_{\ell+1}\right) \cap(i j) \neq \emptyset$ for some $k<\ell$, then the point \mathbf{p} of $(i j)$ is closer to i than \mathbf{q}.
and $x_{\mathbf{i}}:=x_{i_{1}, i_{2}} x_{i_{3}, i_{2}}^{-1} x_{i_{3}, i_{4}} \cdots x_{i_{2 m-1}, i_{2 m-2}}^{-1} x_{i_{2 m-1}, i_{2 m}} \in \iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$

Main example: noncommutative polygon

Example
(a) If $n=5$ and $\Delta=\{(1,3),(3,1),(1,4),(4,1) ;(i, i \pm 1) \mid i \in[1,5]\}$, then

$$
\begin{gathered}
x_{21}^{-1} x_{25} x_{15}^{-1}=x_{21}^{-1} x_{23} x_{13}^{-1}+x_{31}^{-1} x_{34} x_{14}^{-1}+x_{41}^{-1} x_{45} x_{15}^{-1} \\
x_{25}=x_{23} x_{13}^{-1} x_{15}+x_{21} x_{31}^{-1} x_{34} x_{14}^{-1} x_{15}+x_{21} x_{41}^{-1} x_{45}
\end{gathered}
$$

Main example: noncommutative polygon

Example
(a) If $n=5$ and $\Delta=\{(1,3),(3,1),(1,4),(4,1) ;(i, i \pm 1) \mid i \in[1,5]\}$, then

$$
\begin{gathered}
x_{21}^{-1} x_{25} x_{15}^{-1}=x_{21}^{-1} x_{23} x_{13}^{-1}+x_{31}^{-1} x_{34} x_{14}^{-1}+x_{41}^{-1} x_{45} x_{15}^{-1} \\
x_{25}=x_{23} x_{13}^{-1} x_{15}+x_{21} x_{31}^{-1} x_{34} x_{14}^{-1} x_{15}+x_{21} x_{41}^{-1} x_{45}
\end{gathered}
$$

(b) If $n=6$ and Δ is as in picture, then

$$
\begin{aligned}
x_{25}= & x_{23} x_{63}^{-1} x_{65}+x_{21} x_{31}^{-1} x_{36} x_{46}^{-1} x_{45}+x_{21} x_{31}^{-1} x_{34} x_{64}^{-1} x_{65} \\
& +x_{23} x_{13}^{-1} x_{16} x_{46}^{-1} x_{45}+x_{23} x_{13}^{-1} x_{16} x_{36}^{-1} x_{34} x_{64}^{-1} x_{65} .
\end{aligned}
$$

Main example: noncommutative polygon

Example
(a) If $n=5$ and $\Delta=\{(1,3),(3,1),(1,4),(4,1) ;(i, i \pm 1) \mid i \in[1,5]\}$, then

$$
\begin{gathered}
x_{21}^{-1} x_{25} x_{15}^{-1}=x_{21}^{-1} x_{23} x_{13}^{-1}+x_{31}^{-1} x_{34} x_{14}^{-1}+x_{41}^{-1} x_{45} x_{15}^{-1} \\
x_{25}=x_{23} x_{13}^{-1} x_{15}+x_{21} x_{31}^{-1} x_{34} x_{14}^{-1} x_{15}+x_{21} x_{41}^{-1} x_{45}
\end{gathered}
$$

(b) If $n=6$ and Δ is as in picture, then

$$
\begin{aligned}
x_{25}= & x_{23} x_{63}^{-1} x_{65}+x_{21} x_{31}^{-1} x_{36} x_{46}^{-1} x_{45}+x_{21} x_{31}^{-1} x_{34} x_{64}^{-1} x_{65} \\
& +x_{23} x_{13}^{-1} x_{16} x_{46}^{-1} x_{45}+x_{23} x_{13}^{-1} x_{16} x_{36}^{-1} x_{34} x_{64}^{-1} x_{65} .
\end{aligned}
$$

Main example: noncommutative polygon

Monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ given by

$$
t_{i j} \mapsto t_{\mathbf{i}^{l e f t}}
$$

for $\gamma \in \Delta^{\prime}$ where $\mathbf{i}^{l e f t}$ is the leftmost $(i j)$-admissible sequence in Δ. In particular, if Δ^{\prime} is obtained from Δ by flipping $(i k)$ to $(j l)$ in a
clockwise quadrilateral $(i j k l)$, then $\mu_{\Delta, \Delta^{\prime}}\left(t_{\gamma}\right)= \begin{cases}t_{j k} t_{i k}^{-1} t_{i l} & \text { if } \gamma=(j l) \\ t_{l i} t_{k i}^{-1} t_{k j} & \text { if } \gamma=(l j) \\ t_{\gamma} & \text { otherwise }\end{cases}$

Main example: noncommutative polygon

Monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ given by

$$
t_{i j} \mapsto t_{\mathbf{i}^{l e f t}}
$$

for $\gamma \in \Delta^{\prime}$ where $\mathbf{i}^{l e f t}$ is the leftmost $(i j)$-admissible sequence in Δ. In particular, if Δ^{\prime} is obtained from Δ by flipping $(i k)$ to $(j l)$ in a clockwise quadrilateral $(i j k l)$, then $\mu_{\Delta, \Delta^{\prime}}\left(t_{\gamma}\right)= \begin{cases}t_{j k} t_{i k}^{-1} t_{i l} & \text { if } \gamma=(j l) \\ t_{i l} t_{k i}^{-1} t_{k j} & \text { if } \gamma=(l j) \\ t_{\gamma} & \text { otherwise }\end{cases}$

Theorem

In this case, $\mu_{\Delta, \Delta^{\prime}} \circ \mu_{\Delta^{\prime}, \Delta}$ is an automorphism of \mathbb{T}_{Δ} equal $T_{i k} \in B r_{n-2}$. Otherwise, $\mu_{\Delta, \Delta^{\prime \prime}}=\mu_{\Delta, \Delta^{\prime}} \circ \mu_{\Delta^{\prime}, \Delta^{\prime \prime}}$ if $\operatorname{dist}\left(\Delta, \Delta^{\prime \prime}\right)=\operatorname{dist}\left(\Delta, \Delta^{\prime}\right)+\operatorname{dist}\left(\Delta^{\prime}, \Delta^{\prime \prime}\right)$

Noncommutative marked surfaces

To any such surface Σ (each boundary component must have at least one marked point, some orbifold points are allowed) we assign, in a functorial way, an algebra \mathcal{A}_{Σ} generated by x_{γ}, where γ runs over isotopy classes of directed curves between marked points, subject to

- Triangle relations in any cyclic triangle ($\gamma_{1}, \gamma_{2}, \gamma_{3}$)
- Ptolemy relations in any cyclic quadrilateral $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$

Noncommutative marked surfaces

To any such surface Σ (each boundary component must have at least one marked point, some orbifold points are allowed) we assign, in a functorial way, an algebra \mathcal{A}_{Σ} generated by x_{γ}, where γ runs over isotopy classes of directed curves between marked points, subject to

- Triangle relations in any cyclic triangle ($\gamma_{1}, \gamma_{2}, \gamma_{3}$)
- Ptolemy relations in any cyclic quadrilateral $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$

Similarly to \mathcal{A}_{n} (assigned to the unpunctured disk with n marked boundary points), define a noncommutative angle $T_{i}^{\gamma_{1}, \gamma_{2}}:=x_{\gamma_{1}}^{-1} x_{\bar{\gamma}_{3}} x_{\gamma_{2}}^{-1}$ formed by two sides of a cyclic triangle ($\gamma_{1}, \gamma_{2}, \gamma_{3}$) where γ_{1} is incoming to i and γ_{2} is outgoing from i (here $\bar{\gamma}$ is the oppositely directed γ).

Noncommutative marked surfaces

An equivalent presentation of \mathcal{A}_{Σ} :

- Angle at a vertex of any triangle is well-defined.
- Angles at any marked point are additive.

Noncommutative marked surfaces

An equivalent presentation of \mathcal{A}_{Σ} :

- Angle at a vertex of any triangle is well-defined.
- Angles at any marked point are additive.

This, in particular, allows to define the total angle T_{i} at any marked point. If i is a puncture, then T_{i} can be seen in any self-folded triangle around i : $T_{i}=x_{\gamma}^{-1} x_{\gamma^{\prime}} x_{\bar{\gamma}}^{-1}$ (in fact, $x_{\overline{\gamma^{\prime}}}=x_{\gamma^{\prime}}$ due to the triangle relations).

Noncommutative marked surfaces

An equivalent presentation of \mathcal{A}_{Σ} :

- Angle at a vertex of any triangle is well-defined.
- Angles at any marked point are additive.

This, in particular, allows to define the total angle T_{i} at any marked point. If i is a puncture, then T_{i} can be seen in any self-folded triangle around i :
$T_{i}=x_{\gamma}^{-1} x_{\gamma^{\prime}} x_{\bar{\gamma}}^{-1}$ (in fact, $x_{\overline{\gamma^{\prime}}}=x_{\gamma^{\prime}}$ due to the triangle relations).

Theorem

For any puncture i the assignments $x_{\gamma} \mapsto T_{i}^{\delta_{i, s(\gamma)}} x_{\gamma} T_{i}^{\delta_{i, t(\gamma)}}$ define an involutive automorphism φ_{i} of \mathcal{A}_{Σ}, where $s(\gamma)$ and $t(\gamma)$ are respectively the starting and terminating point of γ. Moreover, these automorphisms commute so that for any subset P of punctures the composition φ_{P} of all $\varphi_{i}, i \in P$ is well-defined.

Noncommutative marked surfaces

Using this, we can describe all noncommutative clusters in \mathcal{A}_{Σ}. First, for any triangulation Δ of Σ, we define the triangle group \mathbb{T}_{Δ} generated by $t_{\gamma}, \gamma \in \Delta$ subject to the triangle relations, define a natural embedding $\iota_{\Delta}: \mathbb{T}_{\Delta} \rightarrow \mathcal{A}_{\Sigma}^{\times}$, and establish the following

Noncommutative marked surfaces

Using this, we can describe all noncommutative clusters in \mathcal{A}_{Σ}. First, for any triangulation Δ of Σ, we define the triangle group \mathbb{T}_{Δ} generated by $t_{\gamma}, \gamma \in \Delta$ subject to the triangle relations, define a natural embedding $\iota_{\Delta}: \mathbb{T}_{\Delta} \rightarrow \mathcal{A}_{\Sigma}^{\times}$, and establish the following

Theorem (Noncommutative Laurent Phenomenon)

The extension $\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{\Sigma}$ is injective for any triangulation Δ of Σ and all x_{γ} belong to its image. More precisely, each x_{γ} can be uniquely expressed as a sum of elements of $\iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$.

Noncommutative marked surfaces

Using this, we can describe all noncommutative clusters in \mathcal{A}_{Σ}. First, for any triangulation Δ of Σ, we define the triangle group \mathbb{T}_{Δ} generated by $t_{\gamma}, \gamma \in \Delta$ subject to the triangle relations, define a natural embedding $\iota_{\Delta}: \mathbb{T}_{\Delta} \rightarrow \mathcal{A}_{\Sigma}^{\times}$, and establish the following

Theorem (Noncommutative Laurent Phenomenon)

The extension $\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{\Sigma}$ is injective for any triangulation Δ of Σ and all x_{γ} belong to its image. More precisely, each x_{γ} can be uniquely expressed as a sum of elements of $\iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$.

In fact, the total angles T_{i} are in the image of all ι_{Δ}.

Noncommutative marked surfaces

Using this, we can describe all noncommutative clusters in \mathcal{A}_{Σ}. First, for any triangulation Δ of Σ, we define the triangle group \mathbb{T}_{Δ} generated by $t_{\gamma}, \gamma \in \Delta$ subject to the triangle relations, define a natural embedding $\iota_{\Delta}: \mathbb{T}_{\Delta} \rightarrow \mathcal{A}_{\Sigma}^{\times}$, and establish the following

Theorem (Noncommutative Laurent Phenomenon)

The extension $\iota_{\Delta}: \mathbb{Q T}_{\Delta} \rightarrow \mathcal{A}_{\Sigma}$ is injective for any triangulation Δ of Σ and all x_{γ} belong to its image. More precisely, each x_{γ} can be uniquely expressed as a sum of elements of $\iota_{\Delta}\left(\mathbb{T}_{\Delta}\right)$.

In fact, the total angles T_{i} are in the image of all ι_{Δ}.
If Σ is punctured, twisting ι_{Δ} with with automorphisms φ_{P} gives rise to tagged noncommutative clusters $\iota_{\Delta 凶}$ which are labeled by tagged triangulations Δ^{\bowtie} of Σ together with the corresponding tagged noncommutative Laurent Phenomenon.

Noncommutative marked surfaces

Denote by $\Sigma_{n, k}$ the k times punctured disk with n boundary points. The following is the list of all tagged and untagged clusters for $\Sigma_{3,1}$.

Noncommutative marked surfaces

Denote by $\Sigma_{n, k}$ the k times punctured disk with n boundary points. The following is the list of all tagged and untagged clusters for $\Sigma_{3,1}$.

Noncommutative marked surfaces

If Σ is oriented, monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ defined similarly to $\mathcal{A}_{n}=\mathcal{A}_{\Sigma_{n, 0}}$, i.e., by assigning to any $t_{\gamma}, \gamma \in \Delta^{\prime}$, the leftmost γ-admissible sequence in Δ. Thus, all these groups are isomorphic to a canonical group \mathbb{T}_{Σ} (it is either free or 1-relator).

Noncommutative marked surfaces

If Σ is oriented, monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ defined similarly to $\mathcal{A}_{n}=\mathcal{A}_{\Sigma_{n, 0}}$, i.e., by assigning to any $t_{\gamma}, \gamma \in \Delta^{\prime}$, the leftmost γ-admissible sequence in Δ. Thus, all these groups are isomorphic to a canonical group \mathbb{T}_{Σ} (it is either free or 1-relator).
In particular, if Δ^{\prime} is obtained from Δ by flipping a single edge γ to γ^{\prime} in a clockwise quadrilateral, then $\mu_{\Delta, \Delta^{\prime}} \circ \mu_{\Delta^{\prime}, \Delta}$ is an automorphism T_{γ} of \mathbb{T}_{Δ}.

Noncommutative marked surfaces

If Σ is oriented, monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ defined similarly to $\mathcal{A}_{n}=\mathcal{A}_{\Sigma_{n, 0}}$, i.e., by assigning to any $t_{\gamma}, \gamma \in \Delta^{\prime}$, the leftmost γ-admissible sequence in Δ. Thus, all these groups are isomorphic to a canonical group \mathbb{T}_{Σ} (it is either free or 1-relator).
In particular, if Δ^{\prime} is obtained from Δ by flipping a single edge γ to γ^{\prime} in a clockwise quadrilateral, then $\mu_{\Delta, \Delta^{\prime}} \circ \mu_{\Delta^{\prime}, \Delta}$ is an automorphism T_{γ} of \mathbb{T}_{Δ}.
The automorphisms T_{γ} for internal (i.e., non-boundary) curves $\gamma \in \Delta$ define an action $\triangleright_{\iota_{\Delta}}$ of the group $B r_{\Sigma}:=B r_{\mathcal{A}_{\Sigma}}$ on \mathbb{T}_{Σ}.

Noncommutative marked surfaces

If Σ is oriented, monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ defined similarly to $\mathcal{A}_{n}=\mathcal{A}_{\Sigma_{n, 0}}$, i.e., by assigning to any $t_{\gamma}, \gamma \in \Delta^{\prime}$, the leftmost γ-admissible sequence in Δ. Thus, all these groups are isomorphic to a canonical group \mathbb{T}_{Σ} (it is either free or 1-relator).

In particular, if Δ^{\prime} is obtained from Δ by flipping a single edge γ to γ^{\prime} in a clockwise quadrilateral, then $\mu_{\Delta, \Delta^{\prime}} \circ \mu_{\Delta^{\prime}, \Delta}$ is an automorphism T_{γ} of \mathbb{T}_{Δ}.
The automorphisms T_{γ} for internal (i.e., non-boundary) curves $\gamma \in \Delta$ define an action $\triangleright_{\iota_{\Delta}}$ of the group $B r_{\Sigma}:=B r_{\mathcal{A}_{\Sigma}}$ on \mathbb{T}_{Σ}.

Theorem

- $B r_{\Sigma_{n, 1}}$ is (a quotient of) the Artin braid group $B r_{D_{n}}$ of type D_{n}.

Noncommutative marked surfaces

If Σ is oriented, monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ defined similarly to $\mathcal{A}_{n}=\mathcal{A}_{\Sigma_{n, 0}}$, i.e., by assigning to any $t_{\gamma}, \gamma \in \Delta^{\prime}$, the leftmost γ-admissible sequence in Δ. Thus, all these groups are isomorphic to a canonical group \mathbb{T}_{Σ} (it is either free or 1-relator).
In particular, if Δ^{\prime} is obtained from Δ by flipping a single edge γ to γ^{\prime} in a clockwise quadrilateral, then $\mu_{\Delta, \Delta^{\prime}} \circ \mu_{\Delta^{\prime}, \Delta}$ is an automorphism T_{γ} of \mathbb{T}_{Δ}.
The automorphisms T_{γ} for internal (i.e., non-boundary) curves $\gamma \in \Delta$ define an action $\triangleright_{\iota_{\Delta}}$ of the group $B r_{\Sigma}:=B r_{\mathcal{A}_{\Sigma}}$ on \mathbb{T}_{Σ}.

Theorem

- $B r_{\Sigma_{n, 1}}$ is (a quotient of) the Artin braid group $B r_{D_{n}}$ of type D_{n}.
- $B r_{\Sigma_{n, 2}}$ is (a quotient of) the affine Artin braid group $B r_{\hat{D}_{n+1}}$.

Noncommutative marked surfaces

If Σ is oriented, monomial mutation $\mu_{\Delta, \Delta^{\prime}}$ is an isomorphism $\mathbb{T}_{\Delta^{\prime}} \rightarrow \mathbb{T}_{\Delta}$ defined similarly to $\mathcal{A}_{n}=\mathcal{A}_{\Sigma_{n, 0}}$, i.e., by assigning to any $t_{\gamma}, \gamma \in \Delta^{\prime}$, the leftmost γ-admissible sequence in Δ. Thus, all these groups are isomorphic to a canonical group \mathbb{T}_{Σ} (it is either free or 1-relator).
In particular, if Δ^{\prime} is obtained from Δ by flipping a single edge γ to γ^{\prime} in a clockwise quadrilateral, then $\mu_{\Delta, \Delta^{\prime}} \circ \mu_{\Delta^{\prime}, \Delta}$ is an automorphism T_{γ} of \mathbb{T}_{Δ}.
The automorphisms T_{γ} for internal (i.e., non-boundary) curves $\gamma \in \Delta$ define an action $\triangleright_{\iota_{\Delta}}$ of the group $B r_{\Sigma}:=B r_{\mathcal{A}_{\Sigma}}$ on \mathbb{T}_{Σ}.

Theorem

- $B r_{\Sigma_{n, 1}}$ is (a quotient of) the Artin braid group $B r_{D_{n}}$ of type D_{n}.
- $B r_{\Sigma_{n, 2}}$ is (a quotient of) the affine Artin braid group $B r_{\hat{D}_{n+1}}$.
- Let $\Sigma_{p}^{q} \cong \Sigma_{q}^{p}$ be the unpunctured cylinder with p points on one boundary and q points on another. Then $B r_{\Sigma_{p}^{q}}$ is (a quotient of) the affine braid group $\hat{B} r_{p+q}$.

Noncommutative marked surfaces

In fact, \mathbb{T}_{Σ} is free iff Σ has a boundary or is a sphere with three punctures.

Example

If Σ is the torus, the Klein bottle, the real projective plane respectively with one, one, two punctures, then \mathbb{T}_{Σ} is generated by a, b, c, d, e subject to, respectively, the following relations:

Noncommutative marked surfaces

In fact, \mathbb{T}_{Σ} is free iff Σ has a boundary or is a sphere with three punctures.

Example

If Σ is the torus, the Klein bottle, the real projective plane respectively with one, one, two punctures, then \mathbb{T}_{Σ} is generated by a, b, c, d, e subject to, respectively, the following relations:

- for the torus with one puncture: $a b c d e=c b e d a$;

Noncommutative marked surfaces

In fact, \mathbb{T}_{Σ} is free iff Σ has a boundary or is a sphere with three punctures.

Example

If Σ is the torus, the Klein bottle, the real projective plane respectively with one, one, two punctures, then \mathbb{T}_{Σ} is generated by a, b, c, d, e subject to, respectively, the following relations:

- for the torus with one puncture: $a b c d e=c b e d a$;
- for the Klein bottle with one puncture: $a b c d c=e b e d a$;

Noncommutative marked surfaces

In fact, \mathbb{T}_{Σ} is free iff Σ has a boundary or is a sphere with three punctures.

Example

If Σ is the torus, the Klein bottle, the real projective plane respectively with one, one, two punctures, then \mathbb{T}_{Σ} is generated by a, b, c, d, e subject to, respectively, the following relations:

- for the torus with one puncture: $a b c d e=c b e d a$;
- for the Klein bottle with one puncture: $a b c d c=e b e d a$;
- for the real projective plane with two punctures: $a b c b c=e d e d a$.

Noncommutative marked surfaces

In fact, \mathbb{T}_{Σ} is free iff Σ has a boundary or is a sphere with three punctures.

Example

If Σ is the torus, the Klein bottle, the real projective plane respectively with one, one, two punctures, then \mathbb{T}_{Σ} is generated by a, b, c, d, e subject to, respectively, the following relations:

- for the torus with one puncture: $a b c d e=c b e d a$;
- for the Klein bottle with one puncture: $a b c d c=e b e d a$;
- for the real projective plane with two punctures: $a b c b c=e d e d a$.

We expect that $B r_{\Sigma}$ is a free group on 3 generators in these three cases.

Noncommutative integrable systems

Consider a noncommutative recursion (studied by Di Francesco and Kedem and independently by Kontsevich in 2011) for a given odd $k>0$:

Noncommutative integrable systems

Consider a noncommutative recursion (studied by Di Francesco and Kedem and independently by Kontsevich in 2011) for a given odd $k>0$:

$$
\begin{cases}U_{n-k} D U_{n}=C_{n}+U_{n-1} \bar{D} U_{n+1-k} & \text { if } n \text { is even } \\ U_{n} \bar{D} U_{n-k}=C_{n}+U_{n+1-k} D U_{n-1} & \text { if } n \text { is odd }\end{cases}
$$

for all $n \geq k+1$, where D, \bar{D}, and $C_{i}, i \in \mathbb{Z}_{>0}$ are free parameters with $C_{n+k-1}=C_{k-1}$ for $n \in \mathbb{Z}_{>0}$.

Noncommutative integrable systems

Consider a noncommutative recursion (studied by Di Francesco and Kedem and independently by Kontsevich in 2011) for a given odd $k>0$:

$$
\begin{cases}U_{n-k} D U_{n}=C_{n}+U_{n-1} \bar{D} U_{n+1-k} & \text { if } n \text { is even } \\ U_{n} \bar{D} U_{n-k}=C_{n}+U_{n+1-k} D U_{n-1} & \text { if } n \text { is odd }\end{cases}
$$

for all $n \geq k+1$, where D, \bar{D}, and $C_{i}, i \in \mathbb{Z}_{>0}$ are free parameters with $C_{n+k-1}=C_{k-1}$ for $n \in \mathbb{Z}_{>0}$.

Theorem

This recursion has a unique solution in the group algebra $\mathbb{Q} F_{2 k+1}$ of the free group $F_{2 k+1}$ freely generated by $D, \bar{D}, C_{1}, \ldots, C_{k-1}, U_{1}, \ldots, U_{k}$, more precisely, each U_{n} is a sum of elements of $F_{2 k+1}$.

Noncommutative integrable systems

Consider a noncommutative recursion (studied by Di Francesco and Kedem and independently by Kontsevich in 2011) for a given odd $k>0$: $\begin{cases}U_{n-k} D U_{n}=C_{n}+U_{n-1} \bar{D} U_{n+1-k} & \text { if } n \text { is even } \\ U_{n} \bar{D} U_{n-k}=C_{n}+U_{n+1-k} D U_{n-1} & \text { if } n \text { is odd }\end{cases}$ for all $n \geq k+1$, where D, \bar{D}, and $C_{i}, i \in \mathbb{Z}_{>0}$ are free parameters with $C_{n+k-1}=C_{k-1}$ for $n \in \mathbb{Z}_{>0}$.

Theorem

This recursion has a unique solution in the group algebra $\mathbb{Q} F_{2 k+1}$ of the free group $F_{2 k+1}$ freely generated by $D, \bar{D}, C_{1}, \ldots, C_{k-1}, U_{1}, \ldots, U_{k}$, more precisely, each U_{n} is a sum of elements of $F_{2 k+1}$.
Moreover, the elements H_{n} given by

$$
H_{n}:= \begin{cases}\bar{D} U_{n+1-k} U_{n}^{-1}+D U_{n+k-1} U_{n}^{-1} & \text { if } n \text { is even } \tag{1}\\ U_{n}^{-1} U_{n+1-k} D+U_{n}^{-1} U_{n+k-1} \bar{D} & \text { if } n \text { is odd }\end{cases}
$$

belong to $\mathbb{Z} F_{2 k+1}$ and do not depend on n (hence it is a discrete integral)

Noncommutative discrete integrable systems

The first assertion is a noncommutative Laurent Phenomenon for triangulations Δ_{n} of a cylinder Σ_{k-1}^{1} obtained by "Dehn twists" one from another.

The second assertion is that H_{n} is the total angle $T_{p} \in \mathcal{A}_{\Sigma_{r}^{1}}$ at the point p, it is additive and does not depend on Δ_{n}.

Noncommutative integrable systems

Consider another recursion (studied by Di Francesco in 2015)

$$
\begin{aligned}
& U_{i+1, j} A_{j} V_{j+1, i}=B_{i+1}^{-1}+U_{i+1, j+1} \bar{A}_{j} V_{j i}, \\
& V_{i+1, j} B_{j} U_{j+1, i}=A_{i+1}^{-1}+V_{i+1, j+1} \bar{B}_{j} U_{j i}
\end{aligned}
$$

$i, j \in \mathbb{Z}$ with $U_{i j} A_{j} V_{j+1, i}=U_{i, j+1} \bar{A}_{j} V_{i j}, \quad V_{i j} B_{j} U_{j+1, i}=V_{i, j+1} \bar{B}_{j} U_{i j}$.

Noncommutative integrable systems

Consider another recursion (studied by Di Francesco in 2015)

$$
\begin{aligned}
& U_{i+1, j} A_{j} V_{j+1, i}=B_{i+1}^{-1}+U_{i+1, j+1} \bar{A}_{j} V_{j i}, \\
& V_{i+1, j} B_{j} U_{j+1, i}=A_{i+1}^{-1}+V_{i+1, j+1} \bar{B}_{j} U_{j i}
\end{aligned}
$$

$i, j \in \mathbb{Z}$ with $U_{i j} A_{j} V_{j+1, i}=U_{i, j+1} \bar{A}_{j} V_{i j}, \quad V_{i j} B_{j} U_{j+1, i}=V_{i, j+1} \bar{B}_{j} U_{i j}$.

Theorem

This recursion has a (unique) solution in the group algebra $\mathbb{Q} T_{\infty}$ of the free group \mathbb{T}_{∞} freely generated by $A_{i}, \bar{A}_{i}, B_{i}, \bar{B}_{i}, U_{i i}, V_{i i}, U_{i, i+1}, i \in \mathbb{Z}$, more precisely, each $U_{i j}$ and $V_{i j}$ is a sum of elements of the group.

Noncommutative integrable systems

Consider another recursion (studied by Di Francesco in 2015)

$$
\begin{aligned}
& U_{i+1, j} A_{j} V_{j+1, i}=B_{i+1}^{-1}+U_{i+1, j+1} \bar{A}_{j} V_{j i}, \\
& V_{i+1, j} B_{j} U_{j+1, i}=A_{i+1}^{-1}+V_{i+1, j+1} \bar{B}_{j} U_{j i}
\end{aligned}
$$

$i, j \in \mathbb{Z}$ with $U_{i j} A_{j} V_{j+1, i}=U_{i, j+1} \bar{A}_{j} V_{i j}, \quad V_{i j} B_{j} U_{j+1, i}=V_{i, j+1} \bar{B}_{j} U_{i j}$.

Theorem

This recursion has a (unique) solution in the group algebra $\mathbb{Q} T_{\infty}$ of the free group \mathbb{T}_{∞} freely generated by $A_{i}, \bar{A}_{i}, B_{i}, \bar{B}_{i}, U_{i i}, V_{i i}, U_{i, i+1}, i \in \mathbb{Z}$, more precisely, each $U_{i j}$ and $V_{i j}$ is a sum of elements of the group. Moreover, the elements $H_{i j}^{ \pm} \in \operatorname{Frac}\left(\mathbb{Z T}_{\infty}\right)$ given by
$H_{i j}^{+}:=U_{j i}^{-1}\left(U_{j, i-1} A_{i-1}+U_{j, i+1} \bar{A}_{i}\right), H_{i j}^{-}:=V_{j i}^{-1}\left(V_{j, i-1} B_{i-1}+V_{j, i+1} \bar{B}_{i}^{-1}\right)$ belong to $\mathbb{Z T}_{\infty}$ and do not depend on j (i.e., are discrete integrals).

Noncommutative discrete integrable systems

The first assertion is a noncommutative Laurent Phenomenon for translation-invariant triangulations of an infinite strip Σ_{∞}.
The second assertion is that $H_{i j}^{ \pm}$are the total angles $T_{i+}, T_{i_{-}} \in \mathcal{A}_{\Sigma_{\infty}}$ on the upper and lover boundaries, they are additive and do not depend on the triangulations.

Noncommutative discrete integrable systems

These examples suggest the following general approach to constructing noncommutative discrete integrable systems. That is, such a system consists of a marked surface Σ, its automorphism $\tau: \Sigma: \rightarrow \Sigma$ permuting marked points, and a triangulation Δ so that the collection $\mathcal{T}=\left\{x_{\gamma} \in \mathcal{A}_{\Sigma}, \gamma \in \bigcup \tau^{k}(\Delta)\right\}$ evolves in "discrete time" $k \in \mathbb{Z}$ and for $k \in \mathbb{Z}$ each marked point p of Σ, the total noncommutative angle T_{p} is a discrete integral. The noncommutative Laurent Phenomenon then guarantees that \mathcal{T} belongs to the algebra isomorphic to the group algebra of \mathbb{T}_{Δ}.

