Bulk Holographic Global Vortices

Markus Amano Eto Minoru

Yamagata University

March 17, 2024

Markus Amano, Eto Minoru (Yamagata University)

Bulk Holographic Global Vortices

Outline

Background

Bulk Theory and Vacuum

String Vortex Analysis

Numerical Results

Conclusion

Introduction to AdS/CFT

- ► AdS/CFT correspondence: A powerful tool for studying strongly coupled systems.
- Originated from Maldacena's work (Maldacena 1998), (4 + 1)D gravity about AdS dual to conformal field theory the boundary of AdS.
- Useful in analyzing Bose-Einstein Condensates (BEC) at strong coupling and finite temperatures (i.e. a strongly coupled U(1) condensates).

GKP-Witten Relation

$$Z_{
m CFT} = Z_{
m AdS_5}$$

AdS/CFT and U(1) Condensates

- ► GP equations simulate low-temperature condensates in weakly coupled mean-field theory.
- ► The connection to AdS/CFT in the context of BECs is an area of ongoing research.
 - AdS/CFT has been applied to study various dynamics of BECs, including rotation and temperature effects.
 - It provides a framework for deriving higher order n-point functions for a dual conformal field theory.
 - ► Investigates a new approach to induce scalar condensation at the boundary of AdS space.
- ▶ Utilizes negative mass squared scalar fields and a stable quartic potential.
- ► Leads to a symmetry-breaking vacuum state without conformal scaling at the boundary.

Research Objectives

- ▶ (3+1)D AAdS Gravity + Scalar \longleftrightarrow (2+1)D Conformal Field Theory
- analyze the stability of such a vacuum
- ► analyze the line vortex pairs
- analyze near boundary expansion of bulk vortices

Overview of the Bulk Theory

- Our focus: " ϕ^{4} " global U(1) scalar field coupled with Einstein Gravity.
- Negative cosmological constant in a 3 + 1D asymptotically AdS spacetime.
- ► The action is a sum of gravity and matter actions.

Action

$$S = S_{ ext{gravity}} + S_{ ext{matter}} = \int \sqrt{-g} \left(R - 2\Lambda
ight) - \int \sqrt{-g} \left(g^{\mu
u} (\partial_{\mu} \Phi) (\partial_{
u} \Phi)^{*} + V(|\Phi|^{2})
ight)$$

Potential

$$V(|\Phi|^2) = rac{\lambda}{2}(|\Phi|^2)^2 + m^2 |\Phi|^2$$

Markus Amano, Eto Minoru (Yamagata University)

Asymptotically AdS Geometry

Metric (AdS Radius = L)

$$ds^{2} = rac{L^{2}}{z^{2}} \left(-f(z)dt^{2} + rac{1}{f(z)}dz^{2} + dx^{2} + dy^{2}
ight)$$

Blackening Factor

- AdS: f(z) = 1
- AdS Black Brane: $f(z) = 1 z^3/r_h^3$

Important Spacetime Regions

- Conformal boundary: z = 0.
- Horizon/Hard wall: $z = z_h$.

Near Boundary Expansion

To find near boundary homogeneous solutions $\phi \equiv \phi(z)$

Scalar Equations of Motion

$$-rac{1}{\sqrt{-g}}\partial_\mu(\sqrt{-g}g^{\mu
u}\partial_
u\Phi)+V'(|\Phi|^2)\Phi=0$$

Indicial Equation and Solutions ($\phi \propto z^{eta}$)

$$-\beta (\beta - 3) L^{-\beta} z^{\beta} + m^2 L^{-\beta+2} z^{\beta} + L^{-3\beta} \lambda z^{3\beta} = 0$$

• For $\beta > 0$, $\beta (\beta - 3) = m^2 L^2$.
• For $\beta = 0$, $L^2 m^2 = -\lambda$.

Bulk U(1) broken vacuum

Minimum Potential

Equations of motion allow for constant solution if...

• $L^2 m^2 = -\lambda$ allowing for z^0 near boundary

• V has a local minimum
$$\left(V_{\min} = V\left(|\phi|^2 = -\frac{m^2}{\lambda}\right)\right)$$

Units

From here on, L = 1 units will be used.

Linear Stability and Perturbations

- ► to test stability
- perturbation is a massive scalar field with $m^2 = 2\lambda$
- \blacktriangleright the perturbation must not source any current on the boundary

String Vortex Approximation

Vortex String Conditions

- ► large separations
- ▶ end on a horizon or hard wall and boundary with Neumann Boundary condition

Vortex string

is a scalar field that approximates a vortex solution parameterized with R(z).

$$\phi_R/|\phi_{\mathrm{vac}}| = e^{is\Theta_R} = e^{is\tan^{-1}(y/(x-R(z)))}$$

Vortex String Pair

$$\phi_P/|\phi_{\rm vac}| = e^{i(s\Theta_{-R}+\Theta_R)}$$

Markus Amano, Eto Minoru (Yamagata University)

Bulk Holographic Global Vortices

Radial Profile Analysis

Finding Radial Profile

- ▶ Interaction Energy: $-\int dz dx^2 \left(\mathcal{L}(\phi_P) \mathcal{L}(\phi_R) \mathcal{L}(\phi_{-R}) \right)$,
- ► Find *R* that minimizes the interaction energy
- and satisfies Neumann boundary conditions as z = 0 and $z = z_h$ for a set of $R^{(0)}(0)$ and $R^{(3)}(0)$ pairs.
- ▶ IR cutoff in the transverse radial direction Λ is required

Strictly Large Λ - Analytical Radial profiles

•
$$R_{\text{AdS}} = R(0) + \frac{R^{(3)}(0)}{6}z^3$$

•
$$R_{\text{Black Brane}} = R(0) - \frac{1}{6} z_{\text{h}}^3 R^{(3)}(0) \ln \left(1 - z^3 / z_{\text{h}}^3\right)$$

Numerical Radial Profiles: $R^{(3)}(0)$ vs R(0)

- ▶ $R^{(3)}(0) > 0$
- $\blacktriangleright \ \mathsf{AdS} \ \mathsf{Black} \ \mathsf{Brane} \approx \mathsf{AdS} + \mathsf{Hard} \ \mathsf{Wall}$

Markus Amano, Eto Minoru (Yamagata University)

Numerical Radial Profiles: Interaction Energies

- Repulsive for vortex-vortex pair (implies attraction for vortex-antivortex)
- $\blacktriangleright \text{ AdS Black Brane} \approx \text{AdS} + \text{Hard Wall}$
- ▶ Holographic UV used $z_{\rm UV} \sim 0$

Contour Analysis of Radial Profiles

- Setting R(0) and $R^{(3)}(0)$, solving for $z_{\rm h}$
- solid lines = equidistant z_h and dashed lines = equipotential
- Different regions show distinct behaviors based on $R^{(3)}(0)$ values.

Numerical Results and Temperature Implications

- ► A critical temperature exists where the vortex approximation breaks down.
- Minimum temperature inversely proportional to R(0).

Conclusion and Going Forward

- Analyzed a (3+1)D bulk U(1) breaking vacuum in AdS and AdS Blackbrane spacetimes.
- ► The scalar field vacuum exhibits a constant behavior near the conformal boundary.
- Vortex solutions behave as string-like objects terminating on the boundary, requiring Neumann conditions at endpoints.
- Unique solutions for vortex profiles determined by specifying R(0) and $R^{(3)}(0)$.
- Possible expansion on this research is to find gauge vortices

Acknowledgments

This research was made possible by the generous funding of the Japan Society for the Promotion of Science (JSPS). I would like to thank with Professor Eto Minoru for this fruitful collaboration.

www.irasutoya.com