Modes of the SS Soliton Presentation
 Submitted for Publication arXiV:2306.00677

Markus Amano

Yamagata University
2023-08-23

Outline I

(1) Introduction
(2) Review
(3) Sketch of Method to find $6 k$

4 Conclusion and Discussion

Section 1

Introduction

Overview

My presentation is about my recent work done in collaboration with Prof. Sven Bjarke Gudnason finding number of instanton zeromodes allowed in static states of the Witten-Sakai-Sugimoto model.

The Atiyah-Patodi-Singer index theorem, we found the number of zeromodes to be $\operatorname{dim} \mathcal{M}_{k}=6 k$ where k is the number of instantons in the limit of infinite ' \mathbf{t} Hooft coupling, $\lambda \rightarrow \infty$.

Zeromodes

transformations of the gauge field that are not gauge transformations that leave the action invariant

Conjecture

We conjecture, $\lambda \nrightarrow \infty$, Fig. 1, where $M_{k k}$ is geometrically a curvature scale or Kaluza-Klein mass and λ is the 'Hooft coupling.

- $2 k$ modes are lifted with a scale of $\lambda M_{K K}$ as heavy modes and
- $6 k-9$ modes are lifted with a scale of $M_{K K}$ as light modes with 9 zeromodes.
- 0 modes are lifted with a scale of $M_{K K}$ as light modes with 6 zeromodes when $k=1$.

Figure 1: The scales and number of modes at $\lambda \rightarrow \infty$ (λ finite) to the left (right).

Section 2

Review

WSS Model

The Witten-Sakai-Sugimoto (WSS) model is given by the Yang-Mills and Chern-Simons actions.

$$
\begin{gather*}
S=\kappa \operatorname{tr} \int_{M_{5}} \mathcal{F} \wedge \star \mathcal{F}+\frac{9 \kappa}{\lambda} \operatorname{tr} \omega_{5} \tag{1}\\
-i \omega_{5}=\mathcal{A} \wedge \mathcal{F}^{2}-\frac{1}{2} \mathcal{A}^{3} \wedge \mathcal{F}-\frac{1}{10} \mathcal{A}^{5} \tag{2}
\end{gather*}
$$

\mathcal{F} the $\mathrm{SU}(2)$ field tensor of $\mathcal{A} . \star$ is the Hodge star operator.
The manifold M_{5} in endowed with a metric Eq. 3 .

$$
\begin{equation*}
g_{5}=\frac{d z^{2}}{H(z)}+H(z) \eta_{\mu \nu} d x^{\mu} d x^{\nu} \tag{3}
\end{equation*}
$$

where $H(z)^{3 / 2}=1+z^{2}$ where $M_{k k}=1$ units have been choosen.

Instantons

With an arbitrary time $t_{0}, \iota(z, \vec{x}):=\left(t_{0}, z, \vec{x}\right)$

$$
\begin{equation*}
S=\kappa \operatorname{tr} \int_{M_{4}} \iota^{*} \mathcal{F} \wedge \star \iota^{*} \mathcal{F}+\frac{9 \kappa}{\lambda} \operatorname{tr} \iota^{*} \omega_{5} \tag{4}
\end{equation*}
$$

where $F \equiv \iota^{*} \mathcal{F}, A \equiv \iota^{*} \mathcal{A}$, and $\iota\left(M_{4}\right) \subset M_{5}$.
\mathcal{F} has a topological charge k.

$$
\begin{equation*}
c_{2}=-\frac{1}{8 \pi^{2}} \operatorname{tr} \int_{M_{4}} F \wedge F=k \tag{5}
\end{equation*}
$$

Large Hooft Coupling

For $\lambda \rightarrow \infty$, one can neglect the Chern-Simons term and then the action Eq. 4 is approximately pure Yang-Mills.

$$
\begin{equation*}
S_{Y M} \geq 8 \pi^{2} \kappa k \tag{6}
\end{equation*}
$$

The BPS bound is saturated for self dual gauge fields,

$$
\begin{equation*}
F=\star F . \tag{7}
\end{equation*}
$$

Linearization

The linearization, $A \rightarrow A+\delta A$, of the self-dual field equations Eq. 7 is Eq. 8 .

$$
\begin{equation*}
\mathcal{P}_{-} d_{A} \delta A=\frac{1}{2}(1-\star) d_{A} \delta A=0 \tag{8}
\end{equation*}
$$

d_{A} is covariant external derivative.

Fixing Gauge

Eq. 8 gives 3 equations but one can set the Lorenz gauge condition to fix the $4 \delta A$ fields.

$$
\begin{equation*}
d_{A}^{\dagger} \delta A \equiv-\mathcal{D}^{\mu} \delta A_{\mu}=0 \tag{9}
\end{equation*}
$$

\mathcal{D} is the covariant derivative and d_{A}^{\dagger} is the adjoint as of d_{A} with respect to the Hodge inner product.

$$
\begin{equation*}
\widetilde{\mathbb{D}} \delta A:=\left(d_{A}^{\dagger}, \mathcal{P}_{-} d_{A}\right) \delta A \equiv\left(d_{A}^{\dagger} \delta A, \mathcal{P}_{-} d_{A} \delta A\right) \tag{10}
\end{equation*}
$$

where $\widetilde{\mathbb{D}}: \Omega^{1} \rightarrow \Omega^{0} \oplus \Omega_{-}$and $\operatorname{dim} \operatorname{ker} \widetilde{\mathbb{D}}=\operatorname{dim} \mathcal{M}_{k}$.

Moduli Space, \mathcal{M}_{k}

Given a Fredholm differential operator, \mathbb{F}, it's analytical index is

$$
\begin{equation*}
\text { ind } \mathbb{F} \equiv \operatorname{dim} \operatorname{ker} \mathbb{F}-\operatorname{dim} \operatorname{ker} \mathbb{F}^{\dagger} \tag{11}
\end{equation*}
$$

Given an inner product (\cdot, \cdot), adjoint of the operator \mathbb{F} is \mathbb{F}^{\dagger} such that $(\alpha, \mathbb{F} \beta)_{\mathbb{F}}=\left(\mathbb{F}^{\dagger} \alpha, \beta\right)_{\mathbb{F}^{\dagger}}$.

Inner Product between Covectors

$$
(v, w):=\int v_{\mu}^{*} \delta^{\mu \nu} v_{\nu}
$$

Atiyah-Patodi-Singer Index Theorem

The Atiyah-Patodi-Singer states that a analytical index is the same as a topological index for compact manifolds with boundaries. For Dirac operators the APS theorem can be expressed as Eq. 12.

$$
\begin{equation*}
\operatorname{ind} \mathbb{F}=\int_{\mathcal{M}} \alpha_{0}-\frac{1}{2}(h+\eta) \tag{12}
\end{equation*}
$$

- $\int_{\mathcal{M}} \alpha_{0}$ is the index neglecting boundary
- h is the dimension of the kernal of the operator projected onto the boundary, $\partial \mathbb{F}$.
- $\eta \equiv \sum_{\lambda \neq 0} \operatorname{sign} \lambda$ is the difference between the number of positive and negative eigenvalues of the operator on the boundary.

Section 3

Sketch of Method to find $6 k$

Perturbation Equation of Motion

Starting with the four dimensional timeslice metric g_{4} that is conformally equivalent to a locally flat metric

$$
\begin{equation*}
\widetilde{\widetilde{g}}_{4}=d \xi^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2} \tag{13}
\end{equation*}
$$

where the it's manifold has two boundaries at $\xi= \pm \xi_{\text {boundary }}$.
Yang-Mills in 4D is conformally invariant, so the moduli space should be preserved under conformal transformations.

Operator Simplification

The current form of the operator $D: \Omega^{1} \rightarrow \Omega^{0} \oplus \Omega_{-}$is mathematically unwieldy. Without changing the number of zeromodes, defining a new operator

$$
\begin{equation*}
\mathbb{D}:=C \circ \widetilde{\mathbb{D}} . \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
C\left(\phi, \omega_{-}\right):=-d \xi \wedge \phi+2 \iota_{\partial_{\xi}} \omega_{-} \tag{15}
\end{equation*}
$$

$\mathbb{D}=\eta^{\mu} \mathcal{D}_{\mu}$ where η^{μ} are 4 D generators of $\mathfrak{s u}(2)$, 't Hooft symbols.

Operator Simplification (contd.)

$$
\begin{gather*}
(\mathbb{D} \delta A)_{\mu}=\eta^{\sigma}{ }_{\mu}{ }^{\nu} \mathcal{D}_{\sigma} \delta A_{\nu} \tag{16}\\
\left(\eta^{\sigma}\right)_{\mu \nu}=\eta^{\sigma}{ }_{\mu \nu}=\delta_{\xi}^{\sigma} \delta_{\mu \nu}+\delta_{\mu}^{\xi} \delta_{\nu}^{\sigma}-\delta_{\nu}^{\xi} \delta_{\mu}^{\sigma}-\varepsilon^{\xi \sigma}{ }_{\mu \nu} \tag{17}
\end{gather*}
$$

- Inner Product

$$
\begin{equation*}
(\alpha, \beta):=\int \operatorname{tr}_{S U(2)} \delta^{\mu \nu} \bar{\alpha}_{\mu} \beta_{\nu} \tag{18}
\end{equation*}
$$

- Adjoint

$$
\begin{equation*}
\mathbb{D}^{\dagger}=\bar{\eta}^{\mu} \mathcal{D}_{\mu}=-\left(\eta^{\top}\right)^{\mu} \mathcal{D}_{\mu} \tag{19}
\end{equation*}
$$

Summary Calculation with Atiyah-Patodi-Singer Theorem

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}_{k}=\operatorname{dim} \operatorname{ker} \mathbb{D}=\operatorname{dim} \operatorname{ker} \mathbb{D}^{\dagger}-\int_{\mathcal{M}} \alpha_{0}-\frac{1}{2}(h+\eta) \tag{20}
\end{equation*}
$$

- Heat Kernal method $\Longrightarrow \int_{\mathcal{M}} \alpha_{0}=8 k$
- Vanishing Theorem (with a flat manifold) $\Longrightarrow \operatorname{dim} \operatorname{ker} \mathbb{D}^{\dagger}=0$
- The "electrical component" of \mathcal{D}^{\dagger} vanishes on $\partial M \Longrightarrow h=4 k$
- \mathbb{Z}_{2} (left and right spinors acted on by \mathbb{D} are exchangeable) $\Longrightarrow \eta=0$

Result

Therefore, according to the APS theorem Eq. 12,

$$
\begin{align*}
\operatorname{dim} \operatorname{ker} \mathbb{D} & =\operatorname{dim} \operatorname{ker} \mathbb{D}^{\dagger}-\int_{\mathcal{M}} \alpha_{0}-\frac{1}{2}(h+\eta) \tag{21}\\
& =0-8 k-\frac{1}{2}(4 k+0) \tag{22}
\end{align*}
$$

Therefore we can see that,

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}_{k}=6 k \tag{23}
\end{equation*}
$$

Section 4

Conclusion and Discussion

Conclusion

We found that the number of moduli per instanton is 6 in the $\lambda \rightarrow \infty$ limit.
This result lines up with intuitions of well separated instantons where the moduli correspond to

- 3 translations and
- 3 rotations.

We conjecture that for non-limiting case, $\lambda \nrightarrow \infty$,

- $2 k$ modes are lifted with a scale of $\lambda M_{K K}$ as heavy modes and
- $6 k-9$ modes are lifted with a scale of $M_{K K}$ as light modes with 9 zeromodes.
- 0 modes are lifted with a scale of $M_{K K}$ as light modes with 6 zeromodes when $k=1$.

Outlook

With implications for holographic QCD, we propose

- further investigations of the lifted zeromodes for the λ non-limiting case, $\lambda \nrightarrow \infty$.
- Address the APS boundary conditions.

Acknowledgements

I would like to express me sincere gratitude to Henan University for their invaluable support throughout the course of this project. I am also appreciative of the insightful collaboration with Prof. Sven Bjarke Gudnason.

Thank you for your attention.

