Programming with Polymorphic Variants

Jacques Garrigue

garrigue@kurims.kyoto-u.ac. jp

Research Institute for Mathematical Sciences
Kyoto University, 606-8502 Kyoto, JAPAN

Abstract

Type inference for structural polymorphism —i.e. record and vari-
ant polymorphism— has been an active area of research since more
than 10 years ago, and many results have been obtained. However
these results are yet to be applied to real programming languages.
Based on our experience with the Objective Label system, we de-
scribe how variant polymorphism can be integrated in a program-
ming language, and what are the benefits. We give a detailed ac-
count of our type inference and compilation schemes.

1 Introduction

The distinction between parametric polymorphism and ad hoc
polymorphism is well known. In parametric polymorphism, e.g.
ML polymorphism, types do not interact with evaluation, and poly-
morphic parts may be instantiated with anything, while in ad hoc
polymorphism, with overloading or object-orientation, types do in-
teract with evaluation, and possible instances are restricted. More
subtle is the notion of structural polymorphism, i.e. the ability for
a function to access differently shaped data, appearing in record
typing for instance. It is indeed parametric, in that types do not
interfere with evaluation (at least at the formal level), but instances
are restricted.

Interestingly, one may model object-oriented programming in a
formalism based on structural polymorphism, thus parametric. Ob-
jective ML [RV97] is such an example: objects are formalized as
records, and subsumption as instanciation of structurally polymor-
phic type schemes. Indeed types do not interfere with evaluation:
all objects must bring their methods with them.

While structural polymorphism has nice properties from a func-
tional point of view, Objective ML seems to be its only instance
in a widely used programming language. Ohori proposed a poly-
morphic type system for records and implemented it in SML#, but
Standard ML’97 is still using structurally monomorphic records.

Records and objects are not the only application field for struc-
tural polymorphism. Their dual, variants, may naturally be typed
by the same mechanism. Both Rémy [Rém89] and Ohori [Oho95]
emphasize this fact.

Both for record and variant polymorphic typing, technical fea-
sibility is a solved problem. The remaining question is whether it is
useful or not, and if it is, to provide an easily understandable typing
system, and an efficient compilation method.

Based on our experience with the Objective Label [Gar] system,
which is a derivative of Objective Caml [Ler], this paper tries to
answer these three questions. We first present informally how Ob-
jective Label types variants, and what are their applications. Then
we give a compilation scheme, extremely simple but also very effi-

cient. Finally we give a full formalization of the type system as it
is implemented in the Objective Label compiler.

The contributions of this paper are more practical than theoreti-
cal: the type system we provide is not more expressive than Rémy’s
for instance, but it is simply more adapted to the use we make of it.

2 A naive approach to variants

Typing polymorphic variants is a complex task. As a first step we
will make an inventory of the various expressions we want to type,
and of the types our language should contain.

Let us define a simple language, extending core ML with vari-
ants.

e = x|c|hel|eelletx=ceine]|... core ML
| ‘tag(e) variant
| caseeof ‘tag(x) —e;...;‘tag(x) — e matching

For the sake of simplicity, all variants have a single argument. Since
we suppose that we have also unit and tuples, this is expressive
enough. However we will omit unit in examples, and just write
‘apple for ‘apple().

Here are basic examples for these new constructs. Types are
those given by the Objective Label compiler.

let a = ‘apple

a: [> apple]

let b = ‘orange("spain")
b : [> orange(string)]

The type [> apple] means that a is a variant, containing the tag
apple, and that it takes no argument for this tag. Similarly [>
orange(string)] means that b is a variant, containing the tag or-
ange, and that the argument of orange is of type string. Why this
“>" 7 You can see no type variable, but in fact, since subsump-
tion is achieved through type instanciation, these types have to be
polymorphic, as shown in the next example.

let I = [a,b]
[: [> apple orange(string)] list

[is a list of variants, each of them being tagged either apple or
orange. [> apple orange(string)| is an instance of both [> apple|
and [> orange(string)]. “>" means that a type is polymorphic, and
can be extended by the addition of new tags.

Symmetrically, matching is typed with a “<”.

let showx =
case x of ‘apple — "apple";
‘orange(s) — "orange "“s
show : [< apple orange(string)] — string

show accepts either an apple without argument, or an orange with
a string argument. Again, this type is polymorphic: it may be re-
stricted later.

let show' x =
case x of ‘apple — "apple"; ‘pear — "pear"
show' : [< apple pear] — string
let [= [show,show']
1: ([< apple] — string) list

You wonder why we would want to put both functions in a list?
The same typing arises when apply both function on the same
monomorphic argument.

let show_bothx = (showx,show' x)
show_both : [< apple] — string X string

Clearly x must be acceptable by both show and show'.

In the above examples, we have seen two kinds of types: “>”
types, or lower bounds, and “<” types, or upper bound. We have
seen that they can be refined by combining their constraints. The
next question is, what should happen when combining constraints
of the two kinds. We use a non generalizable type variable to show
this.

let r = ref ‘apple

r:_[> apple] ref

show !r

— : string = "apple"

r: _[< apple orange(string) > apple] ref
r:= ‘orange("spain")

r: [apple orange(string)] ref

The _ in front of the variant type shows that this type is monomor-
phic (cannot be made polymorphic due to the value-only restriction
of polymorphism), but not yet fully determined. At the beginning
we only know that r is a reference to a variant which contains an
apple. After applying the show function, the type changes to re-
flect a new constraint: it may only contain apples or oranges. Fi-
nally we put an orange in r, and its type becomes fully determined:
it contains (potentially) oranges and apples, and may not contain
anything else.

Fully determined variant types are useful for programming,
since 1they are the only ones we may use to define type abbrevia-
tions.

type fruit = [apple orange(string) pear]

Last, to be as powerful as defined datatypes, polymorphic vari-
ants shall support recursion. Here is the type inferred for the map
function. 1y and & are structural type variables. More details are
given in the formal development.

map : (0. — B) —
Y[< nil cons(o x ¥)] — &[> nil cons(B x 9)]

3 Variants at work

In this section we give examples of how polymorphic variants may
be used. We distinguish between uses which do only require poly-
morphism to make inference possible, but are otherwise monomor-
phic, and uses where polymorphism is really exploited.

!Objective Caml also allows the definition of constrained type abbreviations, and
you can use them in Objective Label to get rid of this limitation.

3.1 Monomorphic uses

Many uses of variants do not really exploit polymorphism. Variants
are only used at one type. This is in fact the most frequent case, but
we still need polymorphism to allow type inference.

What we essentialy use here is the pervasiveness of variant tags:
they are defined nowhere, they simply exist before you use them.
Similarly, there is no notion of conflict between two tags, as long
as you do not use them in the same data structure. For typing, every
tag is a new instance of itself.

3.1.1 Overloaded constructors

This phenomenon happens often. You have defined a datatype, but
then you realize that you need many variations on it. Adding one
constructor, or changing the type of the argument for a specific
constructor.

With the traditional ML approach you have to define as many
datatypes as there are variations. Of course, all constructors must
have different names. You end up thinking about a nice naming
scheme to distinguish the same constructor appearing in various
datatypes.

Polymorphic variants were originally introduced in Objective
Label [Gar] to solve this problem. In trying to build an interface
for Tcl/Tk, it appeared that Tk had as many notions of indices as it
has widget classes. Differences are small, but ignoring them would
allow for runtime errors. The phenomenon is even stronger for the
different options one can pass to a widget: some are allowed for
all widgets, some have a standard definition but are only available
on some widgets, and some actually differ from widget to widget.
Such overloading appears a lot when interfacing to external (C or
other) libraries.

With polymorphic variants, only the function needs to know
about the different cases it expects. The user may reuse the same
tag name, without bothering about this name being reserved for one
specific type.

Entry.index : entrywidget —

[anchor at(int) end insert num(int) selfirst sellast] — int
Listbox.index : listboxwidget —

[active anchor atxy(int x int) end num(int)] — int
Menu.index : menuwidget —

[active at(int) end last none num(int) pattern(string)] — int

This overloading use may be compared with Haskell type
classes. Indeed, TkGofer [CV] uses type classes to do exactly that.

3.1.2 Implicit datatypes

This case is similar to the previous one, except that this is more a
question of comfort and namespace considerations, than meaning-
ful overloading.

Like the index functions above, frequently library function
must receive structured information as input. This information is
not to be stored anywhere, but just to be processed by the library
function and discarded. In such cases having to define a datatype
may be heavy, particularly in a system with modules.

If the datatype is defined together with the function, it means
that either one will have to open the module, introducing all names
in the current namespace, or use an awkward dot notation for con-
structors.

On the other hand, with polymorphic variants no type needs to
be defined, and variant tags need not be qualified.

(* In module Arg *)
type spec = [unit(unit — unit) set(bool ref)

clear(bool ref) string(string — unit)
int(int — unit)]
val parse : (string X spec) list — (string — unit) — unit

let - =
Arg.parse[("-o", ‘string output), ("-n", ‘intnumber)] others

This also improves the readability of programs: one may
choose to use [on off] in place of bool when this is more expres-
sive, efc...

3.1.3 Shared datatypes

Sharing a datatype between two different libraries is a subtle thing.
Either you put it in one of them, and create a dependency between
the two libraries; or you define a common header, and have your
two libraries depend on a third one; or you have to functorize every-
thing in both libraries to take the datatype as parameter. Anything
short of that will give you two datatypes with the same structure,
but incompatible.

Polymorphic variants provide a solution to this problem. You
just define the same type in both libraries, and since these are only
type abbreviations, the two definitions are compatible. The type
system checks the structural equality when you pass a value from
one library to the other.

3.2 Polymorphism and subtyping

Polymorphic variants have many more possibilities than simple
constructor overloading. If we use fully their polymorphism, they
can simulate structural subtyping, as is done Objective ML for ob-
jects.

3.2.1 Variant hierarchy

Not only can the same variant tag be used in many different variant
types, but any polymorphic variant may be viewed under different
types. Variant types form a subtyping hierarchy, and both variants
and their acceptors (functions receiving them) have multiple views
according to this hierarchy.

let a = [‘orange("morocco"), ‘apple]

a: [> apple orange(string)] list

let b = [‘apple, ‘pear]

b : [> apple pear] list

letc=a@b

¢ : [> apple orange(string) pear] list =
[‘orange("morocco"), ‘apple, ‘apple, ‘pear]

a and b are both subtypes of ¢. They may be used several times, at
any of their supertypes. For acceptors, see show_both in section 2.

3.2.2 Safe programming

When a program does many operations on the same datatype, this
is quite frequent that part of these operations make in fact some
hypotheses on their input, accepting only a specific subset of the
datatype.

In ML, the usual way to handle such cases is to raise an ex-
ception when the input is outside of this subset. However, if this
subset can be defined by the restricted set of constructors it uses,
polymorphic variants offer a solution. Each operation may return
the most specific type for its output, and it may then be used safely
at any supertype.

In order to support effectively this practice, Objective Label
provides a specific notation for variant types considered as a sub-
type of another variant type (this is an extension of a similar nota-
tion for objects in Objective ML):

#variant[> tag; .. .tag,,)

is a shorthand for

[<tag;(t1)...tag, y(Tuym) > tag; .. .tag,]

when variant is defined as [tag, (1) ...tag, ,(Tntm))-

3.2.3 Encoding subtyping in variants

While variants have their own notion of subtyping, they can also be
used for building subtyping relations in abstract types. This feature
was heavily used for interfacing Objective Label with the OpenGL
graphical library.

Here is part of the interface of a library providing access to raw
C arrays. The abstract type of arrays is o ¢.

type o ¢

type kind = [bitmap byte double float int long short]

type fkind = [double float|

type ikind = [bitmap byte int long short]

val create : (#kind as o) — int — ot

external get : #ikind t — int — int = "ml_raw_get"

external set : #ikind t — int — int — unit =
"ml _raw_set"

external get_float : #fkind t — int — float =
"ml_raw_get_float"

external set_float : #fkind t — int — float — unit =
"ml raw_set_float"

#kind as o. constrains o, which appears both as input and as pa-
rameter to the output type #, to be a subtype of kind. Due to the
value-only restriction, the result is not polymorphic.

let arr = create ‘float 10
arr : #kind[> float] t

The interesting point here is that the distinction between integer and
floating point arrays is made at the type level, and the distinction
between various data sizes is made at the value level. Polymorphic
variants allow one to mix the two levels, and produce both kinds of
arrays with the same create function.

4 Compiling variants

One may think of many clever schemes for compiling polymorphic
variants.

The first to come to mind is generating different integer values
for all tags in a program, and then compile everything just as would
be done for defined datatypes. This ought to be simple and efficient.
If the program does not use too many different tags, we may even
be able to compile matching with switches.

However there is a major drawback to this scheme: we need
to know all the tags appearing in a program. Separate compilation
breaks it. Moreover, adding a tag somewhere in the program may
change the representation of other tags. Raw values (e.g. obtained
by output_value in Caml) wouldn’t be compatible between dif-
ferent versions of the same program. Interfacing with external li-
braries through variants would be a nightmare.

Luckily, another very simple approach works transparently,
giving a uniform representation to tags, depending only on their

names. The idea is just to hash tag names to usual integers. Most
often this will mean a 31-bit value, if we need one bit for the GC.

The immediate concern is: but what to do if two different tags
get the same hash value? Our answer is simple: nothing. More
precisely, if one tries to use two tags with identical hash values in
the same variant type, the compiler fails on a type error.

The point here is that this kind of conflict is detected by the type
checker. There are two advantages to that:

e No runtime error. One just has to change a tag name in the
source and try again.

e The type-checker only generates errors on effectively con-
flicting tag names.

In an untyped framework, one would have to check any two tags in
the whole program for possible conflicts, while here we only have
to check individually each variant type. This means that, even in
a separate compilation scheme, this check only occurs at compile
time, and no conflicts may imply hidden tags (which do not appear
in a module’s interface) after compilation. This also means that the
probability of having a conflict is only proportional to the number
of tags in a variant type, rather than the total number of tags in a
program.

In the Objective Label implementation, the formula used to
convert a variant tag tag of length n into a 31-bit integer is:

n .
hash(tag) = <ng[i}*223"—'> mod 23!

i=1

For compatibility reasons, we have to stick with the same formula
on 64-bit implementations also. This formula only guarantees that
all 4 character identifiers will be given different hash values. For
more than 4 characters they may collide; but supposing that this
functions gives us a random distribution, the probability p(n) for
two tags to collide in a n tag variant is (we use the average number
of collisions):

n—1 l 2

pin) < 231 = 3

12

3

[\
(5]

That is, with 256 tags, this probability is only p(256) = 1.5-107>.
Even p(10000) is about 2 %. In practice this is incomparably lower
than the chance of getting a conflict with a predeclared keyword of
the language.

Another advantage of this representation is that it allows for an
efficient compilation of matching. Admittedly, we cannot use ta-
ble switch, like with defined datatypes, so matching a variant is not
constant time. But since we know the hash value for each tag at
compile time, we can generate a choice tree, and do the matching
in log(n). Moreover, on many computer architectures conditional
jump is much faster than indirect jump, so that for modest size vari-
ants types, we may even be faster than a table switch. Compiling to
native code on a DEC Alpha, with the Objective Caml 1.07 back-
end, we noticed a more than 10 % speedup on ten way cases (the
benchmark is a single flat matching inside a for loop). Of course,
this speedup does not apply to bytecode.

The uniform data representation also makes the writing of for-
eign function interfaces easier. For instance, when interfacing with
OpenGL, the translation from variant tags to C enumeration types
can be done on the C side of the interface. ML and C sides can then
be built independently, which simplifies the structure and avoids
errors. The conversion from variant tags, which simply denote
strings, to C enumeration type is one more chance of dynamic type

’ size+gc ‘tagl hd | tl ‘

as a datatype

[oewe [o] o | |
~

’ size+gc ‘ OI hd I tl

as a polymorphic variant

Figure 1: Internal representation of a cons-cell

checking, not to neglect when one knows the fragility of such in-
terfaces.

Finally, the only drawback of compiled polymorphic variants
compared to defined datatypes is its space consumption. For vari-
ants without argument, a word suffices and nothing needs to be
heap allocated, so we are as efficient as Objective Caml datatypes
there. But for datatype constructors with arguments, the original
Objective Caml takes profit of the presence of an header word on
heap blocks for storing its variant tags inside it. Since this header
is also used for size and GC information, only 8 bits are available
for tagging. That means that we cannot use the same compact rep-
resentation for polymorphic variants. The tag has to be stored in
one more word, so that a polymorphic variant with argument takes
3 words in the heap, instead of 2. Moreover, for datatype con-
structors with multiple arguments, Objective Caml uses definition
information to flatten them, so that they use only one block. With
polymorphic variants, we must assume a uniform representation,
and represent the arguments as a tuple pointed by the argument
field of the variant. This means n +4 words of heap instead of
n+ 1, and one more level of indirection. A comparison of both
representations for a cons-cell is given in figure 1.

5 Ordering variant types

As a first step towards a type system for polymorphic variants, we
shall analyze the subsumption relation between variant types. This
is also a good tool to understand differences with other proposals.
Intuitively a monomorphic variant type (just like a record type)
may be represented by a set of tags with their associated types.

[tag (1) 1ag,(Ta)]

Naturally we obtain the following subsumption relation be-
tween variants:

[tag;(t;).. . tag,(Ta)] <
[tag] (TJ) -..lagy, (Tn) tagy (Tn+1) e tag;1+n1(1n+m)]

That is, any value of some variant type may be used as a value of
a variant type with more tags. This is the dual of a similar relation
for records.

It looks like this structure has good properties: any pair of vari-
ant types has a greatest lower bound, and any pair of variant types
with a common upper bound has a lowest upper bound. We just
keep all the tags given the same type on both sides for glb, and take
the union for lub.

Intuitively, the lub is used when computing the common type
of two variant values (covariant subtyping), while the g/b is needed
for acceptors (contravariant subtyping).

However, this setting has a major deficiency: in order to com-
pute the glb, one needs to test not only the equality on tags, but also
the equality on types. [tag; : T1] M [tag, : T2] is not empty only if
both tag, = tag, and 7| = 7. Clearly, this is not compatible with
inference, where one cannot check the equality of type variables,
but only enforce it.

On the other hand, there is no such problem for the lub. The
existence of a common upper bound just amounts to a compatibility
condition between variant types: [fag) : Ti...tag, : T,] ~ [tag) :
T) ...tag), T, if Vi, j (tag; = tag}) = (1= ’E/j). This compatibility
condition justifies enforcing the equality of types when computing
alub.

One solution, and this is the one Ohori [Oh095] chose, is to use
only the lub for typing. Essentially this means that we cannot use
contravariant subtyping. Two acceptor types can only be unified
if they are equal. Going back to our informal system of section 2,
this amounts to saying that [< tag;(t1)...tag,(t,)] is interpreted
by the fully determined type [tag,(T1)...7ag,(T,)].

The result is much simpler than our system: there are only
two kinds of types, lower-bounds [> rag; (t}) .. .tag,(t,)] and fixed
types [fag;(t1)...tag,(Ts)], and no mixed forms. Typing might be
easily done using row-variables.

In such a system, variant values are polymorphic, but acceptors
are not. Basically this means that monomorphic use of variants are
possible, but polymorphic ones are very restricted. For instance,
our C array library would not be possible in such a type system:
the create function uses the double polymorphism in an essential
way. Even using the same variant at several supertypes becomes
difficult: with the value-only restriction of polymorphism, all result
of functions are monomorphic. If a function returns a polymorphic
variant, we can choose for the type of the result any instance of this
variant, but only once.

let a = id ‘apple

a: _[> apple] = ‘apple
showa

— : string = "apple"

a: _[> apple orange(string)]
show' a

type error!

Since we are particularly interested in such uses of variants, we
choose another solution. The notion of variant types is enriched, to
allow both covariant and contravariant subtyping.

[tagy ...tag, | tag) 1 Ti...tag, p * Tntm)

tag, ...tag, is the presence part. It indicates which tags may ap-
pear in the variant. The right side is the typing information, and
may contain more tags than the presence part. The idea is that the
presence part may grow or shrink by unification according to the
variance, but typing information can only grow.

For this purpose, we define subsumption independently on the
presence part and the typing part. For typings, subsumption works
as before:

tagy Ty ...tag, Ty < tagy Ty .- 1Ay 1y Tntm

This corresponds to the intuition that specifying more tags in the
typing part restricts the variant type as a whole. Since we cannot
infer the glb of two typing parts, only /ub is available for subtyping.
But we can recover both covariant and contravariant subtyping of
variants by having two notions of subsumption for the presence
part: C or D.

In programs this corresponds to the two following patterns:

e whenej: [P |Ti]and ey : [Py | D], and T} ~ T

if e then e else ¢ : [P1 Up ‘ T I_ITQ}

e when f1: [P |Th] —tiand fo: [P | Ta] = T, and T1 ~ T

M (fix, fox) [PINP | TTUD] — T X T)

The resulting type is obtained by taking the lub for two different
orderings.

The last step is to combine contravariant and covariant subtyp-
ing in one representation, variant constraints, and to use the same
subsumption relation for both. The extension is easy: we just use
two presence sets instead of one.

[L<U|T]

L is a finite set of tags, U either a finite set of tags or T (all tags,
the maximal element), and 7' a finite mapping from tags to types.
L must be a subset of U. We do not allow indefinite tags, that is all
tags in L and U (when not T) must be given a type in 7.

The subsumption relation between variant constraints is the fol-
lowing:

L1 <Ul |1 <[Lo<Uy|Tr] ifLiCLyandU; DU and Ty <1

There are three ways one can tighten (i.e. make greater in the
constraint order) a variant constraint: by making L larger, by mak-
ing U smaller, or by adding tags in 7. In particular, formally even
an already fixed variant (i.e. a variant constraint such that L = U)
may still be refined.

The lub of two compatible variant constraints is given as:

L1 <U | T|U[L < U | B] = L1 UL <UNU | TIUT]

These variant constraints are just a more abstract notation for
the naive variant types we introduced in section 2. We give a map-
ping between the two notations in figure 2. The last two lines are
new. They are required to express typing information for tags that
do not appear in the presence information.

6 Formal type system

Following Ohori, we might use these constraints to qualify vari-
ables. Variant types for e; and f; would be written, using con-
strained variables, e; : [P} < T | T1] and f] : a0 < Py | T}] — 7.

However, it appears that fully formalizing this aspect using
kinds, as did Ohori, results in a quite complex system, particularly
when one wants to handle recursive types.

Rémy’s type system [Rém89] is another alternative. Con-
straints it can express are exactly those we just described. However,
his approach relies exclusively on sorted variables, which means
that we need one type variable by tag in a variant type. Under-
standing directly these types is difficult (Rémy even suggests hiding
part of the types), and translating into our naive type system is not
straightforward. The large number of variables implied may also be
a problem if we want to quantify them explicitly, using first-class
polymorphism [GR97].

For these reason the type system we use lies in between these
two systems. Presence information is represented by kinds, but typ-
ing information uses row variables, so that we work with a multi-
sorted algebra a la Rémy. We use only two variables by variant
type. This way the kinding environment does not contain types, and
polymorphism can be handled easily, even with recursive types.

While the type system we present here is very close to the one
in Objective Label, there are a few differences:

[tag, (1) ... tag, (Tn)]

[<tagy(t1)...tag,(t)]

[> tag(t1)...tag,(tn)]

[< tagl (Tl) cee tagn#»m(’anrm) > tagl e tagn]
[tagi(t1)...tag, m(Tnam) ... > tag; .. .1ag,]
[tagi(t1)...tag,(T)... < tag,...tagy > tag; ...tag)|

[tagy ...tag, < tagy...tag, |tagy : Ty ...tag, : T,]

[0 < tag, ...tag, | tag, : T} ...tag, : T

[tagy ...tag, < T |tag) : Ty ...tag, : T

[tag; ...tag, < tag...tag,,, |tag) 1 %1 ...tag, , Tnim)
[tagy...tag, < T |tagy : Ty ...tag, . : Tntm)

[tag ...tag; < tag, ...tagy |tag, : Ty ...tag, : Tn]

Figure 2: Mapping from naive types to variant constraints

e we omitted here explicit handling of recursive types and poly-
morphism restricted to values. These problems appear to be
othogonal to the one we are concerned with.

e Objective Label assumes, incorrectly, that one need not keep
typing information about absent tags. We show in subsection
7.1 how something close to that can be justified in the formal
type system.

Expression are just those of Section 2. Types distinguish be-
tween presence and typing information in variants.

T = o|ult—1]|[i|T]

6 u= T|VoT|Vp.T|Visg T
T == pltag:t:T

L == tag...tag

U = tag...tag|T

There are three differences with a usual ML type system. First, we
use sorted types: there are three kinds of type variables, o for usual
types, i for presence information, and p for row types. Then pres-
ence variables are kinded. In fact the real information is contained
in the kind, of the form (L,U). They may only be instantiated to a
variable of a smaller kind. Last, the typing information in variants
is represented by a row type. Row types are considered modulo the
equality tag:t::tag' :v :: T =tag :v ::tag:7:: T whentag # tag'.
Row type variables are not kinded: they may be instantiated to any
row type.

Typing judgments are of the form K;I't- e : 6, and kinding judg-
ments of the form K i > (L,U). Inference rules are given in fig-
ure 3. The system may look complex as there are many rules, but
in fact half of them are simply dedicated to polymorphism, and do
exactly the same thing for three different sorts of type variables.

Type reconstruction for this system is given in appendix A.

Due to the many type variables, types inferred in this system
would be hard to read. However, we can use a property of the
type reconstruction algorithm to show only naive types to the user.
Assuming that all i-variables are always associated with the same
typing information 7 in the initial typing environment, and recip-
rocally that all p-variables are always associated with same i, the
type reconstruction algorithm preserves this property for newly in-
troduced variables. As a result, we can consider that two variant
types are identical in the output of the algorithm if they share the
same 7, and display them as a shared type. If their i differs, then
they are unrelated.

Here is an example. We infer the type for the map function.

let rec mapfl=
case [of ‘nil — ‘nil;
‘cons(a,l) — ‘cons(fa,map f1)
map : (00—) —
([i> (0,nitcons) | il : unit :: cons 1 axy:: p] as y) —
(I7'> nitcons, Ty | nil : unit :: cons : B x & :: p'] as §)

Written using naive types, as we did in section 2, this boils
down to:

map : (0. — B) —
Y[< nil cons(a x ¥)] — &[> nil cons(B x 3)]

Since there is a bijection between naive and formal types, we
are not hiding anything to the user, but only using a simpler nota-
tion.

The situation becomes more subtle if we use a more complex
notion of type identity and sharing. This happens to be necessary
when using a combination of first-class polymorphism and value-
restricted polymorphism [GR97], recently introduced in Objective
Label. Then two types may have the same denotation (same struc-
ture and same type variables), but still need to be distinguished at
a lower level (in [GR97], their nodes may be labeled differently).
Two variant types sharing the same i and p may actually not be
physically shared. Since denotation is the same, we still choose to
display this case as sharing in the naive type system, keeping the
labeling information hidden to the user.

7 Refinements and extensions

The system presented above only provides basic features for poly-
morphic variants. It can be made smoother by adding a few exten-
sions.

7.1 Discarding superfluous typing information

We have seen that for the sake of completeness of unification, one
cannot discard typing information in variant types, even if a tag is
not included in the upper bound of the variant.

However, this problem only appears during unification. After
unification is finished and a substitution is obtained, nothing op-
poses discarding this superfluous (and maybe harmful) informa-
tion.

Still we want to do this independently of the type inference al-
gorithm. Doing this discarding when generalizing types seems the
right thing to do, since any algorithm has to finish unification there
anyway.

FORGET
KTk e:Vis g py,p-o{[i | {tag, - w} ™ = pl/7}

i ¢ FTV(0),p ¢ FTV (o)
K:T'E e Vi (g yn,P-0 i | {tage - i = pl/v}

This rule as such would be difficult to implement, since it im-
plies checking for simpler variant types at every step of type recon-
struction. If we restrict its use to inside let expressions, this can be
inferred easily by modifying Clos’. Such a restricted form would
break subject reduction though.

VARIABLE
K;I'x:okFx:0o
ABSTRACTION
KiTox:the:v
KTFMe:T—7

APPLICATION
K;Tke :1—1v KTley:1

K.;'kejey: 1

LET
K;I'Fej:o K;I''x:oFey:t

KI'tletx=ej1iney: 1T

KIND
K®isqupy-i> (LU ifLOL,UCU
VARIANT

KTke:t Kti> (tag, T)

KTt ‘tag(e) : [i | tag :T:: T)

CASE

KTke:[i|{tag, :w}} = T] KFi>(0,{tag,}})
KT, it bep:v (1<k<n)

KTt case e of {‘tag;(xx) — ex}] : ¥

PoLY a
KI'te:o

K;I'ke:Va.c

INST o
K;T'ke:Vo.o

K:T'-o{t/o}
POLY p
K;I'tte:o
K:Tke:Yp.c
INST p

K I'e:Vp.o
K;T'+of{T/p}

POLY i
Ke®izquylte:o

KTke:Visquy).0

INST i
K;Tke:Vispy.c KHi'>(LU)

K;T'ke:ofi/i}

o g FTV(T)

pEFTV (L)

i¢ FTV(I)

Figure 3: Inference rules for the formal type system

7.2 Open matching

In the basic system we only provide a closed version of matching:
all cases must be provided. Some examples will require an open
version of matching, with a default case.

e:=...|caseeof ‘tag(x) —e;...;‘tag(x) — e else e
The associated typing rule is:

CASE ELSE

K:Tke:[i|{tag,:t}f=T] KFi>(0,T)

K:T,oxp it et (1<k<n) K;Tkep:v

K;T'F case e of {‘tag;(xi) — e} else ep : U

Notice that this rules adds no presence information, only typing
information.

let showx =
case x of ‘apple — "apple";

‘orange(s) — "orange "“s
else "pear"
show : [apple orange(string) ...| — string

Beware also that the typing introduced by this construct is weak.
Many “errors” will not be detected. For instance, if we misspell
‘apple into ‘aple, we get the following result.

show ‘aple
— :string = "pear"

7.3 Variant dispatching

When working with variants and subtyping, a quite natural thing
one may want to do is to divide a variant in smaller subtypes (sub-
sets of tags), and to dispatch according to which subtype the variant
belongs to. This can also be compared with delegation in an object-
oriented framework.

The case statement may do that, but it results in superfluous
work: the dispatching must be done individually for each tag. Hav-
ing this feature as a primitive construct is useful.

e:=...|selecteof ‘tag...‘tag asx —e;...;‘tag...‘tag as x — ¢

The typing rule comes as follows.

SELECT

KI'ke: [i | {tagkj :Tkj}k:l..n,j:l..lk i T}

K i>(0,{tag;}r=1.nj=1.1)

K;Txg i | {tagkj :Tkj}jzl--lk ST bFep:t
KFik2<{tagkj}j:1,_lk,T> (lﬁkgn)

K;Tk-select e of {‘tagy, ... ‘tagy, as xp — ex}f: v

select has another nice property: it permits to create a polymor-
phic variant from a monomorphic one, by breaking the input-output
relation.

let fx = select x of ‘left‘right as x — x

[[<lefi(a) right(B)] — [> lefi(a) right(B)]

This function does nothing: since the typing makes sure that only
a or b will come here, there is no need for any runtime check. But
it gives different variant types to its input and output. Since the
output type is a newly created one, it is polymorphic, even if the
input type has to be unified with a monomorphic one.

7.4 Subtyping through coercions

As with Objective ML, not all forms of subtyping may be expressed
by structural polymorphism. Full subtyping may be added has a
coercion operator.

en=...|(e:t:>7)

Where 1’ is a supertype of T according to an appropriate subtyping
relation.
A typing rule for this is simply:

COERCE
KTke:t =<7

KTk (e:t:>7): v

The subtyping relation < may be chosen freely, as long as it is
compatible with the rest of the type system. We will not develop
more on this aspect.

8 Final remarks

We have described in this paper a complete approach to polymor-
phic variant typing. This includes user-friendly type representation
and features, efficient and portable compilation scheme, and an ex-
tendible type system with its reconstruction algorithm.

This description is based on the Objective Label system, but is
not completely faithful. There are some rough edges in the system,
and we preferred describing the “right thing” rather than explaining
why we chose another way. There are also differences in the syntax:
in Objective Label case and select are all integrated in the pattern
matching mechanism; describing pattern matching as a whole was
not the goal of this paper.

We conclude on a technical remark: we explained that the ex-
pressive power of our system is equivalent to Rémy’s, in terms
of expressible variant types. However, Rémy’s system is strictly
stronger when we consider constraints expressible between two dif-
ferent variant types. Some useful features can be encoded using this
mechanism, but this would break our assumption that two variant
types are either equal or independent. Since this assumption is re-
quired to keep types readable, we must stick to it. At the language
level, this weakness is compensated by variant dispatch and coer-
cions.

References

[CV] Koen Claessen and Ton Vullings. The TkGofer home
page. URL http://www.informatik.uni-ulm.de/
abt/pm/ftp/tkgofer.html.

[Gar] Jacques Garrigue. The Objective Label trilogy. URL
http://wwwfun.kurims.kyoto-u.ac.jp/soft/
olabl/.

[GR97] Jacques Garrigue and Didier Rémy. Extending ML with
semi-explicit higher-order polymorphism. In Abadi and
Ito, editors, Proc. of the International Conference on
Theoretical Aspects of Computer Software, volume 1281
of Springer LNCS, pages 20—46, Sendai, Japan, Septem-
ber 1997.

[Ler] Xavier Leroy. Objective Caml.
pauillac.inria.fr/ocaml/.

URL http://

[Oho95] Atsushi Ohori. A polymorphic record calculus and its
compilation. ACM Transactions on Programming Lan-
guages and Systems, 17(6):844—-895, November 1995.

[Rém89] Didier Rémy. Typechecking records and variants in a
natural extension of ML. In Proc. ACM Symposium
on Principles of Programming Languages, pages 77-87,
1989.

[RV97] Didier Rémy and Jérdme Vouillon. Objective ML: A
simple object-oriented extension of ML. In Proc. ACM
Symposium on Principles of Programming Languages,

pages 40-53, January 1997.

A Type reconstruction

A.1 Unification algorithm

We give here a unification algorithm for the monotypes defined
above. A unification problem is a conjunction of multi-equations.
It is described by the following grammar.

0 == 0|dAe

e = eler|e

e = 0\’5:6,

er = 0|T=e

e = Q‘i:ei‘<L,U>:ei

A and = are associative and commutative.
A unification problem ¢ is in solved form when:

e the same variable does not appear naked in more than one
multi-equation, and

e cach multi-equation contains only one non-variable term.

One may directly read a solution substitution from a solved form.
In figure 4, we give the unification algorithm as a set of rewrit-

ing rules of the form b[;f;;rre.

Rules are divided in 3 groups, by order of priority: the Merge
and Concatenate rules, failure rules, and others. In each of these
groups, while no rule of an higher priority group may be applied,
any rule of the group can be applied in any order.

In Arrow and Variant, we keep the smallest of the two original
terms in the shortened multi-equation. The size |m| of a term m is
defined as the number of symbols (excluding all variables).

In Concatenate and Row clash, e and ¢’ may be referring to the
same multi-equation.

Occur-check is intentionally not included in the above rules.
One probably wants to add it for non-variant types, but without it
the algorithm infers regular types.

Proposition 1 A normal form for the above rewriting system is a
unification problem in solved form.

Lemma 2 All rules are sound and complete.
Lemma 3 Unification terminates.

The measure is the lexicographical ordering of

e the number of unsolved variables (a variable is solved when
it appears in an equation containing at least one non-variable
term),

e the sum of monomials X" for m any member of a multi-
equation.

A.2 Type reconstruction algorithm

The type reconstruction algorithm is given in figure 5. We start
from a monomorphic judgment scheme, and convert it to a unifica-
tion problem. Kinding assumptions are eliminated first. The only
case where a unification problem must be solved locally is for let:
the resulting substitution is needed for deciding which variables are
polymorphic.

MERGE ARROW
dNa=eNa=¢

(])/\‘E[H‘Ez:‘c’lﬂ’t/z:e

ONa=e=¢ a€{ap,i} AT =T A =ThAT - Ty =e
REDUNDANCY VARIANT
¢Aa:a:eae{a7p7i7u} (])/\[Z|T]:[ZI‘TI}:€
dNa=e ONi=iI'ANT=T'N[i|T]=e
CLASH , Row
AN=T= R RS
) e sort(t) # sort(t') ONtag: Tt T =tag:v =T =e
1 ONT=TAT=T'Ntag:t::T=e
SORTS CONSTRAINT MI;ZRG/E
sort(u) =u sort(t —7)=— sort([i | T]) = ON(LU) = (L U> ¢ LUl c(UNnU’
(w) (t—7) (it 7)) P B = oty wnw)
CONCATENATE L . CONSTRAINT CL,ASI;I
N{tag; T} ip=eNp=A{tag.:T:}] =p' = AL U)=(L"U") =
¢ {agt }}n p /e E)n {‘jgl l}l p /6 — - - ¢ < 9 > < ’ > e(LuL/)gz(UmU/)
ON{rag; -t} v {tag, T} ip' =enp={tag; :T}] ip' =e L
COMPLETION
ON{tag; T} i p={tagi: T} p =e (Vi, j)tag; # tag’;, p" fresh
oNnp' ={rag; i} p” Ap = {tagl T} p" Ntag; i {rag) T np =e
ROW CLASH . . .
Ntag; o} np={tag;, T} p =eAp=p' =
qi {ragy)50 = {0 SN 2RZ NP 2R)y g, £
Figure 4: Unification rules
Type(I'>x:t) = instance(I'(x),T)
Type(I'>bAx.e:t) = Type(lx:ade:) AT=01 — 0
Type(I'>ejer:1) = Type(ITper:a—1)AType(T'per: a)
Type(I'>letx=ejiney:t) = oAType(T,x: Clos(I',p,0)>e; :T) where ¢ = Type(I'>eg : Q)
Type(I'>‘tag(e) : 1) = Type(Tve:a)AT=[i|tag:a:p]Ai=tag, T)
Type(I'>case e of {‘tag,(xx) — ex}]:T) = Type(I've:[i| {tag, : ox}] :: p]) Ni=(0,{tag,}]) NN Type(I,x; : o> ey : T)
instance(Vo..6,T) = instance(G,T) o fresh
instance(Vp.0,T) = instance(,T) p fresh
instance(Vi (1 y).6,T) = instance(c,T) Ai=(L,U) i fresh
mstance(‘t) = (U=1)
Clos(T.¢,7) = Clos'(9(T),0,6(1))
Clos' (T',0,0) = Clos’(F,(I),VOL c) when o€ FTV(6)\FTV(I)
Clos' (T',0,6) = Clos'(T',9,Yp.0) when p € FTV (o) \FTV(T)
Clos'(T,0,6) = Clos'(T,9,Yizg(;)-0) when i € FTV(c)\FTV(T)
Clos'(T',0,6) = © when FTV (o) C FTV(T)

Figure 5: Abstract type reconstruction algorithm

