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Abstract

Their support for code reuse has made object-oriented languages popular. However,
they do not succeed equally in all areas, particularly when data has a complex structure,
making hard to keep the parallel between data and code.

On the other hand, functional programming languages, which separate data from
code, are better at handling complex structures, but they do not provide direct ways to
reuse code for a different datatype.

We show here a way to achieve code reuse, even when data and code are separated.
The method is illustrated by a detailed example.

1 Introduction

Design of complex programs sometimes bump into a difficult dilemma: which should be
privileged of type safety and code reuse. Maintaining complete type safety forces to spe-
cialize the code, making it difficult to reuse it in similar situations. Decrease in reuse may
mean more difficult maintenance and tracing of logical bugs. On the other hand, trading
safety for more reuse also means weaker help from the type system during maintenance,
and potential runtime type errors.

A typical instance of this dilemma is variant types. The way they are supported in typed
functional languages, with strong typing and pattern matching, is a tremendous help when
developping and maintaining a program. The type checker is able to detect all potential
type errors, while the match compiler can warn about forgotten or redundant cases, which is
particularly useful when modifying a variant type. This means a very good support for code
reuse. . . but only through textual copying, and without subtyping. If you do not want to
end-up duplicating code working on incompatible types, you have to weaken your discipline,
and allow for potential match failures.

Object-oriented languages only support variant types through either instanceof state-
ments or visitor patterns. The first case means that most of the type checking is deferred
to runtime, while the second case is as rigid as the typed functional approach. Both cases
lack the exhaustivity checking available in functional languages, and often force one to scat-
ter code in various objects, which makes the program harder to understand than in the
functional approach.

Objective Caml 3 [LDG+00], which is a typed functional language with object-oriented
extensions, provides a solution to this problem through polymorphic variants, a much more
flexible form of variant types. We show here how they can be applied to a concrete example,
the incremental construction of an evaluator for a lambda-calculus extended with arithmetic
operations.
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The idea for this example originally comes from a post by Phil Wadler on the Java-
Genericity mailing list [W+98], in which he proposed a solution to the Expression Problem,
that is the problem of extending a variant type with new constructors without recompiling
code for old ones. A similar problem and solution can be found in [KFF98], but untyped.
It appeared later that Wadler’s solution, which already supposed an extension of Generic
Java, itself an extension of Java, could not be typed. Didier Rémy, Jérôme Vouillon and
myself finally came up with a typable solution in an object-oriented extension of the 3rd

order typed lambda-calculus, which was later checked correct by Haruo Hosoya in F-omega-
sub-rec. On the other hand, I could provide a much shorter solution in about 15 lines of
Objective Label using polymorphic variants, which were merged later in Objective Caml.
The solution used only standard ML-polymorphism, which is a weakened 2nd order typed
lambda-calculus, and can be inferred automatically.

Rather than presenting here the solution to the expression problem, which from the
point of view of polymorphic variants would be only a toy example, we choose a full fledge
problem, addressing issues like use of functionals as iterators, and multiple inheritance with
a shared base class. Hopefully this should give a better idea of the expressive power of
polymorphic variants.

2 Variants and functional programming

Algebraic datatypes, also known as sums or variants, are one of the essential features of
strongly typed functional programming languages.

Usually such a type is defined once, and then many functions are defined to handle it
throughout the program.

A good example of frequently used variant type is lists1:

type ’a list = Nil | Cons of ’a * ’a list

This defines two constructors, Nil and Cons, with different arities and argument types. The
type itself is parametric in ’a, the type of elements of the list. Here is a list of integers2:

let l = Cons (1, Cons (2, Nil))
val l : int list

One can then define functions on this datatype, for instance computing the length of a list.

let rec length = function

Nil -> 0

| Cons(hd, tl) -> 1 + length tl
val length : ’a list → int

Since the length does not depend on the type of elements, this function is naturally given
a polymorphic type. That is, it can be applied indifferently to any instance of list.

Even more interesting, since functions are first class, it is very easy to define various kind
of iterators, or functionals that will take a function as argument and apply it appropriately
to the contents of the type. Such iterators, even when they actually build a new list, can
still be polymorphic in both the type of the list and the type of the result.

1All examples in this paper are processed by Objective Caml 3.00 (http://caml.inria.fr/ocaml/).
2In examples, lines starting with val (printed in italic) are not part of the program, but are type in-

formation output by the compiler. They are mixed with the input to help understanding, since programs
themselves contain very little type information.
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let rec map f = function

Nil -> Nil

| Cons(hd, tl) -> Cons (f hd, map f tl)
val map : (’a → ’b) → ’a list → ’b list

Functionals play an important role in avoiding code duplication, by factoring most opera-
tions into a structural and a logical part.

One may get the wrong idea that, since variant types are defined only once, and do not
admit any form of inheritance, they are difficult to extend. In fact, thanks to the power of
type checking and match analysis, this is just the contrary: you can easily add a case to an
existing variant type, and the compiler will help you step-by-step to find all the places that
must be modified.

For instance, suppose that we want to extend our lists to handle concatenation in O(1).
We can add a new constructor Conc:

type ’a list = Nil | Cons of ’a * ’a list | Conc of ’a list * ’a list

Now if we try to recompile our functions, we get the following warning.

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

Conc (_, _)

Following these warnings, one just has to add missing cases were they are needed, so that
the scattering of these definitions around the program is not a problem.

let rec length = function

Nil -> 0

| Cons(hd, tl) -> 1 + length tl

| Conc(l1, l2) -> length l1 + length l2
val length : ’a list → int

3 Polymorphic variants

While variants have proved to be a very powerful tool for program development and main-
tenance, their strength is also their weakness. Their staticness, which allows for thorough
checking, also means that the only possible way to reuse code is textual copy. Experience
shows that this is practical enough in many cases, but from the point of view of software en-
gineering, one would prefer to be actually able to share the code between different extensions
of the same variant type.

Polymorphic variants [Gar98] were introduced to permit a more flexible use of variants.
The main conceptual difference is that constructors are no longer tied to a single type, but
do exist independently of type definitions. For instance one can use the value ‘Var "x"
without any previous definition.

let v = ‘Var "x"
val v : [> ‘Var of string]

In Objective Caml [LDG+00], polymorphic variant constructors are only distinguished from
usual variants by a backquote ”‘” in front of their name. Types are written in a similar
way, but they are wrapped into square brackets, and type descriptions may appear directly
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Table 1: Variables, common to all languages

type var = [‘Var of string]

let eval_var sub (‘Var s as v : var) =

try List.assoc s sub with Not_found -> v
val eval var : (string * ([> ‘Var of string] as ’a)) list → var → ’a

inside normal type expressions, like for function types or tuples. The ”>” at the left of
the above type means that this type is not fully specified: it may actually contain other
constructors. Of course, one may also define fully specified types, like appears in table 1,
and later use them to constrain such partially specified values.

Symmetrically to values, pattern matchings are also given partially specified types, to
allow polymorphism.

let f = function ‘Var s -> String.length s | ‘Num n -> n
val f : [< ‘Var of string | ‘Num of int] → int

The above type means that f accepts both ‘Var and ‘Num as input, and in a polymorphic
way.

Finally, pattern matching is extended in order to allow dispatching according to sets of
constructors, rather than on an individual basis. This is actually the combination of two
mechanisms, one which uses as-patterns to refine types, and another which allows to use
directly type names in patterns.

let f g h = function #var as x -> g x | ‘Num _ as y -> h y
val f :

([> ‘Var of string] → ’a) → ([> ‘Num of ’b] → ’a) →
[< ‘Var of string | ‘Num of ’b] → ’a

Here #var is derived from the type definition of var, and stands as a shorthand for
‘Var( : string). This explains why string appears in the type, while ‘Num has no
specified argument type. The magic part is that we have split the ‘Var and ‘Num cases into
two independent types, and passed them to the functions g and h.

This is all we will use in our main example.

4 Application: a modular evaluator of extended lambda-
calculus

This example is intended to illustrate the expressive power of polymorphic variants with
respect to traditional variants, and typed object-oriented languages. It demonstrates most
of the capacity of the system, but had to be kept simple to fit into this paper: there is only
one operation, eval, and the expression is not decorated. In the real-size example, multiple
operations with dependencies are cleanly encoded through the Objective Caml class system,
and variant dispatch still works on a decorated tree.

The code is a complete: tables 1 to 4 include all the code of the program, which can be
directly compiled with Objective Caml 3.00. You just have to remove phrases starting by
val, which are output from the compiler.
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Table 2: The lambda calculus

type ’a lambda = [‘Var of string | ‘Abs of string * ’a | ‘App of ’a * ’a]

let gensym = let n = ref 0 in fun () -> incr n; "_" ^ string_of_int !n

let eval_lambda eval_rec subst : ’a lambda -> ’a = function

#var as v -> eval_var subst v

| ‘App(l1, l2) ->

let l2’ = eval_rec subst l2 in

begin match eval_rec subst l1 with

‘Abs(s, body) ->

eval_rec [s,l2’] body

| l1’ ->

‘App (l1’, l2’)

end

| ‘Abs(s, l1) ->

let s’ = gensym () in

‘Abs(s’, eval_rec ((s,‘Var s’)::subst) l1)
val eval lambda :

((string *
([> ‘Var of string | ‘Abs of string * ’a | ‘App of ’a * ’a] as ’a))

list → ’a → ’a) →
(string * ’a) list → ’a lambda → ’a

let rec eval1 subst = eval_lambda eval1 subst
val eval1 : (string * (’a lambda as ’a)) list → ’a → ’a

First we define a basic language containing only variables (table 1). Evaluation for this
language means looking in an environment for a binding associated to the variable name,
keeping it as is if there is none. Notice that since we have used dispatch (on a single case),
the type of v in eval var is [> ‘Var of string] and not var. The form ... as ’a denotes
that this type is shared between the environment list, and the result of eval var.

Then we define lambda-calculus by extending this basic language (table 2). Notice that
we are careful to define lambda as an open recursive type (subterms are of type ’a), and
to use open recursion in eval lambda, to be able to extend this definition later. The first
case of eval lambda is just delegating to eval var. Since the return type of eval var is
polymorphic, it is compatible with other branches, which may return ‘Abs or ‘App. Again
you can see the same pattern as in eval var, the input type of eval lambda is lambda,
but its output type is [> ‘Var of string | ‘Abs of string * ’a | ‘App of ’a * ’a] as

’a, which is the extensible version of lambda. Finally we build a specific evaluator eval1
for lambda by closing the recursion. Notice that this also closes the recursion at the type
level: both input and output types are now ’a lambda as ’a.

let e1 = eval1 [] (‘App(‘Abs("x",‘Var"x"), ‘Var"y"))
val e1 : ’a lambda as ’a = ‘Var ”y”

Along the same lines we define the expr language, which adds numbers, addition and
multiplication to the basic language (table 3). As for traditional variants, it comes handy to
define a map function, that uniformly applies a function to the subterms of an expression.
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Table 3: The expr language of arithmetic expressions

type ’a expr =

[‘Var of string | ‘Num of int | ‘Add of ’a * ’a | ‘Mult of ’a * ’a]

let map_expr (f : _ -> ’a) : ’a expr -> ’a = function

#var as v -> v

| ‘Num _ as n -> n

| ‘Add(e1, e2) -> ‘Add (f e1, f e2)

| ‘Mult(e1, e2) -> ‘Mult (f e1, f e2)
val map expr :

(([> ‘Var of string

| ‘Num of int

| ‘Add of ’a * ’a
| ‘Mult of ’a * ’a] as ’a) → ’a) → ’a expr → ’a

let eval_expr eval_rec subst (e : ’a expr) : ’a =

match map_expr (eval_rec subst) e with

#var as v -> eval_var subst v

| ‘Add(‘Num m, ‘Num n) -> ‘Num (m+n)

| ‘Mult(‘Num m, ‘Num n) -> ‘Num (m*n)

| e -> e
val eval expr :

((string *

([> ‘Var of string

| ‘Num of int

| ‘Add of ’a * ’a
| ‘Mult of ’a * ’a] as ’a)) list → ’a → ’a) →

(string * ’a) list → ’a expr → ’a

let rec eval2 subst = eval_expr eval2 subst
val eval2 : (string * (’a expr as ’a)) list → ’a → ’a

You can also see that evaluation is quite different of what it is on lambda: we first evaluate
all subterms to make redexes apparent, and then pattern match. Again, we define an
evaluator eval2 for the closed language ’a expr as ’a.

let e2 = eval2 [] (‘Add(‘Mult(‘Num 3, ‘Num 2), ‘Var"x"))
val e2 : ’a expr as ’a = ‘Add (‘Num 6, ‘Var ”x”)

Finally we take the union of lambda and expr, to create a full evaluator (table 4). Since
types are inferred by the compiler, all it takes is actually the 3 lines of eval lexpr: dispatch
constructors from lambda to eval lambda and constructors from expr to eval expr. This
is so simple that one may overlook that what we are doing here is multiple inheritance, with
a shared common ancestor (the var language). Since all languages must share the same
semantics for variables, this causes no complication. And this language is still extensible.
An evaluator for our language is eval3.

let e3 = eval3 []

(‘Add(‘App(‘Abs("x",‘Mult(‘Var"x",‘Var"x")),‘Num 2), ‘Num 5))
val e3 : ’a lexpr as ’a = ‘Num 9
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Table 4: The lexpr language, reunion of lambda and expr

type ’a lexpr =

[ ‘Var of string | ‘Abs of string * ’a | ‘App of ’a * ’a

| ‘Num of int | ‘Add of ’a * ’a | ‘Mult of ’a * ’a ]

let eval_lexpr eval_rec subst : ’a lexpr -> ’a = function

#lambda as x -> eval_lambda eval_rec subst x

| #expr as x -> eval_expr eval_rec subst x
val eval lexpr :

((string *

([> ‘Num of int

| ‘Abs of string * ’a
| ‘Add of ’a * ’a
| ‘App of ’a * ’a
| ‘Mult of ’a * ’a
| ‘Var of string] as ’a)) list → ’a → ’a) →

(string * ’a) list → ’a lexpr → ’a

let rec eval3 subst = eval_lexpr eval3 subst
val eval3 : (string * (’a lexpr as ’a)) list → ’a → ’a

5 Comparison with other approaches

It is interesting to see what makes hard to encode the above example into traditional
variants. There the standard way to produce the union of two types is to embed them
in a type containing a constructor for each of them. In table 5 we give types for such an
encoding, and some sample of the code.

One first problem, that you can see immediately by looking at the type definitions, is
that this approach does not support multiple inheritance properly: lexpr contains two type
of variables, Lambda(VarL "x") and Expr(VarE "x"). This is due to the fact traditional
variants provide only disjoint sum, while union of polymorphic variants provides coalesced
sum, required to handle the sharing of a common ancestor in multiple inheritance.

Another problem is that you need to do a lot of wrapping/unwrapping to have types
working in your pyramid of languages: var is not directly compatible with expr or lambda,
which in turn are incompatible with lexpr. Basically, all functions should have two extra
arguments wrap and unwrap, doing this administrative work. Contrary to the problem of
multiple inheritance, which cannot be solved uniformly without coalesced sums, we have here
a workaround, but only at the cost of much verbosity. For instance eval lexpr (omitted
since it would not help understanding) requires 12 lines of code where polymorphic variants
do with just 3 lines.

Comparing with object-oriented languages, there is not very much to say. It seems
already difficult to typecheck a much simpler version of the expression problem in them (a
3rd order type system is required, as stated in the introduction), and this example adds a
large number of difficulties. Independently of the problem of types, any translation of the
above example in object-oriented style, using the visitor pattern, is going to be much more
verbose, to such an extent that only giving snippets of the code would already be difficult.
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Table 5: Encoding using normal variants

type var = string

type ’a lambda = VarL of var | Abs of string * ’a | App of ’a * ’a

type ’a expr =

VarE of var | Num of int | Add of ’a * ’a | Mult of ’a * ’a

type ’a lexpr = Lambda of ’a lambda | Expr of ’a expr

let eval_var wrap sub (s : var) =

try List.assoc s sub with Not_found -> wrap s
val eval var : (var → ’a) → (var * ’a) list → var → ’a

let eval_expr eval_rec wrap unwrap subst e =

let e’ = map_expr (eval_rec subst) e in

match map_expr unwrap e’ with

VarE v -> eval_var (fun x -> wrap (VarE x)) subst v

| Add(Some(Num m), Some(Num n)) -> wrap (Num (m+n))

| Mult(Some(Num m), Some(Num n)) -> wrap (Num (m*n))

| _ -> wrap e’
val eval expr :

((var * ’a) list → ’b → ’c) → (’c expr → ’a) →
(’c → ’d expr option) → (var * ’a) list → ’b expr → ’a

6 Conclusion

We have demonstrated here how polymorphic variants allow one to combine the benefits
of algebraic datatypes —namely clean separation of code and data, pattern-matching, and
refined type checking— with code reuse at a level of simplicity comparable with object-
oriented languages.

The added expressive power is significant: encoding in either traditional variants or
object-oriented style would incur problems ranging from loss of clarity by a major increase
in verbosity, to type theoretical limits such as the absence of coalesced sums for traditional
variants or the need for higher-order typing with object-oriented style.
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