A TypeTheoretic Account of Quantum Computation

Jacques
Garrigue,
Takafumi
Saikawa

Background:
Unitary semantics

Direct power vector space and naturality

A Type-Theoretic Account of Quantum Computation

Jacques Garrigue Takafumi Saikawa

September 4, 2023

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Background:

Table of contents

(1) Background: Unitary semantics
(2) Direct power vector space and naturality
(3) Lens, curry-uncurry, focus
(4) Proving circuits correct
(5) Conclusion
A TypeTheoretic Account of Quantum Computation
Jacques Garrigue, Takafumi Saikawa
Background: Unitary semantics
Direct power vector space and naturality
Lens,
curry-uncurry, focus
Proving circuits correct

Background: Unitary semantics

Unitary semantics of pure quantum computation

- An isolated qubit is a vector of norm 1 in \mathbb{C}^{2}, with basis $|0\rangle=(1,0)$ and $|1\rangle=(0,1)$
- States composed of n qubits are vectors of norm 1 in the Hilbert space of the n-iterated tensor product

$$
\left(C^{2}\right)^{\otimes n}=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\mathbb{C}^{2^{n}}
$$

with computational basis states $\left|i_{1}\right\rangle \otimes \cdots \otimes\left|i_{n}\right\rangle$

- Other states are linear combinations, in particular those that cannot be expressed as a n-ary tensor are entangled
- Pure operations are unitary transformations (linear and norm preserving) on that space

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Background: Unitary semantics

Quantum gates

- Basic operations are unitary transformations called gates
- They can be described by their matrix representation Hadamard gate

$$
-H-\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

CNOT gate

$$
\underset{\oiiint}{\wp}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Background: Unitary semantics

Example of quantum circuit

Shor's 9-qubit code

- A quantum circuit applies unitary transformations to an input state to obtain an output state
- Here E denotes a possibly noisy quantum channel

Jacques Garrigue, Takafumi Saikawa

Semantics of composition

- For pure computations, the whole circuit can also be described by a matrix
- Application of a gate to a large state uses padding, i.e. taking a tensor product with an identity matrix and reordering dimensions.
For instance the first CNOT gate becomes:

$$
U_{2^{\otimes 9}}((42))\left[\begin{array}{cccc}
I_{128} & 0 & 0 & 0 \\
0 & I_{128} & 0 & 0 \\
0 & 0 & 0 & I_{128} \\
0 & 0 & I_{128} & 0
\end{array}\right] U_{2 \otimes 9}((24))
$$

where $U_{2{ }^{\otimes 9}}((24))$ is the tensor permutation matrix exchanging 2 nd and 4 th component of the tensor product

Theoretic
Account of Quantum Computation

Jacques
Garrigue,
Takafumi
Saikawa

Problems with this semantics

(1) The size of matrices becomes huge (here 512×512)
(2) The reorderings are particularly cumbersome
(3) While these problems can be fixed to some extent by using a symbolic representation of Kronecker products, and/or by adopting the so-called labelled Dirac notation, this comes at a cost in terms of compositionality

Shor's code is actually based on the following two simpler codes, which are able to fix respectively bit-flips and sign-flips.
CBit-flip code

Compositionality

Sign-flip code

We would like to be able to handle such subcircuits just like gates, but we do not want to be bothered by the permutations.
A TypeTheoretic Account of Quantum Computation
Jacques Garrigue, Takafumi Saikawa
Background: Unitary semantics
Direct power vector space and naturality

Lens,

curry-uncurry, focus

Proving circuits correct

Direct power vector space and naturality

Jacques Garrigue, Takafumi Saikawa

Quantum states as functions

An alternative view of quantum states

- uses the isomorphism $\mathbb{C}^{2} \cong\{0,1\} \rightarrow \mathbb{C}$
- The basis states $|0\rangle=(1,0)$ and $|1\rangle=(0,1)$ become

$$
\begin{aligned}
& |0\rangle=\lambda x: 2 \text {.if } x=0 \text { then } 1 \text { else } 0 \\
& |1\rangle=\lambda x: 2 . \text { if } x=1 \text { then } 1 \text { else } 0
\end{aligned}
$$

where $2=\{0,1\}$

- This extends to states composed of n qubits:

$$
\begin{aligned}
\text { qustate }_{n}= & \{0,1\}^{n} \rightarrow \mathbb{C} \\
\left|i_{1}, \ldots, i_{n}\right\rangle= & \lambda x: 2^{n} . \\
& \text { if } x=\left(i_{1}, \ldots, i_{n}\right) \text { then } 1 \text { else } 0
\end{aligned}
$$

This looks like probabilistic programming

Jacques Garrigue, Takafumi Saikawa

Generalization : Direct Power

For any vector space T, we define the direct power vector space of functions from the nth power of a finite type (e.g. 2^{n}) to T. We use mathematical definitions from MathComp. direct power vector space

$$
\begin{aligned}
& \text { Variables (I : finite type) (dI : I) (K : field). } \\
& \text { Definition dpower } \mathrm{n} T:=\mathrm{I}^{\mathrm{n}} \xrightarrow{\text { fin }} \mathrm{T} \text {. } \\
& \text { Notation } \mathrm{T}^{\widehat{\mathrm{n}}}:=(\text { dpower } \mathrm{n} \text {). } \\
& \text { Definition dpbasis } \mathrm{m}\left(\mathrm{vi}: \mathrm{I}^{\mathrm{n}}\right):\left(\mathrm{K}^{1}\right)^{\widehat{\mathrm{m}}}:= \\
& \quad\left(\mathrm{vj}: \mathrm{I}^{\mathrm{n}}\right) \stackrel{\text { fin }}{\longrightarrow} \text { if vi }==\mathrm{vj} \text { then } 1 \text { else } 0 . \\
& \text { Definition morlin } \mathrm{m} \mathrm{n}:=\forall \mathrm{T}: \text { Vect }_{\mathrm{K}}, \mathrm{~T}^{\widehat{\mathrm{m}}} \xrightarrow{\text { lin }} \mathrm{T}^{\widehat{\mathrm{n}}} .
\end{aligned}
$$

This allows to nest quantum states without tensor product.

Jacques Garrigue, Takafumi Saikawa Unitary semantics

Direct power vector space and naturality

Generalization: Direct Power

For any vector space T, we define the direct power vector space of functions from the nth power of a finite type (e.g. 2^{n}) to T.
We use mathematical definitions from MathComp.
direct power vector space
Variables (I : finite type) (dI : I) (K : field).
Definition dpower $n T:=I^{\mathrm{n}} \xrightarrow{\text { fin }} T$.
Notation $\mathrm{T}^{\widehat{\mathrm{n}}}:=($ dpower n T).
Definition dpbasis m (vi : I^{n}) : $\left(\mathrm{K}^{1}\right)^{\widehat{m}}:=$
$\left(\mathrm{vj}: \mathrm{I}^{\mathrm{n}}\right) \stackrel{\mathrm{fin}}{\longmapsto}$ if $\mathrm{vi}==\mathrm{vj}$ then 1 else 0 .
Definition morlin $m \mathrm{n}:=\forall \mathrm{T}:$ Vect $_{\mathrm{K}}, \mathrm{T}^{\widehat{\mathrm{m}}} \xrightarrow{\text { lin }} \mathrm{T}^{\widehat{\mathrm{n}}}$.
This allows to nest quantum states without tensor product.
Problem: how do we ensure that functions in morlin $m \mathrm{n}$ have a unique matrix representation, that does not depend on T ?

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Naturality

The solution is to additionally require naturality.

naturality

Definition dpmap $\mathrm{m}_{1} \mathrm{~T}_{2}\left(\varphi: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}\right)\left(\right.$ st $\left.: \mathrm{T}_{1}^{\widehat{\mathrm{m}}}\right): \mathrm{T}_{2}^{\widehat{\mathrm{m}}}:=$ $\left(\mathrm{v}: \mathrm{I}^{\mathrm{m}}\right) \stackrel{\mathrm{fin}}{\longmapsto} \varphi($ st $(\mathrm{v})) . \quad\left((\right.$ dpmap $\varphi)$ is denoted $\varphi^{I^{m}}$ above)
Definition naturality m n (G : morlin m n) :=
$\forall\left(\mathrm{T}_{1} \mathrm{~T}_{2}: \mathrm{Vect}_{\mathrm{K}}\right), \forall\left(\varphi: \mathrm{T}_{1} \xrightarrow{\operatorname{lin}} \mathrm{~T}_{2}\right)$,
$($ dpmap $\varphi) \circ\left(\mathrm{G}_{1}\right)=\left(\mathrm{G}_{2}\right) \circ(\operatorname{dpmap} \varphi)$.

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Background: Unitary semantics

Direct power vector space and naturality

Linearity, naturality, unitarity

```
(* natural morphisms *)
Record mor m n :={\varphi:morlin m n | naturality }\varphi}\mathrm{ .
Notation endo n := (mor n n).
(* from matrix *)
Definition tsmor n m : ( }\mp@subsup{\textrm{K}}{}{\widehat{m}}\mp@subsup{)}{}{\widehat{\textrm{n}}}->\mathrm{ mor m n.
(* vertical composition *)
Definition comp_mor : mor m p -> mor n m -> mor n p.
Notation "F \v G" := (comp_mor F G).
(* unitarity *)
Definition unitary_endo m n (F : mor m n) :=
    | t, tinner (F K 
(K}\mp@subsup{}{}{1}\mathrm{ is the field K seen as a vector space)
```

A TypeTheoretic Account of Quantum Computation

> Jacques
> Garrigue,
> Takafumi
> Saikawa
Background:
semantics
Direct power vector space and naturality
Lens,
curry-uncurry, focus
Proving circuits correct

Lens, curry-uncurry, focus

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Background: Unitary semantics

Direct power vector space and naturality

Lens,

 curry-uncurry, focusProving circuits correct

Conclusion

Lens, curry-uncurry, focus

Lens, curry-uncurry, focus

- Lens = choice of wires to be connected to gates; basic combinatorial data

Lens, curry-uncurry, focus

- Lens = choice of wires to be connected to gates; basic combinatorial data
- Currying = quotienting unused wires away

Lens, curry-uncurry, focus

- Lens $=$ choice of wires to be connected to gates; basic combinatorial data
- Currying = quotienting unused wires away
- Focusing = composing curry, gate and uncurry to build the diagram

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa
lens

$$
\text { lens } \mathrm{n} \mathrm{~m}:\{1, \ldots, m\} \xrightarrow{\text { injective }}\{1, \ldots, n\}
$$

- Provides both inclusion and permutation
- Basic operations:

```
Variables (n m p : nat) (I : Type).
Definition extract : lens n m -> In}->\mp@subsup{I}{}{m}
Definition merge : lens n m -> Im}->\mp@subsup{I}{}{\textrm{n}-\textrm{m}}->\mp@subsup{\textrm{I}}{}{\textrm{n}}\mathrm{ .
Definition lensC : lens n m l lens n (n - m).
Definition lens_comp :
    lens n m -> lens m p -> lens n p.
```

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Currying

$$
0
$$

curry and uncurry

$$
\begin{gathered}
\text { curry : } T^{I^{n}} \longleftrightarrow\left(T^{I^{n-m}}\right)^{I^{m}}: \text { uncurry } \\
\left(T^{I^{n}}=\operatorname{Set}\left(I^{n}, T\right) \cong \operatorname{Set}\left(I^{m}, \operatorname{Set}\left(I^{n-m}, T\right)\right)\right)
\end{gathered}
$$

Variables (n m : nat) (ℓ : lens $n m$) (T : Vect ${ }_{K}$). Definition curry (st: $\left.\mathrm{T}^{\widehat{\mathrm{n}}}\right):\left(\widehat{\left.\mathrm{T}^{\widehat{\mathrm{n}-\mathrm{m}}}\right)^{\widehat{\mathrm{m}}}:=}\right.$

$$
\left.\left(v: I^{m}\right) \stackrel{\text { fin }}{\longmapsto}\left(\left(w: I^{n-m}\right) \stackrel{\text { fin }}{\longmapsto} \text { st (merge } \ell v \mathrm{w}\right)\right) .
$$

Definition uncurry (st $\left.:\left(\widehat{\mathrm{T}^{\mathrm{n}-\mathrm{m}}}\right)^{\widehat{m}}\right): \mathrm{T}^{\widehat{\mathrm{n}}}:=$

$$
\left.\left.\left(\mathrm{v}: \mathrm{I}^{\mathrm{n}}\right) \stackrel{\mathrm{fin}}{\longmapsto} \text { st (extract } \ell \mathrm{v}\right)(\text { extract (lensC } \ell) \mathrm{v}\right) .
$$

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Background: Unitary semantics

Direct power vector space and naturality

Lens,

focus

Variables (n m : nat) (ℓ : lens n m).
Definition focuslin (G : endo m) : morlin n n := λT. uncurry $\ell, \mathrm{T} \circ \mathrm{G}_{\widehat{\mathrm{Tn}-\mathrm{m}}} \circ \operatorname{curry}_{\ell, \mathrm{T}}$. Definition focus (G : endo m) : endo n .

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Background: Unitary semantics

Direct power vector space and naturality

Lens,

Properties

```
(* Distributivity wrt vertical composition *)
Lemma focus_comp n m (f g : endo m) (l : lens n m) :
    focus l (f \v g) = focus l g \v focus l g.
(* Composition of lenses *)
Lemma focusM n m p
    (l : lens n m) (l' : lens m p) (f : endo p) :
    focus (lens_comp l l') f = focus l (focus l' f).
(* Composition of disjoint lenses commutes *)
Lemma focusC n m p (l : lens n m) (l' : lens n p)
    (f : endo m) (g : endo n) : [disjoint l & l'] ->
    focus l f \v focus l' g = focus l' g \v focus l f.
(* Unitarity *)
Lemma focusU n m (l : lens n m) (f : endo m) :
    unitary_endo f -> unitary_endo (focus l f).
```

A TypeTheoretic Account of Quantum Computation

> Jacques
> Garrigue,
> Takafumi
> Saikawa
Background:
Lens,
curry-uncurry,
focus
Proving
circuits correct

Proving circuits correct

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Representing Shor's code

```
Notation tsapp l M := (focus l (tsmor M)).
```

Notation tsapp l M := (focus l (tsmor M)).
Definition bit_flip_enc : endo 3 :=
Definition bit_flip_enc : endo 3 :=
tsapp [lens 0; 2] cnot \v tsapp [lens 0; 1] cnot.
tsapp [lens 0; 2] cnot \v tsapp [lens 0; 1] cnot.
Definition bit_flip_dec : endo 3 :=
Definition bit_flip_dec : endo 3 :=
tsapp [lens 1; 2; 0] toffoli \v bit_flip_enc.
tsapp [lens 1; 2; 0] toffoli \v bit_flip_enc.
Definition hadamard3 : endo 3 :=
Definition hadamard3 : endo 3 :=
tsapp [lens 2] hadamard \v tsapp [lens 1] hadamard
tsapp [lens 2] hadamard \v tsapp [lens 1] hadamard
\v tsapp [lens 0] hadamard.
\v tsapp [lens 0] hadamard.
Definition sign_flip_dec := bit_flip_dec \v hadamard3.
Definition sign_flip_dec := bit_flip_dec \v hadamard3.
Definition sign_flip_enc := hadamard3 \v bit_flip_enc.
Definition sign_flip_enc := hadamard3 \v bit_flip_enc.
Definition shor_enc : endo 9 :=
Definition shor_enc : endo 9 :=
focus [lens 0; 1; 2] bit_flip_enc \v
focus [lens 0; 1; 2] bit_flip_enc \v
focus [lens 3; 4; 5] bit_flip_enc \v
focus [lens 3; 4; 5] bit_flip_enc \v
focus [lens 6; 7; 8] bit_flip_enc \v
focus [lens 6; 7; 8] bit_flip_enc \v
focus [lens 0; 3; 6] sign_flip_enc.
focus [lens 0; 3; 6] sign_flip_enc.
Definition shor_dec : endo 9 := ...

```
Definition shor_dec : endo 9 := ...
```

Jacques Garrigue, Takafumi Saikawa

We have only proved the correctness for error-free channels.

```
Definition flip (i : 'I_2) := rev_ord i. (* exchanges 0 and 1 *)
Lemma tsmor_cnot0 i : tsmor cnot Co |O, i\rangle = |0, i\rangle.
Lemma tsmor_cnot1 i : tsmor cnot Co |1, i\rangle = |1, flip i\rangle.
Lemma tsmor_toffoli00 i : tsmor toffoli Co {0,0,i\rangle = {0,0,i\rangle.
Lemma hadamardK T : involutive (tsmor hadamard T).
Lemma bit_flip_enc0 j k : bit_flip_enc Co |0,j,k\rangle = {0,j,k\rangle.
Lemma bit_flip_enc1 j k :
    bit_flip_enc Co {1,j,k\rangle = |1, flip j, flip k\rangle.
Lemma bit_flip_toffoli :
    (bit_flip_dec \v bit_flip_enc) = tsapp [lens 1; 2; 0] toffoli.
Lemma sign_flip_toffoli :
    (sign_flip_dec \v sign_flip_enc) = tsapp [lens 1; 2; 0] toffoli.
Theorem shor_code_id i :
    (shor_dec \v shor_enc) Co \i,0,0,0,0,0,0,0,0\rangle = {i,0,0,0,0,0,0,0,0\rangle.
```

The above lemmas require about 80 lines of proof in total.

Jacques Garrigue, Takafumi Saikawa

Focusing in and out

We provide a number of functions and lemmas that allow to change the view of the current state.

Variables (n m : nat) (l : lens $\mathrm{n} m$). Definition dpmerge : $\left(\mathrm{K}^{1}\right)^{\widehat{\mathrm{n}}} \rightarrow\left(\mathrm{K}^{1}\right)^{\widehat{\mathrm{m}}} \xrightarrow{\ln }\left(\mathrm{K}^{1}\right)^{\widehat{\mathrm{n}}}$.

Lemma focus_dpbasis (f : endo n) (vi : I^{n}) :
focus l f _ (dpbasis vi) =
dpmerge vi (f _ (dpbasis (extract l vi))).
Lemma dpmerge_dpbasis (vi : I^{n}) (vj : I^{m}) :
dpmerge vi (dpbasis vj) =
dpbasis (merge l vj (extract (lensC l) vi)).
Lemma decompose_scaler k (st: $\left.\left(\mathrm{K}^{1}\right)^{\widehat{\mathrm{n}}}\right)$:

$$
\text { st }=\sum_{\mathrm{t}: \mathrm{I}^{\mathrm{k}}} \text { st } \mathrm{t} *: \text { dpbasis } \mathrm{t} .
$$

A TypeTheoretic Account of Quantum Computation

Jacques Garrigue, Takafumi Saikawa

Proof of bit_flip_enc1 (first half)

```
    bit_flip_enc Co |1,j,k>
```

 bit_flip_enc Co |1,j,k>
 rewrite /=.
rewrite /=.
= tsapp [lens 0; 2] cnot Co (tsapp [lens 0; 1] cnot Co | 1, j, k >)
= tsapp [lens 0; 2] cnot Co (tsapp [lens 0; 1] cnot Co | 1, j, k >)
rewrite focus_dpbasis.
rewrite focus_dpbasis.
= tsapp [lens 0; 2] cnot Co
= tsapp [lens 0; 2] cnot Co
(dpmerge [lens 0; 1] [tuple 1; j; k]
(dpmerge [lens 0; 1] [tuple 1; j; k]
(tsmor cnot Co
(tsmor cnot Co
(dpbasis (extract [lens 0; 1] [tuple 1; j; k]))))
(dpbasis (extract [lens 0; 1] [tuple 1; j; k]))))
simpl_extract.
simpl_extract.
= tsapp [lens 0; 2] cnot Co
= tsapp [lens 0; 2] cnot Co
(dpmerge C [lens 0; 1] [tuple 1; j; k] (tsmor cnot Co | 1, j >))
(dpmerge C [lens 0; 1] [tuple 1; j; k] (tsmor cnot Co | 1, j >))
rewrite tsmor_cnot1.
rewrite tsmor_cnot1.
= tsapp [lens 0; 2] cnot Co
= tsapp [lens 0; 2] cnot Co
(dpmerge C [lens 0; 1] [tuple 1; j; k] | 1, flip j >)
(dpmerge C [lens 0; 1] [tuple 1; j; k] | 1, flip j >)
rewrite dpmerge_dpbasis.
rewrite dpmerge_dpbasis.
= tsapp [lens 0; 2] cnot Co
= tsapp [lens 0; 2] cnot Co
(dpbasis (merge [lens 0; 1] [tuple 1; flip j]
(dpbasis (merge [lens 0; 1] [tuple 1; flip j]
(extract (lensC [lens 0; 1]) [tuple 1; j; k])))
(extract (lensC [lens 0; 1]) [tuple 1; j; k])))
rewrite (_ : merge _ _ _ = [tuple 1; flip j; k]); last by eq_lens.
rewrite (_ : merge _ _ _ = [tuple 1; flip j; k]); last by eq_lens.
= tsapp [lens 0; 2] cnot Co | 1, flip j, k >

```
= tsapp [lens 0; 2] cnot Co | 1, flip j, k >
```

A TypeTheoretic Account of Quantum Computation

Jacques
Garrigue,
Takafumi
Saikawa

Background:
semantics
Direct power vector space and naturality
Lens,
curry-uncurry, focus
Proving circuits correct
Conclusion

Conclusion

Jacques Garrigue, Takafumi Saikawa

Conclusion

We have provided an alternative account of pure quantum computation, based on

- quantum state seen as function
- currying of this function for focusing
- parametric polymorphic definition of transformations
- characterizing parametricity by naturality

This approach allowed us to prove a number of pure circuits

- Shor's 9-qubit code (on error-free channel)
- GHZ state preparation
- reverse circuit

The ability to manipulate state through currying really seems to simplify proofs!

