Formalizing
quantum
circuits with
Math-
Comp/Ssreflect
Takafumi
Saikawa,
Jacques
Garrigue
Motivation:
Quantum error
correction
Quantum bit
and operator
Operators in
operation
Lens,
curry-uncurry,
focus
Parametric
linearity and
naturality
Perspective

Formalizing quantum circuits with MathComp/Ssreflect

Takafumi Saikawa Jacques Garrigue

November 22, 2021

Formalizing

 quantum circuits with MathComp/SsreflectTakafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens,

Table of contents

(1) Motivation: Quantum error correction
(2) Quantum bit and operator
(3) Operators in operation
(4) Lens, curry-uncurry, focus
(5) Parametric linearity and naturality
(6) Perspective
Formalizing quantum circuits with MathComp/Ssreflect
Takafumi
Saikawa,
Jacques
Garrigue
Motivation: correction
Quantum bit and operator
Operators in operation
Lens,
curry-uncurry, focus
Parametric linearity and naturality

Motivation: Quantum error correction
Formalizing
quantum
circuits with
Math-
Comp/Ssreflect
Takafumi
Saikawa,
Jacques
Garrigue
Motivation:
Quantum error
correction
Quantum bit
and operator
Operators in
operation
Lens,
curry-uncurry,
focus
Parametric
linearity and
naturality
Perspective

Classical ECC

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens, curry-uncurry, focus

Parametric linearity and naturality

- Data are encoded, sent through noisy channel, and decoded back
Formalizing
quantum
circuits with
Math-
Comp/Ssreflect
Takafumi
Saikawa,
Jacques
Garrigue Motivation:

Classical ECC

- Data are encoded, sent through noisy channel, and decoded back
- Encoder : data \hookrightarrow code

Formalizing quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation
Lens,
curry-uncurry,
focus

Classical ECC

- Data are encoded, sent through noisy channel, and decoded back
- Encoder : data \hookrightarrow code

- Noises: bit flip / bit erasure

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Classical ECC

- Data are encoded, sent through noisy channel, and decoded back
- Encoder : data \hookrightarrow code

- Noises: bit flip / bit erasure
- Decoder restores the most likely data from the received value

```
Comp/Ssreflect
```

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Plan towards formalizing QECC

Similarly to classical ECC, we plan to do:
(2) Formalize encoder, channel and decoder
(3) Prove the ability to correct error(s)
(4) Information-theoretic analysis

```
Comp/Ssreflect
```

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Plan towards formalizing QECC

Similarly to classical ECC, we plan to do:
(1) Formalize quantum circuit
(2) Formalize encoder, channel and decoder
(3) Prove the ability to correct error(s)
(4) Information-theoretic analysis

Takafumi
Saikawa,
Jacques
Garrigue

Differences at a quick glance

Classical	Quantum
bit $\in\{0,1\}$	qubit $\in \mathbb{C}^{2}$
functions in Set	unitary morphisms in \mathcal{F} (ilb
bit flip / bit erasure	bit flip / phase flip / both

$$
\left(\text { bit flip }=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \text { phase flip }=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \text { both }=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right)
$$

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation
Lens,
curry-uncurry,
focus

Examples

QECCs are written as quantum circuits: bit-flip correcting code

(C) Self / Wikimedia Commons / CC-BY-SA-3.0

Formalizing circuits with MathComp/Ssreflect

Takafumi
Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Examples

Another example:

Formalizing
quantum
circuits with Math-
Comp/Ssreflect

Takafumi

Saikawa,
Jacques Garrigue
Operators in operation
Lens,
curry-uncurry, focus
Parametric linearity and naturality

Quantum bit and operator

Formalizing

 circuits with MathComp/SsreflectTakafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation Lens, curry-uncurry, focus

Differences at a quick glance

Classical	Quantum
bit $\in\{0,1\}$	qubit $\in \mathbb{C}^{2}$
functions in Set	unitary morphisms in \mathcal{H} ilb
bit flip / bit erasure	bit flip / phase flip / both

```
Comp/Ssreflect
```

Takafumi
Saikawa,
Jacques Garrigue

Differences at a quick glance

Classical	Quantum
bit $\in\{0,1\}$	qubit $\in \mathbb{C}^{2}$
functions in Set	unitary morphisms in \mathcal{H} ilb
bit flip / bit erasure	bit flip / phase flip / both

Quantum functions take tensor products, not direct products, as input.

Tensor product

- Direct product

$$
X \times Y=\{\langle x, y\rangle \mid x \in X, y \in Y\}
$$

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa, Jacques Garrigue

- Direct product

$$
X \times Y=\{\langle x, y\rangle \mid x \in X, y \in Y\}
$$

- Tensor product

$$
X \otimes Y=\left\{\sum_{i} c_{i}\left\langle x_{i}, y_{i}\right\rangle \mid c_{i} \in \mathbb{C}, x_{i} \in X, y_{i} \in Y\right\} / \sim
$$

Formalizing
quantum circuits with Math-

```
Comp/Ssreflect
```

Takafumi
Saikawa, Jacques Garrigue

- Direct product

$$
X \times Y=\{\langle x, y\rangle \mid x \in X, y \in Y\}
$$

- Tensor product

$$
X \otimes Y=\left\{\sum_{i} c_{i}\left\langle x_{i}, y_{i}\right\rangle \mid c_{i} \in \mathbb{C}, x_{i} \in X, y_{i} \in Y\right\} / \sim
$$

Tensor product is much bigger!

Formalizing quantum circuits with MathComp/Ssreflect

Takafumi

Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator
Operators in operation

Lens,
curry-uncurry, focus

Tensor power

tensor power

- Tensor power $V^{\otimes n}$

$$
=\text { iterated tensor product } V \otimes \cdots \otimes V
$$

- If $V=K^{m}, V^{\otimes n} \cong \operatorname{Set}\left(m^{n}, K\right)$

```
Variables (I : finType) (R : comRingType).
Definition tpower ( \(n\) : nat) ( \(T\) : Type) :=
    \{ffun n.-tuple I \(->\) T\}.
Definition tpbasis m (vi : m.-tuple I) : tpower m R^o :=
    [ffun vj => (vi == vj) \%:R].
```

Formalizing quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens,
curry-uncurry, focus

Parametric linearity and naturality

Qubit

quantum bit

- Qubit $\in \mathbb{C}^{2}$
- Array of qubits $\in\left(\mathbb{C}^{2}\right)^{\otimes n}$

Let R := Reals.Rdefinitions.R.
Let C := [comRingType of R[i]].
Notation "| x1 , .. , xn >" :=
(tpbasis _ [tuple of x 1 :: .. [:: xn] ..])
$\mathrm{x} 1, \ldots, \mathrm{xn}$ are elements of $\{0,1\}$

Formalizing

Takafumi

Saikawa, Jacques Garrigue

Operator

operator

Operators on qubits are

- linear: addition and scalar action must be preserved

```
Variables (n m : nat) (l : lens n m).
Definition endofun m := forall T : lmodType R,
    tpower m T >> tpower m T.
Definition endo m := forall T : lmodType R,
    {linear tpower m T -> tpower m T}.
```

Formalizing

Takafumi

Saikawa, Jacques Garrigue

Operator

operator

Operators on qubits are

- linear: addition and scalar action must be preserved
- unitary: norm must be preserved (not yet)

Variables (n m : nat) (1 : lens n m). Definition endofun m := forall T : lmodType R, tpower m T -> tpower m T.
Definition endo m := forall T : lmodType R, \{linear tpower m T $->$ tpower m T\}.

Formalizing

Takafumi

Saikawa, Jacques Garrigue

operator

Operators on qubits are

- linear: addition and scalar action must be preserved
- unitary: norm must be preserved (not yet)
- parametrically linear: explained later

Variables (n m : nat) (l : lens n m).
Definition endofun m := forall T : lmodType R, tpower m T \rightarrow tpower m T.
Definition endo m := forall T : lmodType R, \{linear tpower m $\mathrm{T} \rightarrow$ tpower m T \}.

Formalizing
quantum
circuits with
Math-
Comp/Ssreflect
Takafumi
Saikawa,
Jacques
Garrigue Motivation:

Example: CNOT

Finite dimensional operators are handily given by matrices:

controlled not

$$
\text { CNOT }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Formalizing

Takafumi
Saikawa,
Jacques Garrigue

Example: CNOT

Finite dimensional operators are handily given by matrices:

controlled not

$$
\mathrm{CNOT}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Or, written down using tensor bases:
Definition tsquare m := tpower m (tpower $m R^{\wedge} o$).
Definition ket_bra m (ket bra : tpower m R^o) : tsquare m := [ffun vi => ket vi *: bra].
Definition cnot : tsquare C 2 :=
ket_bra $|0,0\rangle\{0,0\rangle+$ ket_bra $|0,1\rangle|0,1\rangle+$
ket_bra $|1,0\rangle|1,1\rangle+$ ket_bra $|1,1\rangle|1,0\rangle$.
Formalizing quantum circuits with MathComp/Ssreflect

Takafumi

Saikawa,
Jacques Garrigue
Lens,
curry-uncurry,
focus
Parametric
linearity and
naturality
Perspective

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Operators in operation

Formalizing
Lens,
curry-uncurry,
focus
Parametric
linearity and
naturality
Perspective

Takafumi
Saikawa,
Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Problem

- Each gate is fairly simple:

$$
\text { CNOT }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa, Jacques Garrigue

- Each gate is fairly simple:

$$
\text { CNOT }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- but when put in a circuit, it becomes a monster:

$$
\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \otimes\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cccc}
x a & x b & y a & y b \\
x c & x d & y c & y d \\
z a & z b & w a & w b \\
z c & z d & w c & w d
\end{array}\right]
$$

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa,
Jacques Garrigue

Motivation:

 Quantum error correctionQuantum bit and operator

Operators in operation

Lens,
curry-uncurry, focus

Parametric linearity and naturality

CNOT in 3-qubit circuits

where $X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Formalizing

quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens,
curry-uncurry,
focus
Parametric linearity and naturality

String diagram

- Natural depiction of gate application
- FP-ish: unused inputs (black) are curried away
- We want to program like this instead of matrices
Formalizing
quantum
circuits with
Math-
Comp/Ssreflect
Takafumi
Saikawa,
Jacques
Garrigue
Motivation:
Quantum error
correction
Quantum bit
and operator
Operators in
operation
Lens,
curry-uncurry,
focus
Parametric
linearity and
naturality
Perspective

Lens, curry-uncurry, focus

Formalizing

quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa,
Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens, curry-uncurry, focus

Parametric linearity and naturality

Perspective

Lens, curry-uncurry, focus

Formalizing

quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens, curry-uncurry, focus

Parametric linearity and naturality

Lens, curry-uncurry, focus

- Lens = choice of wires to be connected to gates; basic combinatorial data

Formalizing

Takafumi
Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens, curry-uncurry, focus

Parametric linearity and naturality

Lens, curry-uncurry, focus

- Lens = choice of wires to be connected to gates; basic combinatorial data
- Currying = quotienting unused wires away

Formalizing

Takafumi
Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens, curry-uncurry, focus

Parametric linearity and naturality

Lens, curry-uncurry, focus

- Lens = choice of wires to be connected to gates; basic combinatorial data
- Currying = quotienting unused wires away
- Focusing = composing curry, gate and uncurry to build the diagram

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens,
curry-uncurry, focus

Parametric linearity and naturality

Lens

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { lens } \\
\text { lens } \mathrm{n} \mathrm{~m}:\{1, \ldots, m\} \hookrightarrow\{1, \ldots, n\}
\end{array}\right. \\
& \begin{array}{l}
\text { Record lens }:=\text { mkLens } \\
\quad \text { \{lens_t }:>\text { m.-tuple 'I_n ; lens_uniq }: ~ u n i q ~ l e n s _t ~
\end{array} .
\end{aligned}
$$

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi

Saikawa, Jacques Garrigue Motivation: Quantum error correction

Quantum bit and operator

Currying

curry and uncurry

$$
\begin{gathered}
\text { curry }: T^{2^{n}} \cong\left(T^{2^{n-m}}\right)^{2^{m}}: \text { uncurry } \\
\left(T^{2^{n}}=\operatorname{Set}\left(2^{n}, T\right) \cong \operatorname{Set}\left(2^{m}, \operatorname{Set}\left(2^{n-m}, T\right)\right)\right)
\end{gathered}
$$

Variables (T : lmodType R) (n m : nat) (l : lens n m). Definition curry (st : tpower n T) :
tpower m (tpower ($n-m$) T) := [ffun v : m.-tuple I =>
[ffun w : (n-m).-tuple I =>
st (merge_indices l v w)]].
Definition uncurry (st : tpower m (tpower (n-m) T)) :
tpower $\mathrm{n} \mathrm{T}:=$
[ffun v : n.-tuple I =>
st (extract l v) (extract (lothers l) v)].

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi
Saikawa, Jacques Garrigue Motivation: Quantum error correction

focus

Variables (n m : nat) (l : lens n m).
Definition endofun m := forall T : lmodType R, tpower m T -> tpower m T.
Definition endo m := forall T : lmodType R, \{linear tpower m T -> tpower m T\}.
Definition focus_fun (tr : endo m) : endofun n := fun T (v : tpower n T) \Rightarrow uncurry 1 (tr _ (curry l v)).

Parametric linearity and naturality

Formalizing

Takafumi

Saikawa, Jacques Garrigue Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens,

Operator

operator

Operators on qubits must be linear, unitary and, moreover, parametrically linear

Variables (n m : nat) (l : lens n m). Definition endofun m := forall T : lmodType R, tpower m T \rightarrow tpower m T.
Definition endo m := forall T : lmodType R, \{linear tpower m $\mathrm{T} \rightarrow$ tpower m T \}.

Formalizing

Comp/Ssreflect
Takafumi Saikawa, Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Lens,
curry-uncurry, focus

Parametric linearity and naturality

focus

```
Variables (n m : nat) (l : lens n m).
Definition endofun m := forall T : lmodType R,
    tpower m T -> tpower m T.
Definition endo m := forall T : lmodType R,
        {linear tpower m T -> tpower m T}.
Definition focus_fun (tr : endo m) : endofun n :=
    fun T (v : tpower n T) => uncurry l (tr _ (curry l v)).
Lemma focus_is_linear n m l tr T :
        linear (@focus_fun n m l tr T).
Definition focus n m l tr : endo n :=
    fun T => Linear (@focus_is_linear n m l tr T).
```

Formalizing

Takafumi

Saikawa, Jacques Garrigue

focus

```
Variables (n m : nat) (l : lens n m).
Definition endofun m := forall T : lmodType R,
    tpower m T -> tpower m T.
Definition endo m := forall T : lmodType R,
    {linear tpower m T -> tpower m T}.
Definition focus_fun (tr : endo m) : endofun n :=
    fun T (v : tpower n T) => uncurry l (tr _ (curry l v)).
Lemma focus_is_linear n m l tr T :
    linear (@focus_fun n m l tr T).
Definition focus n m l tr : endo n :=
    fun T => Linear (@focus_is_linear n m l tr T).
```

- We know from the type that elements of endo are linear for each T

Takafumi
Saikawa, Jacques Garrigue

focus

```
Variables (n m : nat) (l : lens n m).
Definition endofun m := forall T : lmodType R,
    tpower m T -> tpower m T.
Definition endo m := forall T : lmodType R,
    {linear tpower m T -> tpower m T}.
Definition focus_fun (tr : endo m) : endofun n :=
    fun T (v : tpower n T) => uncurry l (tr _ (curry l v)).
Lemma focus_is_linear n m l tr T :
    linear (@focus_fun n m l tr T).
Definition focus n m l tr : endo n :=
    fun T => Linear (@focus_is_linear n m l tr T).
```

- We know from the type that elements of endo are linear for each T
- But the matrix representing the linearity may be different between Ts

Takafumi
Saikawa, Jacques Garrigue

focus

```
Variables (n m : nat) (l : lens n m).
Definition endofun m := forall T : lmodType R,
    tpower m T -> tpower m T.
Definition endo m := forall T : lmodType R,
    {linear tpower m T -> tpower m T}.
Definition focus_fun (tr : endo m) : endofun n :=
    fun T (v : tpower n T) => uncurry l (tr _ (curry l v)).
Lemma focus_is_linear n m l tr T :
    linear (@focus_fun n m l tr T).
Definition focus n m l tr : endo n :=
    fun T => Linear (@focus_is_linear n m l tr T).
```

- We know from the type that elements of endo are linear for each T
- But the matrix representing the linearity may be different between Ts
- And focus changes T

Formalizing circuits with MathComp/Ssreflect

Takafumi

Saikawa, Jacques Garrigue

Parametric linearity

We want our (f : endo m) to be represented by a single matrix:

```
Definition tsendo_fun m (M : tsquare m) : endofun m :=
    fun \(T\) v =>
        [ffun vi : m.-tuple I =>
        \sum_(vj : m.-tuple I) (M vi vj : R) *: v vj]\%R.
Hypothesis endo_parametric (f : endo m) :
    exists \(M\), forall \(T\), \(f=1\) tsendo \(M T\).
```


Takafumi

Saikawa, Jacques Garrigue

Parametric linearity

We want our (f : endo m) to be represented by a single matrix:

```
Definition tsendo_fun m (M : tsquare m) : endofun m :=
    fun \(T\) v =>
        [ffun vi : m.-tuple I =>
        \sum_(vj : m.-tuple I) (M vi vj : R) *: v vj]\%R.
Hypothesis endo_parametric (f : endo m) :
    exists \(M\), forall \(T\), \(f=1\) tsendo \(M T\).
```

Instead of directly axiomatizing this hypothesis, we can rephrase it without the existential reference to a matrix: naturality

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi Saikawa, Jacques Garrigue

naturality

For (R : ringType) ($T \mathrm{~T}^{\prime}$: lmodType R) (f : endo m),

Definition map_tpower m T T' f (nv : tpower m T)
: tpower m T' := [ffun v : m.-tuple $\mathrm{I}=>\mathrm{f}$ (nv v)]. Definition naturality m (f : endo m) := forall T T' (phi : \{linear T -> T'\}) (v : tpower m T), map_tpower phi (f T v) = f T^{\prime} (map_tpower phi v).

Formalizing
quantum circuits with MathComp/Ssreflect

Takafumi

Saikawa, Jacques Garrigue

Naturality works!

Lemma naturalityP m (f : endo m) :
naturality f

$$
\text { <-> exists M, forall T, f } T=1 \text { tsendo } M T \text {. }
$$

Lemma focus_naturality n m l tr :
naturality tr $->$ naturality (@focus $n \mathrm{~m}$ l tr).
Lemma focusC (l^{\prime} : lens n p) tr tr' (v : tpower $n T$) :
[disjoint 1 \& l'] ->
naturality tr -> naturality tr' ->
focus l tr _ (focus l' tr' _ v) =
focus l' tr' _ (focus l tr _ v).
Lemma focusM (l^{\prime} : lens $m \mathrm{p}$) tr (v : tpower $\mathrm{n} T$) :
naturality tr ->
focus (lens_comp ll') tr _ v
$=$ focus 1 (focus l^{\prime} tr) $\quad \mathrm{v}$.

```
Formalizing
    quantum
circuits with
    Math-
Comp/Ssreflect
Lens,
curry-uncurry,
focus
Parametric
linearity and
naturality
Perspective
```

Takafumi
Saikawa,
Jacques Garrigue

Motivation: Quantum error correction

Quantum bit and operator

Operators in operation

Perspective

Formalizing

Takafumi

Saikawa,
Jacques Garrigue

Defining gates

Some gates are already defined; more should be done:
Definition cnot : tsquare 2 := ket_bra $|0,0\rangle\{0,0\rangle+$ ket_bra $|0,1\rangle|0,1\rangle+$ ket_bra $|1,0\rangle|1,1\rangle+$ ket_bra $|1,1\rangle|1,0\rangle$.
Definition hadamard : tsquare 1 := (1 / Num.sqrt 2\%:R) \%:C *:
$\left.\begin{array}{l}\text { (ket_bra }|0\rangle|0\rangle+\text { ket_bra }|0\rangle|1\rangle+ \\ \text { ket_bra }|1\rangle|0\rangle-k e t _b r a|1\rangle\end{array}|1\rangle\right)$.

Definition bit_flip (chan : endo 3) : endo 3 := focus [lens 0; 1] (tsendo cnot) $\backslash v$ focus [lens 0; 2] (tsendo cnot) \v chan \v
focus [lens 0; 1] (tsendo cnot) $\backslash v$
focus [lens 0; 2] (tsendo cnot) \v
focus [lens 1; 2; 0] (tsendo toffoli).

Back to the original plan towards
 QECC

(1) Formalize quantum circuit
(2) QECC: encoder, channel and decoder
(3) Prove the ability to correct error(s)
(4) Information-theoretic analysis

Formalizing

```
Comp/Ssreflect
```

Takafumi
Saikawa,
Jacques
Garrigue

Motivation: Quantum error correction

Category theory

- Monoidal categories with R-linearity
- Naturality and parametricity in other classes of structured types
- Category actions

$$
(\text { tpower } \mathrm{L}) \in \operatorname{Cat}\left(\mathcal{M a t}_{R}, \mathcal{L} \operatorname{Mod}_{R}\right)
$$

