Simpoulet: an attempt at proving
environmental bisimulations in Coq

Jacques Garrigue (Nagoya University)
Pierre-Marie Pédrot (ENS Lyon)

Jacques Garrigue & Pierre-Marie Pédrot 1

Environmental Bisimulation (1)

— A technique for proving program equivalence.

— Particularly interesting as it allows proving
equivalences with higher-order stateful programs, with
type abstraction (e.g. ML programs with modules)

Eijiro Sumii: A Complete Characterization of
Observational Equivalence in Polymorphic Lambda
Calculus with General References [CSL 2009]

Jacques Garrigue & Pierre-Marie Pédrot

Environmental Bisimulation (2)

— Prove that two programs are equivalent by proving
that they are bisimilar

— Use strong forms of bisimulations that take
advantage of the fact programs are typed

— Allow considering programs modulo
reduction/context/allocation, making proof easier

Jacques Garrigue & Pierre-Marie Pédrot 3

Definition

X is an environmental simulation if
1. For any (A, R,s>M,s'>M' 1) € X,

(a) [Reduction] If s> M — t> N then s'>M' 5 ¢/ > N/ for some ¢/
and N’ with (A, R,t> N, />N, 7) e X

(b) [Evaluation] If M =V then s'>M' = ¢ >V’ for some t' and V'
with (A, RU{(V, V',)}, s.t) € X
2. For any (A,R,s,s") € X,

(a) [Application] If Ax:AL(r). M, Ax:A2(r). M, 74 —) € R,
then (A, R,s> [V/z]M,s' > [V'/z]M',) € X for any
(V,V',11) € (A, R)*

(e) [Allocation]

(A, RU{LU, 7 refD)},sw{l— V}, dw{l'— V'}) e X for any
| Z dom(s), ! dom(s’) and (V,V' 1) € (A, R)*

(f) If (I,I',7 ref) € R then
[Dereference] (A, R U (s(1),s'(I"),7)},s,s) € X
[Update] (A, R,s{l— V},s{l'! = V'}) e X for any
(V,Vi,m) € (A, R)*

where X is typed, i.e. there exists ¥ and X’ such that

— S+ M:AN7) and '+ M AZ(7)

— >YFsand X' F ¢

— SFV:AYN) and 'V A2(F) for all (V,V,7) e R
and (A,R)* is the context closure of R

{(([V/z]AY(O), [V /Z]A%(C), 1) | dom(A),z: 7+ C : 7, (V,V',7) € R}

Jacques Garrigue & Pierre-Marie Pédrot 4

Up-to techniques

Proofs are made easier by allowing a larger relation on the right
hand side.

— Up-to reduction: a configuration pair is in the extended relation
if it reduces to a related pair.

— Up-to context: a configuration is in the extended relation if
there is a context and a list of related pairs such that it can be
obtained by substituting each side of the pairs in the context.

— Up-to allocation: allow some extra allocated reference cells,
initialized with related values.

Jacques Garrigue & Pierre-Marie Pédrot

Characterization Theorem

Theorem 1 Environmental bisimilarity (the largest
environmental bisimulation) equals observational
equivalence.

Jacques Garrigue & Pierre-Marie Pédrot 6

Goals

— Prove the soundness and completeness of
environmental bisimulation (including up-to
techniques).

— Provide a toolkit to prove equivalences of programs.

Jacques Garrigue & Pierre-Marie Pédrot

Formalization

(Work by Pierre-Marie Pédrot)

First we need to define a typed language, with a small
step semantics.

We used locally nameless co-finitely quantified syntax
[Aydemir et al.].
— use De Bruijn indices for local variables

— use co-finite quantification for global variables

We also avoided putting types inside terms.

Jacques Garrigue & Pierre-Marie Pédrot

LNCFQ Syntax

Judgement: S, 2. T+=M: T where

— S is a set of type variables : Set[Var]
— X is the store typing : Map[Var,Typ]
— [is the typing environment : Map[Var, Typ]

Veg L) S, Z,TW{z— 71} M*:7/
S>> TTEFEXM:7— 7/

S T FM:3r
Ve & Li,a & Ly) SwWi{a},Z,Tw{zx— 7} N*:

S,>, T open M in N : 7/

Jacques Garrigue & Pierre-Marie Pédrot

Advantages of LNCFQ Syntax

— Limiting indices to local variables avoids both
substitution and shifting in many cases

— Making the choice of variables co-finite makes proofs
of preservation easier: when weakening one just has
to enlarge the avoidance set

— However one needs many commutation lemmas
between De Bruijn instantiation and variable
substitution

Jacques Garrigue & Pierre-Marie Pédrot 10

Type system proofs

Proved type soundness (preservation and progress) with
respect to small-step reduction.

— Despite the large number of typing (16) and
reduction rules (23), the proofs stay small.

— Heavy use of automation to share tactics between
different cases.

— Used reflection for tactics about finite sets and maps.

Jacques Garrigue & Pierre-Marie Pédrot

Formalization of simulations

11

— Converted from set-theoretic to inductive definitions

— Needed to separate the term and store part of
relations

— AIlso needed care to take the typing into account

— One slight simplification: since types do not appear
inside terms, context closure (A, R)* actually does
not depend on A

Jacques Garrigue & Pierre-Marie Pédrot 12

Typing of the value relation

Record typing_vrel Al A2 >1 >2 (R : vrel) : Prop := {
typing_vrel_closed_1l : forall X, 0 IF Al X;
typing_vrel_closed_r : forall X, (0 IF A2 X;
typing_vrel_wf_1l : wf_env () X1 [0];
typing_vrel_wf_r : wf_env () X2 [0];
typing_vrel_value_1 : forall V1 V2 7, R V1 V2 7 -> value V1;
typing_vrel_value_r : forall V1 V2 7, R V1 V2 7 -> value V2;
typing_vrel_1 : forall V1 V2 T,

R V1 V2 7 -> typing 0 X1 [@] V1 (7 «— Al);
typing_vrel_r : forall V1 V2 T,
R V1 V2 7 -> typing 0 X2 [(] V2 (7 «— A2)

1.

Record typing_prel Al A2 >1 >2 R sl s2 M1 M2 7 := ...
Record typing_srel Al A2 >1 >2 R sl s2 := ...

Jacques Garrigue & Pierre-Marie Pédrot 13

Up-to techniques

The definitions are actually quite complicated.

Here is the relation for up-to renaming and reduction.

X7 ={(A,R,s>M,s>M,7)| (A, R,t>N, />N, 7)€ X™,
sbM S t>N,s'>M 5 t¢'s N}
U {(A,R,s>M,s'>M',7) | s>m diverges}
U{(A,R,s>M,s'>M 1) (A,RU{(V,V,7)}tt) e XT,
sbMStoV,soM S ¢sV
U{(A,R,s,s) | (A,R,s,s) e XT
X™ ={(A,R",n(s)>pn(M),s'>M,7) | (A, R,s>M,s'>M' 7)€ X}
U {(A,R7,7(s),s" | (A,R,s,s") € X}
R™ = {(«x(V),V,7) | (V, V' 1T) e R}

Jacques Garrigue & Pierre-Marie Pédrot 14

Up-to-reduction/renaming closure

Inductive prel_red_closure : prel :=

| prel_red_red : forall m R sl s1’ s2 s2’ t1 t1’ t2 t2’ T,
bijection m -> (prel_rename 7w Xp) R [s1’ - t1’] [s2’ - t2’] T ->
#reduction [s1 - t1] [s1’ - t1’] ->
#reduction [s2 - t2] [s2’ - t2°] ->
typable_prel R s1 s2 t1 t2 7 ->
prel_red_closure R [s1 - t1] [s2 - t2] 7T

| prel_red_div : forall (R : vrel) sl s2 tl1 t2 7,
chain reduction [s1 - tl1] -> typable_prel R sl s2 t1 t2 7 ->
prel_red_closure R [s1 - t1] [s2 - t2] T

| prel_red_eval : forall m (R : vrel) sl s1’ s2 s2’ t1 t1’ t2 t2’ T,
bijection m -> #reduction [s1l - ti1] [s1’ - t1’] ->
#reduction [s2 - t2] [s2’ - t2’] -> value t1’ -> value t2’ ->
(srel_rename 7w Xs) (R U [t1’ 7 t2’ | 7])%vrel s1’ s2’ ->
typable_prel R s1 s2 tl1 t2 7 ->
prel_red_closure R [s1 - t1] [s2 - t2] 7.

Jacques Garrigue & Pierre-Marie Pédrot

Proof for up-to-reduction/renaming

— Soundness theorem is close to 200 lines
— Using many hand-crafted automation tactics
— Lots of lemmas for renaming

— For reduction, soundness of typing is enough

15

Jacques Garrigue & Pierre-Marie Pédrot 16

Up-to-context closure

Extends the relation to each pair of term in any
evaluation context.

X* = {(AR, s> [V/Z]|EM], s'> [V /Z]E[M'], T) |
(Ag,S,s>M,s'>M') € X,A C Ag,
R CS* FTV(R) Cdom(A),(V,V'.7) €S,
dom(AQAp),z:7tH E .7, FTV(r) Cdom(A)}
U ...

This allows to prove easily many program equivalences.

Jacques Garrigue & Pierre-Marie Pédrot

Problem with up-to-context

17

Pierre-Marie could not prove it in Coq.
— Typing becomes very involved due to simultaneous
substitution.

— Just proving soundness of up-to-context for the
application case took 140 line, more of half of it for
typing. (Not including infrastructure lemmata.)

— Similar for type application.

— Abandonned in the middle of the existential
unpacking case.

Jacques Garrigue & Pierre-Marie Pédrot

A simple benchmark

— Since we couldn’'t prove up-to-context, most
examples stay hard to prove.

— To ensure the usability of the formalization, I proved
that the identity relation is an environmental
bisimulation, using up-to-reduction.

18

Jacques Garrigue & Pierre-Marie Pédrot

Identity environmental relation

Let is_id (R : trm -> trm -> typ -> Prop) :=
forall x y T, Rxy T ->x =y A value x.

Let has_fv (R : trm -> trm -> typ -> Prop) :=
exists L, forall x y T, Rx y T -> typ_fv T C L.

Inductive myprel : vrel -> program -> program -> typ -> Prop :=
myprell : forall R A > s M 7, is_id R -> has_fv R ->
store_typing) X [0] s ->
typing 0 X [0] M (7 +— A) ->
typing_vrel A A > > R ->
myprel R [s - M] [s - M] 7.
Inductive mysrel : vrel -> store -> store -> Prop :=
mysrell : forall R A > s, is_id R -> has_fv R ->
store_typing) X [0] s ->
typing_vrel A A > > R ->
mysrel R s s.

Jacques Garrigue & Pierre-Marie Pédrot

Identity environmental relation

20

Let is_id (R : trm -> trm -> typ —-> Prop) :=
forall x y T, Rxy T ->x =y A value x.

Let has_fv (R : trm -> trm -> typ —-> Prop) :=
exists L, forall x y T, Rxy T -> typ_fv T C L.

— is id ensures that R is a subrelation of the identity.
— has fv ensures that we can find fresh type variables.

— Everything is well-typed.

Jacques Garrigue & Pierre-Marie Pédrot 21

Proof of reflexivity

Lemma up2red_sim_myrel : up2red_simulation myprel mysrel.

Corrolary env_sim_myrel :
environmental_simulation (prel_red_closure myprel mysrel)
(srel_red_closure mysrel).

— The proof took 600 lines (including extra infrastructure
lemmata).

— The proof is mostly about typing and renaming.

— It may seem trivial, but hopefully we can generalize the
techniques used to automatize typing and renaming in proofs.

Jacques Garrigue & Pierre-Marie Pédrot 22

Conclusion

— The original goal was 2-fold:

o Proving the soundness and completeness of
environmental bisimulation (including up-to
techniques).

o Providing a toolkit to prove equivalences of
programs.

— Eventually, only half of the first part was done.

o Typing and simultaneous substitution are tricky.
o If we can overcome that, there is some hope.

Jacques Garrigue & Pierre-Marie Pédrot

For the curious

23

All the proofs are in a public repository:

http://sourceforge.net/projects/simpoulet/

