
Simpoulet: an attempt at proving
environmental bisimulations in Coq

Jacques Garrigue (Nagoya University)

Pierre-Marie Pédrot (ENS Lyon)

Jacques Garrigue & Pierre-Marie Pédrot 1

Environmental Bisimulation (1)

– A technique for proving program equivalence.

– Particularly interesting as it allows proving

equivalences with higher-order stateful programs, with

type abstraction (e.g. ML programs with modules)

Eijiro Sumii: A Complete Characterization of

Observational Equivalence in Polymorphic Lambda

Calculus with General References [CSL 2009]

Jacques Garrigue & Pierre-Marie Pédrot 2

Environmental Bisimulation (2)

– Prove that two programs are equivalent by proving

that they are bisimilar

– Use strong forms of bisimulations that take

advantage of the fact programs are typed

– Allow considering programs modulo

reduction/context/allocation, making proof easier

Jacques Garrigue & Pierre-Marie Pédrot 3

Definition

X is an environmental simulation if

1. For any (∆,R, s . M, s′ . M ′, τ) ∈ X,

(a) [Reduction] If s . M → t . N then s′ . M ′ ∗→ t′ . N ′ for some t′

and N ′ with (∆,R, t . N, t′ . N ′, τ) ∈ X

(b) [Evaluation] If M = V then s′ . M ′ ∗→ t′ . V ′ for some t′ and V ′

with (∆,R∪ {(V, V ′, τ)}, s, t′) ∈ X

2. For any (∆,R, s, s′) ∈ X,

(a) [Application] If (λx:∆1(τ1).M, λx:∆2(τ1).M
′, τ1 → τ2) ∈ R,

then (∆,R, s . [V/x]M, s′ . [V ′/x]M ′, τ2) ∈ X for any
(V, V ′, τ1) ∈ (∆,R)?

(e) [Allocation]
(∆,R∪ {(l, l′, τ ref)}, s] {l 7→ V }, s′] {l′ 7→ V ′}) ∈ X for any
l 6∈ dom(s), l′ 6∈ dom(s′) and (V, V ′, τ) ∈ (∆,R)?

(f) If (l, l′, τ ref) ∈ R then
[Dereference] (∆,R∪ (s(l), s′(l′), τ)}, s, s′) ∈ X
[Update] (∆,R, s{l 7→ V }, s′{l′ 7→ V ′}) ∈ X for any
(V, V ′, τ) ∈ (∆,R)?

where X is typed, i.e. there exists Σ and Σ′ such that

– Σ `M : ∆1(τ) and Σ′ `M ′ : ∆2(τ)

– Σ ` s and Σ′ ` s′

– Σ ` V : ∆1(τ) and Σ′ ` V ′ : ∆2(τ) for all (V, V ′, τ) ∈ R

and (∆,R)? is the context closure of R

{([V̄ /x̄]∆1(C), [V̄ ′/x̄]∆2(C), τ) | dom(∆), x̄ : τ̄ ` C : τ, (V̄ , V̄ ′, τ̄) ∈ R}

Jacques Garrigue & Pierre-Marie Pédrot 4

Up-to techniques

Proofs are made easier by allowing a larger relation on the right
hand side.

– Up-to reduction: a configuration pair is in the extended relation
if it reduces to a related pair.

– Up-to context: a configuration is in the extended relation if
there is a context and a list of related pairs such that it can be
obtained by substituting each side of the pairs in the context.

– Up-to allocation: allow some extra allocated reference cells,
initialized with related values.

Jacques Garrigue & Pierre-Marie Pédrot 5

Characterization Theorem

Theorem 1 Environmental bisimilarity (the largest

environmental bisimulation) equals observational

equivalence.

Jacques Garrigue & Pierre-Marie Pédrot 6

Goals

– Prove the soundness and completeness of

environmental bisimulation (including up-to

techniques).

– Provide a toolkit to prove equivalences of programs.

Jacques Garrigue & Pierre-Marie Pédrot 7

Formalization

(Work by Pierre-Marie Pédrot)

First we need to define a typed language, with a small

step semantics.

We used locally nameless co-finitely quantified syntax

[Aydemir et al.].

– use De Bruijn indices for local variables

– use co-finite quantification for global variables

We also avoided putting types inside terms.

Jacques Garrigue & Pierre-Marie Pédrot 8

LNCFQ Syntax

Judgement: S,Σ,Γ `M : τ where

– S is a set of type variables : Set[Var]

– Σ is the store typing : Map[Var,Typ]

– Γ is the typing environment : Map[Var,Typ]

(∀x 6∈ L) S,Σ,Γ] {x 7→ τ} `Mx : τ ′

S,Σ,Γ ` λM : τ → τ ′

S,Σ,Γ `M : ∃τ
(∀x 6∈ L1, α 6∈ L2) S] {α},Σ,Γ] {x 7→ τα} ` Nx : τ ′

S,Σ,Γ ` open M in N : τ ′

Jacques Garrigue & Pierre-Marie Pédrot 9

Advantages of LNCFQ Syntax

– Limiting indices to local variables avoids both

substitution and shifting in many cases

– Making the choice of variables co-finite makes proofs

of preservation easier: when weakening one just has

to enlarge the avoidance set

– However one needs many commutation lemmas

between De Bruijn instantiation and variable

substitution

Jacques Garrigue & Pierre-Marie Pédrot 10

Type system proofs

Proved type soundness (preservation and progress) with

respect to small-step reduction.

– Despite the large number of typing (16) and

reduction rules (23), the proofs stay small.

– Heavy use of automation to share tactics between

different cases.

– Used reflection for tactics about finite sets and maps.

Jacques Garrigue & Pierre-Marie Pédrot 11

Formalization of simulations

– Converted from set-theoretic to inductive definitions

– Needed to separate the term and store part of

relations

– Also needed care to take the typing into account

– One slight simplification: since types do not appear

inside terms, context closure (∆,R)? actually does

not depend on ∆

Jacques Garrigue & Pierre-Marie Pédrot 12

Typing of the value relation

Record typing_vrel ∆1 ∆2 Σ1 Σ2 (R : vrel) : Prop := {
typing_vrel_closed_l : forall X, ∅ ∆1 X;
typing_vrel_closed_r : forall X, ∅ ∆2 X;
typing_vrel_wf_l : wf_env ∅ Σ1 [∅];
typing_vrel_wf_r : wf_env ∅ Σ2 [∅];
typing_vrel_value_l : forall V1 V2 τ, R V1 V2 τ -> value V1;
typing_vrel_value_r : forall V1 V2 τ, R V1 V2 τ -> value V2;
typing_vrel_l : forall V1 V2 τ,

R V1 V2 τ -> typing ∅ Σ1 [∅] V1 (τ ←∆1);
typing_vrel_r : forall V1 V2 τ,

R V1 V2 τ -> typing ∅ Σ2 [∅] V2 (τ ←∆2)
}.

Record typing_prel ∆1 ∆2 Σ1 Σ2 R s1 s2 M1 M2 τ := ...
Record typing_srel ∆1 ∆2 Σ1 Σ2 R s1 s2 := ...

Jacques Garrigue & Pierre-Marie Pédrot 13

Up-to techniques

The definitions are actually quite complicated.

Here is the relation for up-to renaming and reduction.

X→ = {(∆,R, s . M, s′ . M ′, τ) | (∆,R, t . N, t′ . N ′, τ) ∈ Xπ,

s . M
∗→ t . N, s′ . M ′ ∗→ t′ . N ′}

∪ {(∆,R, s . M, s′ . M ′, τ) | s . m diverges}
∪ {(∆,R, s . M, s′ . M ′, τ) | (∆,R∪ {(V, V ′, τ)}, t, t′) ∈ Xπ,

s . M
∗→ t . V, s′ . M ′ ∗→ t′ . V ′}

∪ {(∆,R, s, s′) | (∆,R, s, s′) ∈ Xπ

Xπ = {(∆,Rπ, π(s) . π(M), s′ . M ′, τ) | (∆,R, s . M, s′ . M ′, τ) ∈ X}
∪ {(∆,Rπ, π(s), s′ | (∆,R, s, s′) ∈ X}

Rπ = {(π(V), V ′, τ) | (V, V ′, τ) ∈ R}

Jacques Garrigue & Pierre-Marie Pédrot 14

Up-to-reduction/renaming closure

Inductive prel_red_closure : prel :=
| prel_red_red : forall π R s1 s1’ s2 s2’ t1 t1’ t2 t2’ τ,

bijection π -> (prel_rename π Xp) R [s1’ · t1’] [s2’ · t2’] τ ->
#reduction [s1 · t1] [s1’ · t1’] ->
#reduction [s2 · t2] [s2’ · t2’] ->
typable_prel R s1 s2 t1 t2 τ ->
prel_red_closure R [s1 · t1] [s2 · t2] τ

| prel_red_div : forall (R : vrel) s1 s2 t1 t2 τ,
chain reduction [s1 · t1] -> typable_prel R s1 s2 t1 t2 τ ->
prel_red_closure R [s1 · t1] [s2 · t2] τ

| prel_red_eval : forall π (R : vrel) s1 s1’ s2 s2’ t1 t1’ t2 t2’ τ,
bijection π -> #reduction [s1 · t1] [s1’ · t1’] ->
#reduction [s2 · t2] [s2’ · t2’] -> value t1’ -> value t2’ ->
(srel_rename π Xs) (R ∪ [t1’ ~ t2’ | τ])%vrel s1’ s2’ ->
typable_prel R s1 s2 t1 t2 τ ->
prel_red_closure R [s1 · t1] [s2 · t2] τ.

Jacques Garrigue & Pierre-Marie Pédrot 15

Proof for up-to-reduction/renaming

– Soundness theorem is close to 200 lines

– Using many hand-crafted automation tactics

– Lots of lemmas for renaming

– For reduction, soundness of typing is enough

Jacques Garrigue & Pierre-Marie Pédrot 16

Up-to-context closure

Extends the relation to each pair of term in any

evaluation context.

X? = {(∆,R, s . [V̄ /x̄]E[M], s′ . [V̄ ′/x̄]E[M ′], τ) |
(∆0,S, s . M, s′ . M ′, τ0) ∈ X,∆ ⊆∆0,
R ⊆ S?, FTV (R) ⊆ dom(∆), (V̄ , V̄ ′, τ̄) ∈ S,
dom(∆0), x̄:τ̄ ` E : τ, FTV (τ) ⊆ dom(∆)}

∪ . . .

This allows to prove easily many program equivalences.

Jacques Garrigue & Pierre-Marie Pédrot 17

Problem with up-to-context

Pierre-Marie could not prove it in Coq.

– Typing becomes very involved due to simultaneous

substitution.

– Just proving soundness of up-to-context for the

application case took 140 line, more of half of it for

typing. (Not including infrastructure lemmata.)

– Similar for type application.

– Abandonned in the middle of the existential

unpacking case.

Jacques Garrigue & Pierre-Marie Pédrot 18

A simple benchmark

– Since we couldn’t prove up-to-context, most

examples stay hard to prove.

– To ensure the usability of the formalization, I proved

that the identity relation is an environmental

bisimulation, using up-to-reduction.

Jacques Garrigue & Pierre-Marie Pédrot 19

Identity environmental relation

Let is_id (R : trm -> trm -> typ -> Prop) :=
forall x y T, R x y T -> x = y ∧ value x.

Let has_fv (R : trm -> trm -> typ -> Prop) :=
exists L, forall x y T, R x y T -> typ_fv T ⊆ L.

Inductive myprel : vrel -> program -> program -> typ -> Prop :=
myprel1 : forall R ∆ Σ s M τ, is_id R -> has_fv R ->

store_typing ∅ Σ [∅] s ->
typing ∅ Σ [∅] M (τ ←∆) ->
typing_vrel ∆ ∆ Σ Σ R ->
myprel R [s · M] [s · M] τ.

Inductive mysrel : vrel -> store -> store -> Prop :=
mysrel1 : forall R ∆ Σ s, is_id R -> has_fv R ->

store_typing ∅ Σ [∅] s ->
typing_vrel ∆ ∆ Σ Σ R ->
mysrel R s s.

Jacques Garrigue & Pierre-Marie Pédrot 20

Identity environmental relation

Let is_id (R : trm -> trm -> typ -> Prop) :=

forall x y T, R x y T -> x = y ∧ value x.

Let has_fv (R : trm -> trm -> typ -> Prop) :=

exists L, forall x y T, R x y T -> typ_fv T ⊆ L.

– is id ensures that R is a subrelation of the identity.

– has fv ensures that we can find fresh type variables.

– Everything is well-typed.

Jacques Garrigue & Pierre-Marie Pédrot 21

Proof of reflexivity

Lemma up2red_sim_myrel : up2red_simulation myprel mysrel.

Corrolary env_sim_myrel :
environmental_simulation (prel_red_closure myprel mysrel)

(srel_red_closure mysrel).

– The proof took 600 lines (including extra infrastructure
lemmata).

– The proof is mostly about typing and renaming.

– It may seem trivial, but hopefully we can generalize the
techniques used to automatize typing and renaming in proofs.

Jacques Garrigue & Pierre-Marie Pédrot 22

Conclusion

– The original goal was 2-fold:

◦ Proving the soundness and completeness of

environmental bisimulation (including up-to

techniques).

◦ Providing a toolkit to prove equivalences of

programs.

– Eventually, only half of the first part was done.

◦ Typing and simultaneous substitution are tricky.

◦ If we can overcome that, there is some hope.

Jacques Garrigue & Pierre-Marie Pédrot 23

For the curious

All the proofs are in a public repository:

http://sourceforge.net/projects/simpoulet/

