Simpoulet: an attempt at proving environmental bisimulations in Coq

Jacques Garrigue (Nagoya University)
Pierre-Marie Pédrot (ENS Lyon)

Environmental Bisimulation (1)

- A technique for proving program equivalence.
- Particularly interesting as it allows proving equivalences with higher-order stateful programs, with type abstraction (e.g. ML programs with modules)

Eijiro Sumiï: A Complete Characterization of
Observational Equivalence in Polymorphic Lambda Calculus with General References [CSL 2009]

Environmental Bisimulation (2)

- Prove that two programs are equivalent by proving that they are bisimilar
- Use strong forms of bisimulations that take advantage of the fact programs are typed
- Allow considering programs modulo reduction/context/allocation, making proof easier

Definition

X is an environmental simulation if

1. For any $\left(\Delta, \mathcal{R}, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right) \in X$,
(a) [Reduction] If $s \triangleright M \rightarrow t \triangleright N$ then $s^{\prime} \triangleright M^{\prime} \xrightarrow{*} t^{\prime} \triangleright N^{\prime}$ for some t^{\prime} and N^{\prime} with $\left(\Delta, \mathcal{R}, t \triangleright N, t^{\prime} \triangleright N^{\prime}, \tau\right) \in X$
(b) [Evaluation] If $M=V$ then $s^{\prime} \triangleright M^{\prime} \xrightarrow{*} t^{\prime} \triangleright V^{\prime}$ for some t^{\prime} and V^{\prime} with $\left(\Delta, \mathcal{R} \cup\left\{\left(V, V^{\prime}, \tau\right)\right\}, s, t^{\prime}\right) \in X$
2. For any $\left(\Delta, \mathcal{R}, s, s^{\prime}\right) \in X$,
(a) [Application] If $\left(\lambda x: \Delta^{1}\left(\tau_{1}\right) \cdot M, \lambda x: \Delta^{2}\left(\tau_{1}\right) \cdot M^{\prime}, \tau_{1} \rightarrow \tau_{2}\right) \in \mathcal{R}$, then $\left(\Delta, \mathcal{R}, s \triangleright[V / x] M, s^{\prime} \triangleright\left[V^{\prime} / x\right] M^{\prime}, \tau_{2}\right) \in X$ for any $\left(V, V^{\prime}, \tau_{1}\right) \in(\Delta, \mathcal{R})^{\star}$
(e) [Allocation]
$\left(\Delta, \mathcal{R} \cup\left\{\left(l, l^{\prime}, \tau \quad\right.\right.\right.$ ref $\left.\left.)\right\}, s \uplus\{l \mapsto V\}, s^{\prime} \uplus\left\{l^{\prime} \mapsto V^{\prime}\right\}\right) \in X$ for any $l \notin \operatorname{dom}(s), l^{\prime} \notin \operatorname{dom}\left(s^{\prime}\right)$ and $\left(V, V^{\prime}, \tau\right) \in(\Delta, \mathcal{R})^{\star}$
(f) If $\left(l, l^{\prime}, \tau\right.$ ref $) \in \mathcal{R}$ then
[Dereference] $\left.\left(\Delta, \mathcal{R} \cup\left(s(l), s^{\prime}\left(l^{\prime}\right), \tau\right)\right\}, s, s^{\prime}\right) \in X$
[Update] $\left(\Delta, \mathcal{R}, s\{l \mapsto V\}, s^{\prime}\left\{l^{\prime} \mapsto V^{\prime}\right\}\right) \in X$ for any $\left(V, V^{\prime}, \tau\right) \in(\Delta, \mathcal{R})^{\star}$
where X is typed, i.e. there exists Σ and Σ^{\prime} such that

$$
\begin{aligned}
& -\Sigma \vdash M: \Delta^{1}(\tau) \text { and } \Sigma^{\prime} \vdash M^{\prime}: \Delta^{2}(\tau) \\
& -\Sigma \vdash s \text { and } \Sigma^{\prime} \vdash s^{\prime} \\
& -\Sigma \vdash V: \Delta^{1}(\tau) \text { and } \Sigma^{\prime} \vdash V^{\prime}: \Delta^{2}(\tau) \text { for all }\left(V, V^{\prime}, \tau\right) \in \mathcal{R}
\end{aligned}
$$

and $(\Delta, \mathcal{R})^{\star}$ is the context closure of \mathcal{R}

$$
\left\{\left([\bar{V} / \bar{x}] \Delta^{1}(C),\left[\bar{V}^{\prime} / \bar{x}\right] \Delta^{2}(C), \tau\right) \mid \operatorname{dom}(\Delta), \bar{x}: \bar{\tau} \vdash C: \tau,\left(\bar{V}, \bar{V}^{\prime}, \bar{\tau}\right) \in \mathcal{R}\right\}
$$

Up-to techniques

Proofs are made easier by allowing a larger relation on the right hand side.

- Up-to reduction: a configuration pair is in the extended relation if it reduces to a related pair.
- Up-to context: a configuration is in the extended relation if there is a context and a list of related pairs such that it can be obtained by substituting each side of the pairs in the context.
- Up-to allocation: allow some extra allocated reference cells, initialized with related values.

Characterization Theorem

Theorem 1 Environmental bisimilarity (the largest environmental bisimulation) equals observational equivalence.

Goals

- Prove the soundness and completeness of environmental bisimulation (including up-to techniques).
- Provide a toolkit to prove equivalences of programs.

Formalization

(Work by Pierre-Marie Pédrot)
First we need to define a typed language, with a small step semantics.

We used locally nameless co-finitely quantified syntax [Aydemir et al.].

- use De Bruijn indices for local variables
- use co-finite quantification for global variables

We also avoided putting types inside terms.

LNCFQ Syntax

Judgement: $\quad S, \Sigma,\ulcorner\vdash M: \tau \quad$ where

- S is a set of type variables : Set[Var]
$-\Sigma$ is the store typing: Map[Var,Typ]
$-\Gamma$ is the typing environment : Map[Var,Typ]

$$
\begin{gathered}
\begin{array}{c}
(\forall x \notin L) \\
S, \Sigma, \Gamma \uplus\{x \mapsto \tau\} \vdash M^{x}: \tau^{\prime} \\
S, \Sigma, \Gamma \vdash \lambda M: \tau \rightarrow \tau^{\prime} \\
\frac{S, \Sigma, \Gamma \vdash M: \exists \tau}{\left(\forall x \notin L_{1}, \alpha \notin L_{2}\right)} \\
S \uplus\{\alpha\}, \Sigma, \Gamma \uplus\left\{x \mapsto \tau^{\alpha}\right\} \vdash N^{x}: \tau^{\prime} \\
S, \Sigma, \Gamma \vdash \text { open } M \operatorname{in} N: \tau^{\prime}
\end{array}
\end{gathered}
$$

Advantages of LNCFQ Syntax

- Limiting indices to local variables avoids both substitution and shifting in many cases
- Making the choice of variables co-finite makes proofs of preservation easier: when weakening one just has to enlarge the avoidance set
- However one needs many commutation lemmas between De Bruijn instantiation and variable substitution

Type system proofs

Proved type soundness (preservation and progress) with respect to small-step reduction.

- Despite the large number of typing (16) and reduction rules (23), the proofs stay small.
- Heavy use of automation to share tactics between different cases.
- Used reflection for tactics about finite sets and maps.

Formalization of simulations

- Converted from set-theoretic to inductive definitions
- Needed to separate the term and store part of relations
- Also needed care to take the typing into account
- One slight simplification: since types do not appear inside terms, context closure $(\Delta, \mathcal{R})^{\star}$ actually does not depend on Δ

Typing of the value relation

```
Record typing_vrel \triangle1 \triangle2 \Sigma1 \sum2 (R : vrel) : Prop := {
    typing_vrel_closed_l : forall X, \emptyset}\vdash\triangle| X
    typing_vrel_closed_r : forall X, \emptyset}\vdash\triangle\ X
    typing_vrel_wf_l : wf_env \emptyset \sum1 [\emptyset];
    typing_vrel_wf_r : wf_env \emptyset \Sigma2 [\emptyset];
    typing_vrel_value_l : forall V1 V2 \tau, R V1 V2 \tau -> value V1;
    typing_vrel_value_r : forall V1 V2 }\tau\mathrm{ , R V1 V2 }\tau -> value V2
    typing_vrel_l : forall V1 V2 \tau,
        R V1 V2 }\tau->>\mathrm{ typing Ø }\emptyset1 [\emptyset] V1 ( \tau\leftarrow\Delta1)
    typing_vrel_r : forall V1 V2 \tau,
        R V1 V2 }\tau->> typing \emptyset \Sigma2 [\emptyset] V2 (\tau \leftarrow\triangle\2
}.
```

Record typing_prel $\Delta 1 \Delta 2 \sum 1 \sum 2 R$ s1 s2 M1 M2 $\tau:=\ldots$
Record typing_srel $\Delta 1 \Delta 2 \sum 1 \sum 2 R$ s1 s2 :=...

Up-to techniques

The definitions are actually quite complicated.
Here is the relation for up-to renaming and reduction.

$$
\begin{aligned}
& X^{\rightarrow}=\left\{\left(\Delta, \mathcal{R}, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right) \mid\left(\Delta, \mathcal{R}, t \triangleright N, t^{\prime} \triangleright N^{\prime}, \tau\right) \in X^{\pi},\right. \\
&\left.s \triangleright M \xrightarrow{*} t \triangleright N, s^{\prime} \triangleright M^{\prime} \xrightarrow{*} t^{\prime} \triangleright N^{\prime}\right\} \\
& \cup\left\{\left(\Delta, \mathcal{R}, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right) \mid s \triangleright m \text { diverges }\right\} \\
& \cup\left\{\left(\Delta, \mathcal{R}, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right) \mid\left(\Delta, \mathcal{R} \cup\left\{\left(V, V^{\prime}, \tau\right)\right\}, t, t^{\prime}\right) \in X^{\pi},\right. \\
&\left.s \triangleright M \xrightarrow{*} t \triangleright V, s^{\prime} \triangleright M^{\prime} \xrightarrow{*} t^{\prime} \triangleright V^{\prime}\right\} \\
& \cup\left\{\left(\Delta, \mathcal{R}, s, s^{\prime}\right) \mid\left(\Delta, \mathcal{R}, s, s^{\prime}\right) \in X^{\pi}\right. \\
& X^{\pi}=\left\{\left(\triangle, \mathcal{R}^{\pi}, \pi(s) \triangleright \pi(M), s^{\prime} \triangleright M^{\prime}, \tau\right) \mid\left(\Delta, \mathcal{R}, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right) \in X\right\} \\
& \cup\left\{\left(\triangle, \mathcal{R}^{\pi}, \pi(s), s^{\prime} \mid\left(\Delta, \mathcal{R}, s, s^{\prime}\right) \in X\right\}\right. \\
& \mathcal{R}^{\pi}=\left\{\left(\pi(V), V^{\prime}, \tau\right) \mid\left(V, V^{\prime}, \tau\right) \in \mathcal{R}\right\}
\end{aligned}
$$

Up-to-reduction/renaming closure

```
Inductive prel_red_closure : prel :=
    prel_red_red : forall }\pi\mathrm{ R s1 s1' s2 s2' t1 t1' t2 t2' }\tau\mathrm{ ,
    bijection \pi -> (prel_rename \pi Xp) R [s1' . t1'] [s2' . t2'] \tau ->
    #reduction [s1 . t1] [s1' . t1'] ->
    #reduction [s2 . t2] [s2' . t2'] ->
    typable_prel R s1 s2 t1 t2 \tau ->
    prel_red_closure R [s1 · t1] [s2 . t2] \tau
    prel_red_div : forall (R : vrel) s1 s2 t1 t2 \tau,
    chain reduction [s1 . t1] -> typable_prel R s1 s2 t1 t2 \tau ->
    prel_red_closure R [s1 · t1] [s2 . t2] \tau
prel_red_eval : forall }\pi\mathrm{ (R : vrel) s1 s1' s2 s2' t1 t1' t2 t2' }\tau\mathrm{ ,
bijection \pi -> #reduction [s1 . t1] [s1' . t1'] ->
#reduction [s2 . t2] [s2' . t2'] -> value t1' -> value t2' ->
(srel_rename \pi Xs) (R \cup [t1' ~ t2' | \tau])%vrel s1' s2' ->
typable_prel R s1 s2 t1 t2 \tau ->
prel_red_closure R [s1 · t1] [s2 . t2] \tau.
```


Proof for up-to-reduction/renaming

- Soundness theorem is close to 200 lines
- Using many hand-crafted automation tactics
- Lots of Iemmas for renaming
- For reduction, soundness of typing is enough

Up-to-context closure

Extends the relation to each pair of term in any evaluation context.

$$
\begin{aligned}
X^{\star}=\{ & \left(\Delta, \mathcal{R}, s \triangleright[\bar{V} / \bar{x}] E[M], s^{\prime} \triangleright\left[\bar{V}^{\prime} / \bar{x}\right] E\left[M^{\prime}\right], \tau\right) \mid \\
& \left(\triangle_{0}, \mathcal{S}, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau_{0}\right) \in X, \triangle \subseteq \subseteq \triangle_{0}, \\
& \mathcal{R} \subseteq \mathcal{S}^{\star}, F T V(\mathcal{R}) \subseteq \operatorname{dom}(\Delta),\left(\bar{V}, \bar{V}^{\prime}, \bar{\tau}\right) \in \mathcal{S}, \\
& \left.\operatorname{dom}\left(\triangle_{0}\right), \bar{x}: \bar{\tau} \vdash E: \tau, F T V(\tau) \subseteq \operatorname{dom}(\triangle)\right\} \\
\cup & \ldots
\end{aligned}
$$

This allows to prove easily many program equivalences.

Problem with up-to-context

Pierre-Marie could not prove it in Coq.

- Typing becomes very involved due to simultaneous substitution.
- Just proving soundness of up-to-context for the application case took 140 line, more of half of it for typing. (Not including infrastructure lemmata.)
- Similar for type application.
- Abandonned in the middle of the existential unpacking case.

A simple benchmark

- Since we couldn't prove up-to-context, most examples stay hard to prove.
- To ensure the usability of the formalization, I proved that the identity relation is an environmental bisimulation, using up-to-reduction.

Identity environmental relation

```
Let is_id (R : trm -> trm -> typ -> Prop) :=
    forall x y T, R x y T -> x = y ^ value x.
Let has_fv (R : trm -> trm -> typ -> Prop) :=
    exists L, forall x y T, R x y T -> typ_fv T \subseteqL.
Inductive myprel : vrel -> program -> program -> typ -> Prop :=
    myprel1 : forall R D \Sigma s M \tau, is_id R -> has_fv R ->
    store_typing \emptyset \Sigma [\emptyset] s ->
    typing \emptyset \Sigma [\emptyset] M (\tau\longleftarrow\Delta) ->
    typing_vrel \Delta | \sum \sum R ->
    myprel R [s . M] [s . M] \tau.
Inductive mysrel : vrel -> store -> store -> Prop :=
    mysrel1 : forall R \Delta \Sigma s, is_id R -> has_fv R ->
    store_typing \emptyset \Sigma [\emptyset] s ->
    typing_vrel \triangle | \sum \sum R ->
    mysrel R s s.
```


Identity environmental relation

```
Let is_id (R : trm -> trm -> typ -> Prop) :=
    forall x y T, R x y T -> x = y ^ value x.
Let has_fv (R : trm -> trm -> typ -> Prop) :=
    exists L, forall x y T, R x y T -> typ_fv T \subseteqL.
```

- is id ensures that R is a subrelation of the identity.
- has_fv ensures that we can find fresh type variables.
- Everything is well-typed.

Proof of reflexivity

Lemma up2red_sim_myrel : up2red_simulation myprel mysrel.
Corrolary env_sim_myrel :
environmental_simulation (prel_red_closure myprel mysrel)
(srel_red_closure mysrel).

- The proof took 600 lines (including extra infrastructure lemmata).
- The proof is mostly about typing and renaming.
- It may seem trivial, but hopefully we can generalize the techniques used to automatize typing and renaming in proofs.

Conclusion

- The original goal was 2-fold:
- Proving the soundness and completeness of environmental bisimulation (including up-to techniques).
- Providing a toolkit to prove equivalences of programs.
- Eventually, only half of the first part was done.
- Typing and simultaneous substitution are tricky.
- If we can overcome that, there is some hope.

For the curious

All the proofs are in a public repository: http://sourceforge.net/projects/simpoulet/

