Formalizing quantum circuits with MathComp /Ssreflect

Takafumi Saikawa and Jacques Garrigue Nagoya University

N J

‘Motivation | Lens } [Parametricity and naturality }

Tensor power

We want to formalize quantum circuits

Polymorphism is not enough

- Shor's 9-qubit code (correcting both flips) . ~ Tensor power ; tocus; G = uncurry, © (Gyunn) © curry,
o o~ @ Tensor power V"
V) —4— 14 L ! L O H P 1Y) = iterated tensor product V ® --- ® V
0) & &)t o IF 1/ — K 1/en o pSet(m” K) @ We know from the type that G is polymorphically linear / unitary
0) By Al \ ’ ’) @ But they could be unitary / linear differently for each T
> > - Array of qubits) @ l.e., the matrix representing the linearity might differ between different T s
0) — H * o — PO HI—D . o Qubit € C° @ And focus does change T
@ Array of qubits € ((CQ)@n o
0) D E —d * \ Yoo)i Parametricity
0) D D—e - Operator . We want GG to be represented by a single matrix:
0) e = I . o @ [END Oper?tors on CIth-)itS must be | IM : matrix, VT : vector sp., Vv : (TH®", Gp(v) = M.
@ linear: addition and scalar action must be preserved N T
0) A A . .. b . aturality
~ ~ @ unitary. horfm must be preserve) We can rephrase this parametricity without the existential reference to a matrix,
O N N ® . el
> > > (©) Self / Wikimedia Commons / CC-BY-SA-3.0 Lens’ Curry_uncurry’ fOCUS Eae naturallty. " fr "
— . . : b o7 7!
Basic differences: bits and qubits
Classical Quantum @ Lens = injection between finite ordinals, indicating Voo oo %
bit € {0, 1} qubit € C- the choice of wires (red wires in the picture) 1 .
functions in Set unitary transformations in FdHilb @ Curry / Uncurry = currying along a given lens 7\:, eIt . eIt
direct product: tensor product which quotients away the unused (black) wires Il
Set(X xY,Z) = Set(X,Z") FdHilb(X ®Y,Z)= FdHilb(X,Z") @ Focusing = composing curry, gate and uncurry to _ _
build the diagram Applications |
@ Each gate (= unitary transformation) is fairly simple: ‘ Output Shor's code
1000 lens Definition bit_flip_enc : endo 3 :=
0100 tsapp [lens O; 2] cnot \v tsapp [lens O; 1] cnot.
i — CNOT = lens n m= ({1,...,m} — {1,...,n}) Definition bit_flip_dec : endo 3 :=
N 0001 d tsapp [lens 1; 2; 0] toffoli \v bit_flip_enc.
O O 1 O ~ curry an uncurry
@ but when put in a circuit, it becomes a mo_nster: _ ror 1@ vector space and £ : lens n m ge]f?::m%t%on S%gn‘g%p‘dec - Eiz‘ﬂiggdic ;Ythiiémards'
_ - m erinition sign_ ip_enc .= adalar Vv 1TC_ lp_enc.
TY || b| | xczd yc yd Definition shor_enc : endo 9 :=
Z W cd|l | za zb wa wbd (T2n — Set(Q”’T) = Set(Zm, Set(Q”_m, T))) focus [lens 0; 1; 2] bit_flip_enc \v
]]]] ¢ zd we wd B _q focus [lens 3; 4; 5] bit_flip_enc \v
= = L uncurryy — Curtyy) focus [lens 6; 7; 8] bit_flip_enc \v
- focus . focus [lens 0; 3; 6] sign_flip_enc.
_ _ _ _ And for GG unitary, Definition shor_dec : endo 9 :=
[rb 0 0 0 10000000 o . focus [lens 0; 3; 6] sign_flip_dec \v
A 01,00 01000000 L HOEREY Lr = WEuaty) © s © Gty) focus [lens 0; 1; 2] bit_flip_dec \v
H— =CNOT ® [, = 0007 . focus [lens 3; 4; 5] bit_flip_dec \v
' ® VOLUOOU0 Polymorphlc Operator focus zlens 6i 7f 8: bit—flip—dec
00 /L 0 _ 00010000 | For focus to typecheck, the unitary operator G must actually be polymorphic: ' T PR
_ _ D 00000100 (G - VYT - vector sp., (T2)®n “Ey (T2)®n Definition shor_code (chan : endo 9) :=
— [, ® CNOT = CNOT 0 00001000 shor_dec \v chan \v shor_enc.
S~k ~| 0 onoT 00000001 focusy G = AT’ (uncurry © Gy © curry,) Proofs of properties
00000010] Examples: o @ If & is unitary, so is focus/G.
_ . / . _
Our first example (Shor's code) becomes a 512 X 512 matrix! N focus(1-1,2-3} CNOT ° FOré 2 lens n mand £ : 16115 m p, focusyopr = focusy © focusy
N — —
Q p—
{The code is available at: https://github.com/t6s/qecc/ } Q el ey
= focus (112552}, (focus (i1, G) @ and many more!

Takafumi Saikawa, Jacques Garrigue Formalizing quantum circuits with MathComp/Ssreflect February 28, 2022 1/1

https://github.com/t6s/qecc/

