
� �

Formalizing quantum circuits with MathComp/Ssreflect
Takafumi Saikawa and Jacques Garrigue Nagoya University� �

� �
Motivation� �

We want to formalize quantum circuits

Shor’s 9-qubit code (correcting both flips)� �

|ψ〉 • • H • •

E

• • H • • |ψ〉
|0〉 •
|0〉 •

|0〉 H • • • • H •

|0〉 •
|0〉 •

|0〉 H • • • • H •

|0〉 •
|0〉 •

© Self / Wikimedia Commons / CC-BY-SA-3.0� �
Basic differences: bits and qubits
Classical Quantum
bit ∈ {0, 1} qubit ∈ C2

functions in Set unitary transformations in FdHilb
direct product: tensor product
Set(X × Y, Z) ∼= Set(X,ZY ) FdHilb(X ⊗ Y, Z) ∼= FdHilb(X,ZY )

Problem
Each gate (= unitary transformation) is fairly simple:

•
= CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


but when put in a circuit, it becomes a monster:[

x y
z w

]
⊗
[
a b
c d

]
=


xa xb ya yb
xc xd yc yd
za zb wa wb
zc zd wc wd


CNOT in 3-qubit circuits : 8× 8 matrices

•
= CNOT⊗ I2 =


I2 0 0 0
0 I2 0 0
0 0 0 I2
0 0 I2 0


• = I2 ⊗ CNOT =

[
CNOT 0
0 CNOT

]
•

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Our first example (Shor’s code) becomes a 512× 512 matrix!

� �
The code is available at: https://github.com/t6s/qecc/� �

� �
Lens� �

Tensor power
Tensor power� �

Tensor power V ⊗n

= iterated tensor product V ⊗ · · · ⊗ V
If V = Km, V ⊗n ∼= Set(mn, K)� �

Array of qubits� �

Qubit ∈ C2

Array of qubits ∈
(
C2
)⊗n

� �
Operator� �

Operators on qubits must be

linear: addition and scalar action must be preserved

unitary: norm must be preserved� �
Lens, curry-uncurry, focus

Lens = injection between finite ordinals, indicating
the choice of wires (red wires in the picture)

Curry / Uncurry = currying along a given lens
which quotients away the unused (black) wires

Focusing = composing curry, gate and uncurry to
build the diagram

lens� �

lens n m = ({1, . . . ,m}� {1, . . . , n})� �
curry and uncurry� �

For T a vector space and ` : lens n m ,

(T 2)
⊗

n ∼= T 2n
(
T 2n−m

)2m ∼= ((T 2n−m
)2)⊗mcurry`

(
T 2n = Set(2n, T ) ∼= Set(2m,Set(2n−m, T ))

)
uncurry` = curry

−1
`� �

focus� �
And for G unitary,

focus` G = uncurry` ◦G ◦ curry`� �
Polymorphic operator
For focus to typecheck, the unitary operator G must actually be polymorphic:

G : ∀T : vector sp., (T 2)
⊗

n unitary−→ (T 2)
⊗

n

focus` G = λT.(uncurry` ◦GT 2n−m ◦ curry`)
Examples: •

= focus{17→1,27→3}3 CNOT

G
= focus{1 7→1,27→2}3(focus{1 7→1}2 G)

� �
Parametricity and naturality� �

Polymorphism is not enough

focus` G = uncurry` ◦ (GT 2n−m) ◦ curry`

We know from the type that G is polymorphically linear / unitary

But they could be unitary / linear differently for each T

I.e., the matrix representing the linearity might differ between different T s

And focus does change T

Parametricity
We want G to be represented by a single matrix:

∃M : matrix, ∀T : vector sp., ∀v : (T 2)
⊗

n, GT (v) =Mv.

Naturality
We can rephrase this parametricity without the existential reference to a matrix,
i.e., naturality:

T T⊗I
k

T⊗I
k

T ′ T ′⊗I
k

T ′⊗I
k

∀ϕ ϕ⊗I
k

ϕ⊗I
k

fT

fT ′

� �
Applications� �

Shor’s code
Definition bit_flip_enc : endo 3 :=

tsapp [lens 0; 2] cnot \v tsapp [lens 0; 1] cnot.

Definition bit_flip_dec : endo 3 :=

tsapp [lens 1; 2; 0] toffoli \v bit_flip_enc.

Definition sign_flip_dec := bit_flip_dec \v hadamard3.

Definition sign_flip_enc := hadamard3 \v bit_flip_enc.

Definition shor_enc : endo 9 :=

focus [lens 0; 1; 2] bit_flip_enc \v

focus [lens 3; 4; 5] bit_flip_enc \v

focus [lens 6; 7; 8] bit_flip_enc \v

focus [lens 0; 3; 6] sign_flip_enc.

Definition shor_dec : endo 9 :=

focus [lens 0; 3; 6] sign_flip_dec \v

focus [lens 0; 1; 2] bit_flip_dec \v

focus [lens 3; 4; 5] bit_flip_dec \v

focus [lens 6; 7; 8] bit_flip_dec.

Definition shor_code (chan : endo 9) :=

shor_dec \v chan \v shor_enc.

Proofs of properties
If G is unitary, so is focus`G.

For ` : lens n m and `′ : lens m p, focus`◦`′ = focus` ◦ focus`′
G

G′
=

G

G′

and many more!

Takafumi Saikawa, Jacques Garrigue Formalizing quantum circuits with MathComp/Ssreflect February 28, 2022 1 / 1

https://github.com/t6s/qecc/

