Formalizing quantum circuits with MathComp/Ssreflect

Takafumi Saikawa and Jacques Garrigue
Nagoya University

Basic differences: bits and qubits

Basic differences: bits and qubits	
Classical	Quantum
bit $\in\{0,1\}$	qubit $\in \mathbb{C}^{2}$
functions in Set	unitary transformations in FdHilb
direct product:	tensor product
Set $(X \times Y, Z) \cong \operatorname{Set}\left(X, Z^{Y}\right)$	FdHilb $(X \otimes Y, Z) \cong \operatorname{FdHilb}\left(X, Z^{Y}\right)$
Problem	

Problem

- Each gate (= unitary transformation) is fairly simple

$$
\mathscr{\wp}=\operatorname{CNOT}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- but when put in a circuit, it becomes a monster

$$
\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \otimes\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{llll}
x a & x b & y a & y b \\
x c & x d & y c & y d \\
z a & z b & w a & w b \\
z c & z d & w c & w d
\end{array}\right]
$$

CNOT in 3-qubit circuits: 8×8 matrices

$\ldots \quad\left[\begin{array}{llll}I_{2} & 0 & 0 & 0\end{array}\right]$		[100000000]
$\square-\mathrm{C}$		01000000
Θ CNOT $\otimes I_{2}=\left[\begin{array}{llll}0 & 0 & 0 & I_{2}\end{array}\right.$		00100000
$\left[\begin{array}{llll}0 & 0 & I_{2} & 0\end{array}\right]$		00010000
	\bigcirc	00000100
$=I_{2} \otimes$ CNOT $=\left[\begin{array}{cc}\text { CNOT } & 0\end{array}\right.$		00001000
$\underline{-}=I_{2} \otimes \mathrm{CNOT}=\left[\begin{array}{ll}0 & \text { CNOT }\end{array}\right]$		00000001
		00000010

Our first example (Shor's code) becomes a 512×512 matrix! The code is available at: https://github.com/t6s/qecc/

Lens

Tensor power

Tensor power

- Tensor power $V^{\otimes n}$
$=$ iterated tensor product $V \otimes \cdots \otimes V$
- If $V=K^{m}, V^{\otimes n} \cong \operatorname{Set}\left(m^{n}, K\right)$

Array of qubits

- Qubit $\in \mathbb{C}^{2}$
- Array of qubits $\in\left(\mathbb{C}^{2}\right)^{\otimes n}$

Operator

Operators on qubits must be

- linear: addition and scalar action must be preserved
- unitary: norm must be preserved

- Lens = injection between finite ordinals, indicating the choice of wires (red wires in the picture)
- Curry / Uncurry = currying along a given lens which quotients away the unused (black) wires
- Focusing = composing curry, gate and uncurry to build the diagram

$$
\text { lens } \mathrm{n} \mathrm{~m}=(\{1, \ldots, m\} \longmapsto\{1, \ldots, n\})
$$

curry and uncurry
For T a vector space and $\ell:$ lens n m ,

$$
\begin{gathered}
\left(T^{2}\right)^{\otimes n} \cong T^{2^{n}} \xrightarrow{\text { curry }_{\ell}}\left(T^{2^{n-m}}\right)^{2^{m}} \cong\left(\left(T^{2^{n-m}}\right)^{2}\right)^{\otimes m} \\
\left(T^{2^{n}}=\operatorname{Set}\left(2^{n}, T\right) \cong \operatorname{Set}\left(2^{m}, \operatorname{Set}\left(2^{n-m}, T\right)\right)\right) \\
\text { uncurry } \\
=\operatorname{curry}_{\ell}^{-1}
\end{gathered}
$$

focus
And for G unitary,

$$
\text { focus }_{\ell} G=\text { uncurry }_{\ell} \circ G \circ \text { curry }_{\ell}
$$

Polymorphic operator

For focus to typecheck, the unitary operator G must actually be polymorphic:

$$
\begin{gathered}
G: \forall T: \text { vector sp., }\left(T^{2}\right)^{\otimes n} \xrightarrow{\text { unitary }}\left(T^{2}\right)^{\otimes n} \\
\text { focus }_{\ell} G=\lambda T .\left(\text { uncurry }_{\ell} \circ G_{T^{2 n-m}} \circ \text { curry }_{\ell}\right)
\end{gathered}
$$

Examples:

Parametricity and naturality

Polymorphism is not enough

$$
\text { focus } \ell_{\ell} G=\text { uncurry }_{\ell} \circ\left(G_{T^{2 n-m}}\right) \circ \text { curry }_{\ell}
$$

- We know from the type that G is polymorphically linear / unitary
- But they could be unitary / linear differently for each T
- I.e., the matrix representing the linearity might differ between different T s
- And focus does change T

Parametricity

We want G to be represented by a single matrix:
$\exists M$: matrix, $\forall T$: vector sp., $\forall v:\left(T^{2}\right)^{\otimes n}, G_{T}(v)=M v$

Naturality

We can rephrase this parametricity without the existential reference to a matrix, i.e., naturality:

Applications
Shor's code
Definition bit_flip_enc : endo 3 :=
tsapp [lens 0; 2] cnot \v tsapp [lens 0;1] cnot.
Definition bit_flip_dec : endo 3 := tsapp [lens 1; 2;0] toffoli \v bit_flip_enc

Definition sign_flip_dec := bit_flip_dec \v hadamard3 Definition sign_flip_enc := hadamard3 $\backslash \mathrm{v}$ bit_flip_enc
Definition shor_enc : endo 9 :=
focus [lens 0; 1; 2] bit_flip_enc \v focus [lens 3; 4; 5] bit_flip_enc $\backslash v$ focus [lens 6; 7; 8] bit_flip_enc \backslash focus [lens 0; 3; 6] sign_flip_enc
Definition shor_dec : endo 9 :=
focus [lens 0; 3; 6] sign_flip_dec \v focus [lens 0; 1; 2] bit_flip_dec $\backslash \mathrm{v}$ focus [lens 3; 4; 5] bit_flip_dec \V focus [lens 6; 7; 8] bit_flip_dec

Definition shor_code (chan : endo 9) :
shor_dec \v chan \v shor_enc.

Proofs of properties

- If G is unitary, so is focus G

- For ℓ : lens n m and ℓ^{\prime} : lens m p, focus lo $^{\prime}=$ focus $\ell_{\ell} \circ$ focus $_{\ell^{\prime}}$
- $\sqrt{G}=G$
$-G^{\prime}-$
- and many more!

