
Simple Type Inference for Structural Polymorphism†

Jacques Garrigue
Research Institute for Mathematical Sciences

Kyoto University, 6068502 Kyoto, JAPAN

garrigue@kurims.kyotou.ac.jp

ABSTRACT
We propose a new way to mix constrained types and type
inference, where the interaction between the two is minimal.
By using local constraints embedded in types, rather than
the other way round, we obtain a system which keeps the
usual structure of an Hindley-Milner type system. In prac-
tice, this means that it is easy to introduce local constraints
in existing type inference algorithms.

Eventhough our system is notably weaker than general constraint-
based type systems, making it unable to handle subtyping
for instance, it is powerful enough to accomodate many fea-
tures, from simple polymorphic records à la Ohori to Ob-
jective Caml’s polymorphic variants, and accurate typing of
pattern matching (i.e. polymorphic message dispatch), all
these through tiny variations in the constraint part of the
system.

1. INTRODUCTION
Type inference for structural polymorphism has been a long
standing area of research. By structural polymorphism, we
mean a form of parametric polymorphism in which some
types may have a partially known structure, often denoted
by a notion of row variable or kinded variable. Applications
range from polymorphic records [14, 17] to polymorphic vari-
ants [16, 5] and objects with first-class (dynamic) messages
[12]. All these systems were proposed as extensions of the
Hindley-Milner type system [10], with growing degrees of
complexity.

A recent trend is to simplify these type systems by mov-
ing to a constraint-based framework [13, 11, 18, 15]. This
indeed greatly improved the understanding of the various
systems, as they can all be described as particular instances
of the HM(X) framework, on various constraint domains.
However, the switch to a constraint system also means that

†A preliminiary version of this paper has been presented at
the 9th FOOL Workshop, Portland, OR, January 2002.

previous work on Hindley-Milner does not directly apply.
This has practical consequences: it is hard to extend an ex-
isting algorithm to work with constraints, as all types must
now be embedded in constraints. This has also theoreti-
cal consequences: take for instance Hindley-Milner extended
with first-class polymorphism [7]; the extension intimately
depends on the way polymorphism is handled in the orig-
inal type system, and as HM(X) handles it in a radically
different way (a type variable can be both constrained and
polymorphic), it is unclear how it could handle such an ex-
tension.

This is all the more disturbing as HM(X) is somehow “too
powerful” for structural polymorphism. It was designed to
accomodate subtyping, which is carefully avoided in struc-
tural polymorphism.

A natural way to go is then to search for a weaker system,
not handling subtyping, but closer to the original Damas-
Milner formulation [3]. This is what we present here. We
do it by restricting the role of constraints to individual type
nodes: each constraint lives inside its type node, and can
only influence outside types by requiring two children of the
node to be equal. Since the embedding is done the other
way round, existing type inference algorithms can easily be
extended with such constrained types. For instance, the
handling of polymorphic variants in Objective Caml 3.00[9]
can be seen as an instance of this framework. We keep the
original definition of free variable, making this system com-
patible with first-class polymorphism for instance. Locality
is also beneficial for producing readable type errors: rather
than producing an unsolvable set of arbitrary constraints, we
can localize the problem, and translate it back to a mean-
ingful form.

Contributions of this paper can be found at the applica-
tion level: to our knowledge, both the problem of discarding
irrelevant type information in shrinking types, and of ac-
curately typing pattern matching, were still open for type
systems without subtyping-like mechanisms. The solutions
we propose here are simple instances of our framework.

Our system is very close to Ohori’s polymorphic records [14],
reusing the concept of kind as constraint. It is made modular
by completely separating the descriptions of types and con-
straints. New typed constructs can be added by merely spec-
ifying a new constraint domain, and new typed constants,
without needing to introduce new type inference rules.

First, we will present by examples various forms of structural
polymorphism. Then we introduce the notion of constraint
domain, which is used as parameter to our framework. All
forms of structural polymorphism we present here appear to
have very similar constraint domains. In a 4th section we
introduce the type system itself, with its specific notion of
substitution. Section 5 introduces terms and typing rules.
Section 6 and 7 are devoted to unification and type recon-
struction. Section 8 studies in more detail the differences
with HM(X). We conclude discussing the expressive power
of this system. Proofs are given in appendix.

2. STRUCTURAL POLYMORPHISM
We present here various forms of structural polymorphism,
on a gradual scale of increasing complexity. In order to uni-
formize the presentation, we write K.τ for types, where K is
a kinding environment, containing constraints for individual
type variables, under which the open type τ is to be under-
stood. We use a few built-in functions, to obtain interesting
types: integer addition +, string concatenation ↑, conver-
sions string of int : string → int and float : int → float .

2.1 Records à la Ohori
Arguably this is the simplest form of structural polymor-
phism considered in the literature. Record values have monomor-
phic types, and polymorphism is only used for typing field
access.

{name = "Jacques", age = 30} : {name : string , age : int}
fun x → x .age + 1 : α :: {age : int} . α→ int
fun x → x .name ↑ " is " ↑ string of int x .age

: α :: {name : string , age : int} . α→ string

Intuitively, the kinding α :: {age : int} means that α should
at least have a field age, and this field should have type
int. Accessing several fields result in a kind containing all of
them. Two kinds are compatible if they agree on the types
of their common fields. A type satisfies a kind if all the
required fields are provided, with the correct types.

Note that the above formulation is a direct adaptation of
Ohori’s. Fitting it inside the local constraint framework will
require a small change in presentation, without changing
expressive power.

2.2 Records and variants with masking
Ohori’s records are weak in that record values have only
structurally monomorphic types. We might want to allow
building lists of records containing different fields, with only
part of them common to all members. This requires giving
polymorphic types not only to field access, but also to record
values. A type system allowing it was first proposed by
Rémy [16], but here we use a more intuitive formalism [5],
which is also closer to Ohori’s.

{name = "Jacques", age = 30}
: α :: ({name : string , age : int}, ∅, {name, age}) . α

fun x → x .age + 1 : α :: ({age : int}, {age},L) . α→ int
let l1 = [{name = "Jacques", age = 30},

{name = "Serge",weight = 13}]
l1 : α :: ({name : string , age : int ,weight : int}, ∅, {name})

. α list

Kinds are now represented by a triple (T, L, U). Along with
the type of each field, we have two sets of labels. Required

labels L (union of all field accesses, a lower bound) form
a subset of available labels U (intersection of the possible
record values, an upper bound). L is the set of all labels.
You can see how fields are masked in the third example:
while we have types for the name, age and weight fields,
only the name field is accessible.

The combined type α :: ({name : string , age : int}, {age},
{name, age}) is an acceptable description for both {name =
"Jacques", age = 30}, which makes name and age avail-
able, and fun x → x .age + 1 , which only requires age. The
need for two distinct sets of labels stems from the natural
appearence of such combined types during type inference.
Since attempting to access an unavailable label would be a
type error, this also explains why, for a constraint kind to
be meaningful (to have a solution), the set of required labels
should be included in the set of available labels.

By duality, the same types can be used to describe poly-
morphic variants. The basic idea is that case-analysis of
a variant can receive the same type as a record, while the
variant itself would get the type of a field accessor.

Number(5) : α :: ({Number : int}, {Number},L) . α
let l2 = [Number(5),Face(”King”)]
l2 : α :: ({Number : int ,Face : string}, {Number ,Face},L)

. α list
let f1 = function Number(n)→ string of int n

| Face(name)→ name
f1 : α :: ({Number : int ,Face : string}, ∅, {Number ,Face})

. α→ string

Our two sets of labels have now different meanings. The
first one is the set of present constructors, or required cases,
which must be handled by case-analysis; the second one is
the set of handled constructors, or available cases, which is
accepted by all case-analyses.

An advantage of not using predefined sum types, is that
we can make case analysis modular. Consider the following
function f2, which uses a special syntax for dispatch. g
(respectively h) will only receive A or B (respectively C or
D). This can be reflected at the type level by requiring them
to handle only relevant cases.

let f2 = fun g → fun h → function (A|B) as x → g x
| (C |D) as x → h x

f2 : α1 :: ({A : αA,B : αB}, {A,B},L),
α2 :: ({C : αC , D : αD}, {C, D},L),
α3 :: ({A : αA, B : αB , C : αC , D : αD}, ∅, {A, B, C, D})
. (α1 → α)→ (α2 → α)→ α3 → α

Our choice of keeping all constraints local (constraining only
one variable) makes our system slightly weaker than Rémy’s,
which has row and presence variables. For instance we have
no way to relate the set of required cases in α1 and α3,
which forces us to make the safe assumption {A, B} in α1.
Rémy’s system handles requirement for each constructor as
an independent presence variable, which may be shared be-
tween two different variant types. This allows more precise
typing, but at the cost of harder to understand types, with
lots of variables, of different sorts. Experience suggests that
kinded variables, by reducing the number of variables to one
by record or variant type, and keeping only one sort of type

variables, make reading types much easier.

2.3 Discarding masked types
One may wonder about why one should keep all field types
in the type of l1, a list of records with some masked fields.
If fields age and weight are actually unavailable, why should
their types matter? Clearly, this is not the case with sub-
typing, which would allow to discard not only the fields, but
also their types. However, our requirement of principal type
inference makes impossible to simply forget the type.

For instance, let us consider the list:

let l3 = [{name = "Jacques", age = 30},
{name = "Rachel", age = 6 .5}]

The two records disagree on the type for age, either int or
float. This should trigger a type error. Yet, if we choose
to discard the type for age in l1, we would be able to type
l1@[{name = "Rachel", age = 6 .5}], which contains the
untypable l3 as a sublist.

A solution to this problem is to only trigger an error when a
field with conflicting types is used. This amounts to allowing
conjunctive types in the types of non-required fields, only
forcing them to be equal when they are required. Then we
can give the following type to l3.

l3 : α :: ({name : string , age : int∧float}, ∅, {name, age}).α

Since the two types for the field age are incompatible, it
cannot be accessed. And if it disappears from the list of
available fields, we can just drop these types as useless in-
formation.

While the absence of error may seem strange in the above
case (even though it is necessary for coherence), it is a nat-
ural way to allow the construction of heterogeneous collec-
tions of objects in a system without subtyping.

The same mechanism also applies to polymorphic variants,
and is actually used in Objective Caml 3.00. This allows
principal type inference of f5 for the following case, solv-
ing the long lasting problem of “masked but not discarded”
types.

let f3 = function Number(n)→ n | Face()→ 15
f3 : α :: ({Number : int ,Face : unit}, ∅, {Number ,Face})

. α→ int
let f4 = function Number(n)→ n/2
f4 : α :: ({Number : int}, ∅, {Number})

. α→ int
let f5 = fun x→ (f1(x), f3(x), f4(x))
f5 : α :: ({Number : int}, ∅, {Number})

. α→ (string × int × int)

2.4 Accurate matching and dynamic messages
Polymorphic variants provide already more precise typing
than classical predefined variant types, since a specific vari-
ant type is computed for every case-analysis, even if the
same constructors are partly reused.

We can go further, and allow the type of the result to depend
on which case was used; this happens for instance when a
message is dispatched between methods whose result types

differ. Such a mechanism was first proposed by Aiken et al.
in the context of soft typing for dynamically typed languages
[1]. Pottier reformulated it as an instance of the HM(X)
framework, calling it accurate analysis of pattern matching
[15]. In both cases, the type of the result is described by a
conditional type, depending on the input. Moreover, they
use global inclusion constraints to deal with the problem,
while we use only local ones.

Concretely, we add a new cases construct, which has the
same syntax as function , but allows each case to return a
value of different type. Here is an example of the expected
behaviour:

let f6 = cases Number()→ 10 | Face()→ ”King”
f6 (Number()) : int ↪→ 10
f6 (Face()) : string ↪→ ”King”

Our basic idea to accommodate different return types, is
to add another set of type bindings, corresponding to the
results of each branch of the pattern matching. The spe-
cial label return is used to indicate the result type of the
whole pattern matching. If a constructor is required, then
its associated type is unified with the type of the result.

f6 : α :: ({Number : unit ,Face : unit},
{Number : int ,Face : string , return : α1},
∅, {Number ,Face})

. α→ α1

let f7 = fun (x : α2 :: (∅, ∅, {Number},L) . α2)→ f6 x
f7 : α :: ({Number : unit ,Face : unit},

{Number : int ,Face : string , return : int},
{Number}, {Number ,Face})

. α→ int

You can see how inference proceeds in f7. The type an-
notation on x is only there to simulate application on a
monomorphic constructor. Note how the type of the variant
itself ends up including the type of the result, avoiding the
need for a global constraint.

This mechanism is then extended to deal with the case when
the same variant is passed to several pattern-matching func-
tions, with different return types: fun x→ (f x, g x). If we
have only one return type set in our variant type, then the
monomorphism of x would force return types in f and g to
be identical. But we provide several sets, one by function,
by a mechanism we call generativity. This way the type of
x may contain different return types for different functions,
without interference between them. We leave details for the
formal development.

A simple and useful application of this extension is to pro-
vide polymorphic decomposing functions for variants, with-

out overloading.

let arg = cases Number(n : int)→ n | Face(s : string)→ s
arg : α :: ({Number : int ,Face : string},

{Number : int ,Face : string , return : α1},
∅, {Number ,Face})

. α→ α1

let tag = cases Number(n : int)→ 1 | Face(s : string)→ 2
tag : α :: ({Number : int ,Face : string},

{Number : int ,Face : int , return : α1},
∅, {Number ,Face})

. α→ α1

let decomp = fun x → (tag x , arg x)
decomp : α :: ({Number : int ,Face : string},

{{Number : int ,Face : int , return : α1},
{Number : int ,Face : string , return : α2}},
∅, {Number ,Face})

. α→ α1 × α2

decomp (Face ”King”) : int × string ↪→ (2 , ”King”)
decomp (Number 10) : int × int ↪→ (1 , 10)

In a more object-oriented context, the same kind of mecha-
nism was called dynamic messages by Nishimura [12]; later it
was reformulated using different instances of HM(X) [11, 15].
Dynamic messages can be encoded using a small amount of
syntactic sugar, but the way we rely on polymorphism in
pattern-matching functions makes our system weaker.

This can be seen on the following example. Objects {| . . . |}
are case-analyzing functions, and message passing o← m is
the application o m.

let o1 = {|Number(x) = float x ;Face(s : string) = s|}
o1 : α :: ({Number : int ,Face : string},

{Number : float ,Face : string , return : α1},
∅, {Number ,Face})

. α→ α1

o1 ← Number 6 : float ↪→ 6.0
o1 ← Face ”King” : string ↪→ ”King”
let f11 = fun o → (o ← Number 6 , o ← Face ”King”)
f8 : α1 :: ({Number : int ,Face : string}, ∅,

{Number ,Face},L)
. (α1 → α)→ α× α

f8 o1 : untypable

As you can see, the encoding is sound, and different meth-
ods can have different result types. However, if we apply the
same monomorphic object to two different messages, they
are merged in one, and later we are unable to distinguish
their result types. For this reason, the application f8 o1 can-
not be typed: constraints involving both Number and Face
cannot be solved simultaneously. Nishimura’s system did
not require polymorphism, since message and object types
were not merged, rather a global subtyping constraint was
generated.

While complex applications of dynamic messages cannot be
encoded directly in our system, simpler cases where objects
are only used as second class values can be handled. More-
over, if one needs real first class objects, first class poly-
morphism [7] is available to solve the problem. This only
requires to write object types when they appear as function
parameters.

3. CONSTRAINTS DOMAINS
Contrary to usual constraint-based type systems, our local
constraints are grafted on top of the Hindley-Milner type
system, rather than mixing constraints and types at the
same level. This means that we can reduce requirements
on constraints to a minimum: their interaction with the
rest of the type system will be minimal anyway. In partic-
ular, we do not introduce any syntax for constraints: they
are black boxes, and need just be able to answer some ques-
tions. While not essential, we think this freedom is impor-
tant, as the choice of how to represent constraints is relevant
to their understanding. Except for this extra freedom, noth-
ing would prevent one to formalize our constraint domains
as special kinds of cylindric algebras, which can be plugged
into HM(X).

A constraint domain describes a class of constraints, and
how they interact with the type system. A particular in-
stance of the type system may contain several constraint
domains, as long as all their operations and values are clearly
distinguished. For simplicity, we will only consider type sys-
tems operating on a single constraint domain.

Definition 1. A constraint domain C is composed of the
following items.

1. A theory TC with an entailment relation |= satisfying
the following properties

(a) There is a constraint ⊥, such that for any C we
have ⊥ |= C.

(b) A constraint C such that C |= ⊥ is invalid. Va-
lidity is decidable.

(c) Entailment is reflexive and transitive: C |= C; if
C |= C′ and C′ |= C′′ then C |= C′′.

(d) For any two constraints C and C′, there is a con-
straint C∧C′ such that C∧C′ |= C, C∧C′ |= C′,
and for all C′′ such that C′′ |= C and C′′ |= C′,
we have C′′ |= C ∧ C′.

2. An observation relation ` checking some atomic prop-
erties of a constraint: C ` p(a) where p and a are
respectively a predicate and a symbol for the domain.
Observation should be compatible with entailment:

If C |= C′ and C′ ` p(a) then C ` p(a).

3. A set of relating predicates of the form r(a, τ), which
relate symbols and types. Some of these predicates are
said to be generative, that is they have an extra index
ε, which can be existentially quantified: ∃ε.rε(a, τ).

4. A set of propagation rules EC, of the form (depending
on whether r is generative or not)

∀x.(r(x, α1) ∧ r(A, α2) ∧ p(x)⇒ α1 = α2)
∀x∀ε.(rε(x, α1) ∧ rε(A, α2) ∧ p(x)⇒ α1 = α2)

where A is either the same variable x or a symbol.

Our requirements on the entailment relation |= are as free
as one can get. Basically, we only need a way to distinguish

valid constraints from invalid ones, and build the intersec-
tion of two constraints.

The observation relation ` is a consequence of the represen-
tation independency of our constraints: we need an explicit
way to relate them to the rest of the world. It interfaces con-
straints, which are semantic, with propagation rules, which
are syntactic.

Relating predicates are similar in flavor to features in fea-
ture algebras [2]. Each constraint will be coupled with a set
R of instances of these predicates (e.g. R = {r(a, int), r(b,
int), r(c, α list)}), in order to relate its semantics with types.
R need not always describe functions: coherence will be
enforced by the propagation rules. Generative predicates
are used for type information depending on the constraint,
but which should not be identified throughout all its oc-
curences. The idea is that merging two quantified sets of
predicates will not mix them: ∃ε.{rε(a, τ)}∪∃ε.{rε(a, τ ′)} =

∃εε′.{rε(a, τ), rε′(a, τ ′)}. Among our examples, only the
typing of accurate matching uses generative predicates.
Other cases can be handled in a system without ε’s.

Propagation rules specify how C and R constrain other types.
They come in two forms: either A is x, and r only has to
be functional for every symbol a such that C ` p(a); or A is
some symbol b, and additionally the image of a by r should
be the same as the image of b (i.e. the second case includes
the first one by transitivity). There is an additional variation
for generative predicates, expressing that the functionality
condition only applies when identical ε’s are involved.

The syntax may seem restrictive, but relaxing the definition
would not give more expressive power: arbitrarily complex
conditions can be encoded in the constraint itself. Keeping
the syntax of the rules simple makes checking the applica-
bility of rules easy: one just has to iterate on the (finitary)
relating predicates, and check observation for ground atoms.
On the other hand, the restriction to the form α1 = α2 on
the right hand side is crucial: this is what allows our unifi-
cation algorithm to terminate.

We say that a constraint is exact if it cannot be further
refined, i.e. if it is only entailed by itself and ⊥. This is
the equivalent of a ground type in the world of constraints.
Whether a constraint is exact or not does not impact any-
thing in the theory, but knowing it may be helpful when
reading types.

We now consider the constraint domains associated to ex-
amples in the previous sections.

Records à la Ohori
The original formulation did mix required fields and their
types in a single kind. We have to distinguish the two, to
adapt to our framework. Moreover, since we do not ex-
tend monomorphic types themselves, monomorphic records
should also be described by exact constraints.

A constraint is a pair (L, x) of a finite set of labels L, to-
gether with a mark x distinguishing exact types (1) from
refinable ones (0). Entailment on refinable types is contain-

ment: (L, x) |= (L′, 0) iff L ⊃ L′, which makes set union the
conjunction operation. For exact types entailment is only
reflexive. All such constraints are valid, so we must add a
⊥ element. We do not need to observe anything particular,
so we just use C ` true(l) for any l. The type associated to
each label is described by a predicate r(l, τ), and the fact a
label has only one type is captured by the unique propaga-
tion rule:

r(l, α1) ∧ r(l, α2) ∧ true(l)⇒ α1 = α2.

Records with maskable fields
Constraints are represented by a pair of sets (L, U), L a
finite set of accessed labels, and U either the set of all labels
L, or a finite set of available labels. Entailment is defined
by (L, U) |= (L′, U ′) iff L ⊃ L′ and U ⊂ U ′. We can choose
(L, ∅) as ⊥. The validity check is (L, U) |= ⊥ when L 6⊂ U .
One can observe required labels: (L, U) ` req(l) iff l ∈
L. We can either keep the previous propagation rule, and
obtain records without discarding, or switch to the following
new rule, which allows conjunctive typing, by delaying the
equality constraint until the field is accessed.

r(l, α1) ∧ r(l, α2) ∧ req(l)⇒ α1 = α2.

Accurate matching
As for records with maskable fields, constraints are pairs
(L, U), with the same entailment relation. We reuse also
the conditional propagation rule, but we also add a second
generative relation predicate vε(l, τ), and a second propaga-
tion rule, acting on result types:

vε(l, α1) ∧ vε(return, α2) ∧ req(l)⇒ α1 = α2.

Both argument and return types will only be unified if the
case corresponding to l is required, that is if the method l
is called.

4. TYPES AND KINDS
Simple types τ are defined as usual. Polytypes σ are ex-
tended with a kinding environment K which restricts possi-
ble instances for constrained variables.

τ ::= α type variable
| u base type
| τ → τ function type

K ::= ∅ | K, α :: (C, ∃ε̄.R) kinding environment
σ ::= τ | ∀α . . . α.K . τ polytypes

K is a set of bindings α :: (C, ∃ε̄.R), C a constraint and
R a set of relations to types, describing the possible val-
ues admitted for the type α. Note that recursive types can
be defined using a mutually recursive kinding environment,
i.e. where kinds are related to each other. The set of rela-
tions ∃ε̄.R is to be understood modulo α-conversion of the
ε’s, and polytypes modulo α-conversion of quantified type
variables.

Definition 2. A kind k = (C, ∃ε̄.R) is well formed if

1. the constraint C is satisfiable.

2. for each t(x, α1) ∧ t(A, α2) ∧ p(x) ⇒ α1 = α2 in E
(where t = r or rε) and each t(a, τ1) and t([a/x]A, τ2)
in R such that C ` p(a), we have τ1 = τ2.

We define kinding environments as containing only well formed
kinds. Notice that all type variables do not necessarily have
a kind, only those that represent constrained types do.

Free variables FVK(σ) of a polytype σ under a kinding en-
vironment K are defined as the minimum set satisfying the
following equations. We write FV(σ) when K is clear from
the context.

FVK(∀α1 . . . αn.K′ . τ) = FVK,K′(τ) \ {α1, . . . , αn}
FVK,α::(C,∃ε̄.R)(α) = {α} ∪ FVK(R)

FVK(u) = ∅
FVK(τ1 → τ2) = FVK(τ1) ∪ FVK(τ2)

Our notion of free variables is an important difference with
systems like HM(X). We explicitely force all free variables
inside a kind to be free inside any type containing a variable
of this kind. We obtain thus the property that possible
instances of a type only depend of its free variables, like in
traditional Hindler-Milner type systems, whereas in HM(X)
constraints may include unrelated variables.

Definition 3. A type substitution θ, extended as usual
on monotypes and polytypes, is admissible between the kind-
ing environments K and K′, written K ` θ : K′, if for all
α :: (C, ∃ε̄.R) in K, θ(α) is a type variable α′ and it satisfies
the following properties.

1. α′ :: (C′, ∃ε̄′.R′) ∈ K′

2. C′ |= C

3. there is an index substitution η : ε̄ → ε̄′ such that
η(θ(R)) ⊆ R′.

Condition 1 ensures that all kinded variables are mapped to
kinded variables. Condition 2 ensures that constraints are
instantiated correctly (according to entailment). Condition
3 ensures that all type constraints are kept, while making
provision for changes in relation indices.

An immediate consequence of this definition is that one can-
not substitute a ground type for a kinded variable. This
does not mean that kinded variables always stay polymor-
phic: the constraint may be an exact one, which cannot
be refined further. This only reflects our design choice of
only changing the constraint domain, without extending the
types themselves.

For both kinding environments and substitutions, we will
write K|D (resp. θ|D) for their restriction to variables in D,
and K|D (resp. θ|D) for their restriction to variables outside
of D.

Discarding useless types
The above definition of substitution requires one to keep
eventually useless relational information (that cannot be
matched by any propagation rule anymore). In practice, it
may be useful to allow forgetting some relations, to lighten
kind descriptions. However we must be careful of not drop-
ping free type variables, as they may have an impact on
which types can be made polymorphic.

Let us consider the relation t(a, τ) in R, where t = r or rε. If
for all propagation rule t(x, α1)∧ t(A, α2)∧ p(x)⇒ α1 = α2

in E , we have1 C ` ¬p(x), and moreover if A = a, we have
∀y.C ` ¬p(y), then t(a, τ) will never cause propagation.
We call such a t(a, τ) inert under propagation rules E and
constraint C. Such an inert atom can be safely replaced by
a dummy rfv (τ), which just makes sure that free variables
are kept. Moreover, rfv (τ) can be replaced by {rfv (α) | α ∈
FV(τ)} at any point. For this reason we can simplify R
through the reflectively and transitively closed relation ∼=E :

R ∪ {r(a, τ)} ∼=CE R ∪ {rfv (τ
′) | τ ′ ∈ T}

when r(a, τ) inert and FV∅(τ) = FV∅(T)

R ∼=CE R′ ⇒ (C, ∃ε̄.R) ∼=E (C, ∃ε̄.R′)

Note that ∼=E is not symmetric: this is a refinement from
left to right. ∼=E commutes with substitution.

Proposition 1 (Discarding postponement). If K,
α :: k ` θ : K′, θ(α) :: k′ and k0

∼=E k, then there is a
kind k′

0 such k′
0
∼=E k′ and K, α :: k0 ` θ : K, θ(α) :: k′

0.

The above proposition means that one can arbitrarily post-
pone discarding of useless types. For this reason we do not
consider discarding in the rest of this paper, and assume it
will be done before presenting types to the programmer.

5. TERMS AND TYPING RULES
Expressions are the standard ones,

e ::= x | fun x→ e | e e core lambda
| c | let x = e in e constants and let

Type judgments are extended with a kinding environment,

K; Γ ` e : τ

where K is a well-formed kinding environment and Γ is a set
of bindings x : σ from term variables to polytypes.

Typing rules appear in figure 1. They are in the syntax-
directed style, instantiating and generalizing in one step,
which simplifies the handling of eventual mutual recursion
in the kinding environment. Generalize2 and Let are two
rules, but they are always used together.

The extra rule Constant is a variation on Variable, intended
to allow easy definition of extra operations through poly-
morphically typed constants. As in the informal presenta-
tion, the pair K0 . τ is to be understood as the polytype
∀FVK0(τ).K0 . τ .

The following lemma is paramount in proving the soundness
of type inference.
1Here ¬p is some observable predicate in the complement
of p, i.e. ∀C.(C ` p(x) ∧ C ` ¬p(x)) ⇒ C |= ⊥. As an
observable, it is preserved by entailment. Since constraints
are to be understood under the open world hypothesis, C `
¬p(a) is not equivalent to ¬C ` p(a).
2A somehow strange case of Generalize happens if K contains
a variable α such that FVK(α) ∩ B 6= ∅ but α 6∈ B. The
meaning of α in K|B is not the same as in K, but since then
α would not be in FVK(Γ) either (if it were, then we would
have FVK(α) ⊂ FVK(Γ), and FVK(Γ) ∩ B = ∅), this does
not matter anyway.

Variable
K, K0 ` θ : K Dom(θ) ⊂ B

K;Γ, x : ∀B.K0 . τ ` x : θ(τ)

Abstraction
K;Γ, x : τ ` e : τ ′

K;Γ ` fun x→ e : τ → τ ′

Application
K;Γ ` e1 : τ → τ ′ K; Γ ` e2 : τ

K;Γ ` e1 e2 : τ ′

Generalize
K;Γ ` e : τ B = FVK(τ) \ FVK(Γ)

K|B ; Γ ` e : ∀B.K|B . τ

Let
K;Γ ` e1 : σ K;Γ, x : σ ` e2 : τ

K;Γ ` let x = e1 in e2 : τ

Constant
K0 ` θ : K Tconst(c) = K0 . τ

K;Γ ` c : θ(τ)

Figure 1: Typing rules

Records à la Ohori
Tconst(recordl1...ln) = α0 :: (({l1, ..., ln}, 1), {r(l1, α1), ..., r(ln, αn)})

. α1 → · · · → αn → α0

Tconst(getl) = α0 :: (({l}, 0), {r(l, α1)}) . α0 → α1

Records with maskable fields
Tconst(recordl1...ln) = α0 :: ((∅, {l1, ..., ln}), {r(l1, α1), ..., r(ln, αn)})

. α1 → · · · → αn → α0

Tconst(getl) = α0 :: (({l},L), {r(l, α1)}) . α0 → α1

Variants with maskable constructors
Tconst(tagl) = α0 :: (({l},L), {r(l, α1)}) . α1 → α0

Tconst(matchl1...ln) = α0 :: ((∅, {l1, ..., ln}), {r(l1, α1), ..., r(ln, αn)})
. (α1 → α)→ · · · → (αn → α)→ α0 → α

Tconst(splitl1...lk,lk+1...ln
) = α′ :: (({l1, ..., lk},L), {r(l1, α1), ..., r(lk, αk)}),

α′′ :: (({lk+1, ..., ln},L), {r(lk+1, αk+1), ..., r(ln, αn)}),
α0 :: ((∅, {l1, ..., ln}), {r(l1, α1), ..., r(ln, αn)})
. (α′ → α)→ (α′′ → α)→ α0 → α

Accurate matching
Tconst(cases l1...ln) = α0 :: ((∅, {l1, ..., ln}), ∃ε.{r(l1, α1), ..., r(ln, αn),

vε(l1, α
′
1), ..., v

ε(ln, α′
n), vε(return, α)})

. (α1 → α′
1)→ · · · → (αn → α′

n)→ α0 → α

Figure 2: Examples of constructs with their associated constraints

Lemma 2 (Type substitution). If K, Γ ` e : τ and
K ` θ : K′, then K′, θ(Γ) ` e : θ(τ).

For dynamic semantics, constants providing extra opera-
tions are coupled with δ-rules, of the form A[e1, . . . , en] →
A′[e1, . . . , en], where A and A′ are application contexts.

A[x1, . . . , xn] ::= c | xi | (A[x1, . . . , xn] A[x1, . . . , xn])

Each δ-rule should be type safe: if K0; Γ ` A[x1, . . . , xn] : τ ,
where Γ = {x1 : τ1, . . . , xn : τn}, then K0; Γ ` A′[x1, . . . , xn] :
τ must be provable.

If all the δ-rules are type safe, we can prove subject reduc-
tion in the usual way. E[] denotes an arbitrary single hole
context, not restricted to application contexts.

Theorem 4 (Subject reduction). If K;Γ ` E[e] : σ
and e→ e′ by a δ-rule, Beta : ((fun x→ e1) e2)→ [e2/x]e1

or Let : let x = e1 in e2 → [e2/x]e1, then K;Γ ` E[e′] : σ

Subject reduction is only a step on the way to type sound-
ness (i.e. well-typed programs do not go wrong), the next
one being to show that normal forms of programs typable
in the empty environment are values [20]. While easy, this
part is not modular (reduction rules may interact). For this
reason we leave it to specific instances.

Examples
Some typed constructs are given in figure 2.

For record calculi the δ-rule is

getli
(recordl1...ln e1 . . . en)→ ei.

For variants, which share the same constraint as records
with maskable fields, we have three δ-rules. The first one is
the dual of field extraction, while the two others implement
polymorphic dispatch. Notice that with dispatch the func-
tions’ types are not directly connected to the input type.

matchl1...ln f1 . . . fn (tagli
e) → fi e

splitl1...lk,lk+1...ln
f1 f2 (tagli

e) → f1 (tagli
e) if i ≤ k

splitl1...lk,lk+1...ln
f1 f2 (tagli

e) → f2 (tagli
e) if i > k

For variants with accurate matching, we do not need to
change the typing of the tag constructor; it is enough to
add a new cases constructor for polymorphic functions. The
δ-rule is the same as for match, only the type differs.

cases l1...ln f1 . . . fn (tagli
e) → fi e

6. UNIFICATION
We define unification on monotypes through rules of the
form

ϕ

ϕ′

where ϕ are preconditions and ϕ′ conclusions. ϕ is a uni-
fication problem composed both of kinding constraints α ::
(C, ∃ε̄.R) and equality constraints τ1

.
= τ2 connected by ∧.

Both ∧ and
.
= are commutative, and ∧ is associative. A

variable may not be kinded by more than one kinding con-
straint. Note that the “constraints” here, along with ∧,
have nothing to do with the previously defined constraint
domains; we just reuse a natural terminology in a different
context, where constraints are purely syntactic.

An equality constraint is said to be solved in ϕ if it is of the
form α

.
= τ and α only appears as strict subterm in other

constraints of ϕ. A kinding constraint is solved if its kind
is well-formed. A unification problem ϕ is solved if all its
constraints are solved.

A solution to a unification problem ϕ, whose kinding con-
straints form a kinding environment K (its basis), is a kind-
ing environment K′ and an admissible substitution K ` θ :
K′ such that for all equality constraint τ1

.
= τ2 in ϕ, we have

θ(τ1) = θ(τ2).

Rules for unification are in figure 3. sortϕ is a partial func-
tion from types to {u1, . . . , un,→, k}, left undefined on non-
kinded variables:

sortϕ(u) = u u a base type
sortϕ(τ1 → τ2) = →

sortϕ(α) = k α :: (C, ∃ε̄.R) ∈ ϕ

Proposition 5. Rewriting a unification problem leads ei-
ther to ⊥ or to a solved problem.

From a solved unification problem ϕ one can directly read
a pair of a kinding environment K (the kinding constraints)
and a substitution θ (the solved equality constraints), such
that K ` θ : K.

A substitution K ` θ1 : K1 is said to be more general than
K ` θ2 : K2 if there is a substitution K1 ` θ : K2 such that
θ2 = θ ◦ θ1.

Proposition 6. The solution K′ ` θ : K′ read from the
solved form obtained by rewriting a unification problem ϕ of
basis K is also K ` θ : K′, and it is the most general unifier
for this problem.

7. TYPE RECONSTRUCTION
Type reconstruction is done by translating a typing problem
K;Γ . e : τ into a unification problem ϕ, and solving it to
obtain a substitution K ` θ : K′.

The algorithm in figure 4 does not depend on a specific eval-
uation order, equality and kinding constraints only needing
to be solved eagerly for let nodes. The function solve(ϕ)
extracts an admissible substitution from a normal form of
ϕ.

A solution to a typing problem K;Γ . e : τ is a substitution
K ` θ : K′ such that K′; θ(Γ) ` e : θ(τ) is derivable.

Theorem 7. If K;Γ . e : τ can be reduced to K ` θ : K′

by the type reconstruction algorithm, K′; θ(Γ) ` e : θ(τ) is
derivable, and θ is the most general solution; otherwise it
reduces to ⊥ and there is no solution.

Incompatible
ϕ ∧ τ1

.
= τ2

⊥ when sortϕ(τ1) 6= sortϕ(τ2)

Cyclic
ϕ ∧ α

.
= τ

⊥ when α 6= τ and α ∈ FV∅(τ)

Redundancy
ϕ ∧ τ

.
= τ

ϕ

Function
ϕ ∧ τ1 → τ2

.
= τ ′

1 → τ ′
2

ϕ ∧ τ1
.
= τ ′

1 ∧ τ2
.
= τ ′

2

Substitution
ϕ ∧ α

.
= τ

ϕ[τ/α] ∧ α
.
= τ

when α :: (C, ∃ε̄.R) 6∈ ϕ and α 6∈ FV∅(τ)
and α ∈ FV(ϕ) and τ 6= β ∨ β ∈ FV(ϕ)

Bad constraint
ϕ ∧ α :: (C, ∃ε̄.R)

⊥ when C |= ⊥

Constraint
ϕ ∧ α1 :: (C1, ∃ε̄1.R1) ∧ α2 :: (C2,∃ε̄2.R2) ∧ α1

.
= α2

ϕ ∧ α :: (C1 ∧ C2,∃ε̄1ε̄2.R1 ∪R2) ∧ α1
.
= α ∧ α2

.
= α

α fresh, ε̄1 ∩ ε̄2 = ∅

Propagation
t(x, α1) ∧ t(A, α2) ∧ p(x)⇒ α1 = α2 ∈ E t = r or rε

ϕ ∧ α :: (C, ∃ε̄.R) t(a, τ1) ∈ R r([a/x]A, τ2) ∈ R C ` p(a)
ϕ ∧ α :: (C, ∃ε̄.R) ∧ τ1

.
= τ2

when τ1 6= τ2

Figure 3: Rewriting rules for unification

K;Γ . e : τ = (Γ . e : τ) ∧K

Γ, x : (∀B.K . τ1) . x : τ = τ
.
= θ(τ1) ∧

V

αi::(Ci,∃ε̄i.Ri)∈K βi :: (Ci, ∃ε̄i.θ(Ri))

where B = {α1, . . . , αn} and θ = {α1 7→ β1, . . . , αn 7→ βn}

Γ . fun x→ e : τ = (Γ, x : α1 . e : α2) ∧ τ
.
= α1 → α2

Γ . e1 e2 : τ = (Γ . e1 : α→ τ) ∧ (Γ . e2 : α)

Γ . let x = e1 in e2 : τ = ϕ|B ∧ (Γ, x : (∀B.K|B . θ(α)) . e2 : τ)

where ϕ = (Γ . e1 : α) and K ` θ : K = solve(ϕ)
and B = FVK(θ(α)) \ FVK(θ(Γ))

Γ . c : τ = τ
.
= θ(τ0) ∧

V

αi::(Ci,∃ε̄i.Ri)∈K0
βi :: (Ci, ∃ε̄i.θ(Ri))

where Tconst(c) = K0 . τ0, FVK0(τ0) = {α1, ..., αn}
and θ = {α1 7→ β1, . . . , αn 7→ βn}

Figure 4: Reconstruction algorithm

8. RELATION TO HM(X)
While we have hinted at subtle differences with HM(X)
in previous sections, one may still wonder why we cannot
present this system as a subframework of HM(X). The sub-
framework approach not only would relieve us from part of
the proof burden (which, luckily, was not so big), it would
also allow for a direct comparison with other systems devel-
opped inside HM(X).

In this section we explain in detail why this system does
not fit inside the HM(X) framework, and why attempting
to make it fit into would loose some theoretical and prac-
tical properties. In order to do so, we will first define an
HM(X) version of our framework, and show on an example
how it differs from our version. Then we will formalize some
distinctive properties.

8.1 Generalization
Obtaining an HM(X) version of our framework is very easy.
One just needs to change the definition of the Generalize

typing rule.

Generalize-HM(X)

K1, K2; Γ ` e : τ B ∩ (FV∅(K1) ∪ FV∅(Γ)) = ∅
K1,∃B.K2; Γ ` e : ∀B.K2 . τ

To make the comparison easier, we consider a syntax-directed
version of this rule.

Generalize-HM(X)

K;Γ ` e : τ B = (FV∅(τ) ∪ FV∅(KB)) \ FV∅(Γ)

∃B.K;Γ ` e : ∀B.KB . τ

where KB is the subset of K containing all kinds related
to B (either as name of the kind, or inside R). We solve
the mutual recursion between B and KB by choosing the
smallest B statisfying the equation.

Here is a concrete example where the HM(X) version would
infer a different type. Let’s consider the function

fun x→ let y = (function A(z)→ z | B(z)→ z) x in y

If we write K for the kinding environment α :: (∅, {A, B}, {A :
β, B : β}), the typing derivation for the function application
becomes (independently of the framework used)

K; x : α ` (function A(z)→ z | B(z)→ z) x : β

According to our framework, β is a free variable of α, so we
cannot generalize this type. However, using rather Genera-

lize-HM(X), one can reach the following conclusion.

K ; x : α ` y : ∀β.α :: (∅, {A, B}, {A:β, B:β}) . β

You can see here the peculiar form of the polymorphism ob-
tained: the kinding part in ∀B.K . τ is no longer restricted
to variables of B (as requires our type reconstruction al-
gorithm). And a polymorphic variable (β) may actually
depend on a non-polymorphic one (α).

In the above example, the difference in typing is only superfi-
cial, making the extra prolymorphism spurious: actually one

gets exactly the same polymorphism when considering the
whole term. While there exist examples where Generalize-

HM(X) provides really more polymorphism, they are rare,
and there are workarounds.

8.2 Relevant variables
A formal way to distinguish the two systems is by consider-
ing relevant type variables. Intuitively, a variable is relevant
if the meaning of a type depends on it proper (i.e. its whole
meaning is included in the type).

More specifically, we consider the meaning of a type as the
set of terms typable by one of its instances, and we say
that a type variable α is relevant to a type K . τ , if for
some instance K′ . τ ′ of this type, there is a term e with a
derivation K′; ∅ ` e : τ ′, such that any substitution K ` θ :
K′′, verifying K′′; ∅ ` e : θ(τ), has either to substitute α or
have it bound in K′′ to a kind with a different constraint (a
kind with different related types does not imply relevance).

Our system has the following property: all relevant variables
of K . τ are included in FVK(τ). This is not the case with
HM(X) based systems. For instance, in the above example,
β is clearly relevant to K . α (e.g. A(1) binds β to int), but
it is not in FV∅(α) = {α}.

This property gives a clean way to print a type, with all rele-
vant type information, by inserting a kind where its variable
occurs. For instance, in Objective Caml, we would write

[< A of β | B of β]→ β

for the above term’s type.

This property is also needed for tracing sharing in types, as
we do for semi-explicit first-class polymorphism [7]. Shar-
ing is easily obtained by making each explicit polytype a
kind α :: [σ] and using α for each shared occurence of this
polytype, following the idea in the section 2.6 of [7]. Since
HM(X) fails to capture relevance in the type system, our
first-class polymorphism would not have principal inference
for it.

A possibly simpler way to characterize the relation to rel-
evance is at the type inference level. In our system, if
α 6∈ FVK(τ1) ∪ FVK(τ2), then solving K ∧ τ1 = τ2 will
not bind α. Of course, this is not true for HM(X).

This has technical consequences. For instance this property
is needed to do “in place generalization”, that is marking di-
rectly generic variables in a type. This is only possible when
generalizable variables are guaranteed not to be shared with
types in the environment. While “in place generalization” is
not a goal in itself, detecting the extent of the enclosing type
which should be copied, as expected by Generalize-HM(X),
would require a fair amount of extra machinery.

This is also an important property for programmers, as they
can easily identify the consequences of a type constraint:
to prove that a constraint does not affect a type, one only
needs to check that they do not share free variables. With
HM(X), the baseline is to consider the transitive closure
of all constraints sharing some variables, which potentially
contains lots of irrelevant variables.

9. CONCLUSION
We proposed a type system where constraints are local to
type nodes, and showed how it can be applied to many type
inference problems, which fit between usual parametric poly-
morphism and systems requiring the power of subtyping. Its
simplicity, and the unperspicuous way in which it extends
the original type inference algorithm, make it a good candi-
date for practical implementations and further extensions.

While we think that this system has a wide range of ap-
plicability, as is shown by a new structural encoding for
accurate matching, it does not cover the full range of struc-
tural polymorphism. For instance, Rémy’s row and presence
variables provide for slightly more precise typing than the
encoding we give. Similarly Kennedy’s dimension types use
a multi-sorted algebra [8]. Nonetheless, if we restrict shar-
ing in types to one single sort of type variables, as is done
in Objective Caml’s type system (which is itself based on
Rémy’s work), then we come back into the expressive area
of local constraints.

An interesting conjecture is whether local constraints can
handle all one-sorted ML-like type systems without the “power
of subtyping”. This would confirm the intuition that there
is a qualitative jump when going from systems without sub-
typing to systems which allow it. In particular, local con-
straints fail to encode simply typed dynamic messages or
record concatenation [19], correctly showing that, while this
is not immediately explicit, all these systems require some
form of “subtyping” or multi-directional constraints.

Ironically the last counter-example standing against a char-
acterization of structural polymorphism by local constraints
seems to be the label-selective lambda-calculus and its type
system [6]. Function types are of the form l:τ → τ , mod-
ulo the congruence l1:τ1 → l2:τ2 → τ = l2:τ2 → l1:τ1 → τ .
Clearly, this bears no relation to subtyping, as shown by
the existence of a typing algorithm without constraints, yet
one has to separate l1:τ1 → τ from τ , which is not possi-
ble with the local constraints presented in this paper. The
intuitive encoding would be to describe function types as
kinds containing all applicable labels, and add a propaga-
tion rule of the form l1 6= l2 ∧ r(l1, α1) ∧ r(l2, α2) ⇒ α1 =
α′∧α′ :: ({l2}, {r(l2, α2)}), introducing equalities with newly
built types. Not only does it break our proof of termination
for unification, but in general this form of propagation rules
could be used to encode subtyping. This suggests that label-
selective lambda-calculus requires some form of non-local
relations, which is coherent with the presence of a funda-
mentally non-local requirement in the Completion rule of
its unification algorithm [4], that the return type variable
after an arbitrary number of arrows should differ3. Actu-
ally finding what are these non-local relations may be an
interesting topic for further work, as the same phenomenon
appears in systems with explicit row variables [16, 15].

10. REFERENCES
[1] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft

typing with conditional types. In Proc. ACM
Symposium on Principles of Programming Languages,
pages 163–173, Portland, Oregon, Jan. 1994.

3This requirement was missing in [6].

[2] H. Aı̈t-Kaci, A. Podelski, and G. Smolka. A
feature-based constraint system for logic programming
with entailment. Theoretical Computer Science,
122(1–2):263–283, Jan. 1994.

[3] L. Damas and R. Milner. Principal type-schemes for
functional programs. In Proc. ACM Symposium on
Principles of Programming Languages, pages 207–212,
1982.

[4] J. P. Furuse and J. Garrigue. A label-selective
lambda-calculus with optional arguments and its
compilation method. RIMS Preprint 1041, Research
Institute for Mathematical Sciences, Kyoto University,
Oct. 1995.

[5] J. Garrigue. Programming with polymorphic variants.
In ML Workshop, Baltimore, Sept. 1998.

[6] J. Garrigue and H. Aı̈t-Kaci. The typed polymorphic
label-selective λ-calculus. In Proc. ACM Symposium
on Principles of Programming Languages, pages
35–47, 1994.

[7] J. Garrigue and D. Rémy. Extending ML with
semi-explicit higher order polymorphism. Information
and Computation, 155:134–171, Dec. 1999.

[8] A. J. Kennedy. Dimension types. In Proceedings of the
5th European Symposium on Programming, volume
788 of Lecture Notes in Computer Science, pages
348–362. Springer, 1994.

[9] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and
J. Vouillon. The Objective Caml system release 3.00,
Documentation and user’s manual. Projet Cristal,
INRIA, Apr. 2000.

[10] R. Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[11] M. Müller and S. Nishimura. Type inference for
first-class messages with feature constraints.
International Journal of Foundations of Computer
Science, 11(1):29–63, 2000.

[12] S. Nishimura. Static typing for dynamic messages. In
Proc. ACM Symposium on Principles of Programming
Languages, San Diego, California, Jan. 1998.

[13] M. Odersky, M. Sulzmann, and M. Wehr. Type
inference with constrained types. Theory and Practice
of Object Systems, 5(1):35–55, 1999.

[14] A. Ohori. A polymorphic record calculus and its
compilation. ACM Trans. Prog. Lang. Syst.,
17(6):844–895, Nov. 1995.

[15] F. Pottier. A versatile constraint-based type inference
system. Nordic Journal of Computing, 7(4):312–347,
Nov. 2000.

[16] D. Rémy. Typechecking records and variants in a
natural extension of ML. In Proc. ACM Symposium
on Principles of Programming Languages, pages
77–87, 1989.

[17] D. Rémy. Type inference for records in a natural
extension of ML. In C. A. Gunter and J. C. Mitchell,
editors, Theoretical Aspects Of Object-Oriented
Programming. Types, Semantics and Language Design.
MIT Press, 1993.

[18] M. Sulzmann. A General Framework for
Hindley/Milner Type Systems with Constraints. PhD
thesis, Yale University, Department of Computer
Science, May 2000.

[19] M. Wand. Type inference for record concatenation
and multiple inheritance. Information and
Computation, 93:1–15, 1991.

[20] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115(1):38–94, Nov. 1994.

APPENDIX
A. PROOFS OF THEOREMS

Proposition 1 (Discarding postponement). If K,
α :: k ` θ : K′, θ(α) :: k′ and k0

∼=E k, then there is a
kind k′

0 such k′
0
∼=E k′ and K, α :: k0 ` θ : K, θ(α) :: k′

0.

Proof. Suppose k0 = (C, ∃ε̄.R ∪R0) and k = (C, ∃ε̄.R ∪
R1), with R0 and R1 minimal. By definition of ∼=E , all
r(a, τ) in R0 are inert for C. By definition of admissibility,
k′ = (C′, ∃ε̄.R′), with C′ |= C, so that all elements of R0 are
also inert for C′; and θ(R1) ⊂ R′, so that k′

0 = (C′,∃ε̄.R′ ∪
θ(R0)) ∼=E (C′, ∃ε̄.R′ ∪ θ(R1)) = k′.

Lemma 2 (Type substitution). If K, Γ ` e : τ and
K ` θ : K′, then K′, θ(Γ) ` e : θ(τ).

Proof. Induction on the derivation of K, Γ ` e : τ .

The two important steps are Variable and Generalize. For
Variable, we have K, K0 ` θ0 : K and Dom(θ0) ⊂ B; we
can choose B outside of θ and K′: ∀α ∈ B, θ(α) = α, and
FV(K′) ∩ B = ∅. By composition, we construct θ1 = (θ ◦
θ0)|B , such that K′, θ(K0) ` θ1 : K′: conditions (1) and
(2) are satisfied by transitivity. We check condition (3) for
kinded variables:

• If α 6∈ B, then θ1(α) = α, α :: (C, ∃ε̄.R) ∈ K′ and
FV∅(R) ∩B = ∅, so that θ1(R) = R.

• If α ∈ B, then θ1(α) = θ(θ0(α)), and α :: (C, ∃ε̄.R) ∈
K0. For any variable α′ ∈ FV∅(R), we have θ1(θ(α

′)) =
θ(θ0(α

′)): either α′ ∈ B, and θ(α′) = α′, so that
θ1(θ(α

′)) = θ1(α
′) = θ(θ0(α

′)), or α′ 6∈ B, and θ0(α
′) =

α′, giving θ1(θ(α
′)) = θ(α′) = θ(θ0(α

′)). Combined
with θ1(α) :: (C′,∃ε̄.R′) ∈ K′ implying θ(θ0(R)) ⊂ R′,
we obtain θ1(θ(R)) ⊂ R′, giving condition (3) since
α :: (C, ∃ε̄.θ(R)) ∈ θ(K0).

Note also that θ1 ◦ θ|B = θ ◦ θ0. Then we can deduce
K′; θ(Γ), x : ∀B, θ(K0) . θ(τ) ` x : θ(θ0(τ)).

For Generalize, again we choose B outside of θ and K′.
Then K|B , θ(K|B) ` θ : K′, θ(K|B). By induction hypothesis

we have K′, θ(K|B); θ(Γ) ` e : θ(τ). Then we can deduce
K′; θ(Γ) ` e : ∀B.θ(K|B) . θ(τ).

Lemma 3 (Term substitution). If K;Γ ` e : σ and
K; Γ, x : σ ` e′ : τ ′, then K;Γ ` e′[e/x] : τ ′.

Proof. Easy induction on the derivation tree. When
grafting Generalize somewhere, use a type substitution K `
θ : K|B . When substituting under Generalize, B may grow.
In such case, preserve K|B by duplicating the kind under a
different name, and instantiate extra variables with Vari-

able.

Theorem 4 (Subject reduction). If K;Γ ` E[e] : σ
and e→ e′ by a δ-rule, Beta : ((fun x→ e1) e2)→ [e2/x]e1

or Let : let x = e1 in e2 → [e2/x]e1, then K;Γ ` E[e′] : σ

Proof. First we consider the case when E[e] = e. If e→
e′ is the instance of the δ-rule A[x1, . . . , xn]→ A′[x1, . . . , xn],
then, supposing e1 : τ2, ..., en : τn, we have already a deriva-
tion of K0; x1 : τ1, ..., xn : τn ` e′[x1, ..., xn] : τ . We con-
clude by term substitution. Similarly β-reduction and let-
reduction are immediate consequences of term substitution.

If the redex occurs inside a deeper context, extend the proof
by induction on the depth of the context.

Proposition 5. Rewriting a unification problem leads ei-
ther to ⊥ or to a solved problem.

Proof. First, we verify that unification terminates. One
is allowed to apply rules in any order, except that (1) failure
is eager (i.e. Incompatible, Cyclic and Bad constraint are
given highest priority), and (2) Propagation only applies
when no other rule applies (i.e. it has lowest priority).

Our measure is a lexicographical ordering on the tuple (num-
ber of kind constraints, number of pending propagations,
number of unsolved variables, number of arrows, number
of equality constraints). Constraint reduces the number of
kind constraints by 1, while possibly increasing the number
of pending propagations. Propagation eventually reduces
the number of pending propagations (if substitutions make
τ1 equal to τ2) or the number of kind constraints (if it causes
a constraint unification); no new propagation will occur un-
til one of these happen. Substitution reduces the number of
unsolved variables. Function reduces the number of arrows.
Redundancy reduces the number of equations.

Then we check that reduction cannot be stuck. If a con-
straint is stuck, one of its members is not solved. If this
is an equality constraint, either Substitution applies, or it
is α

.
= τ [α] and Cyclic applies, or one member is a kinded

variable and either Constraint or Incompatible applies, or
both are not type variables and one of Incompatible, Redun-

dancy or Function applies. If this is a kinding constraint,
then either the constraint is not satisfiable and Bad con-

straint applies, or a propagation equation is not satisfied,
and since other rules do not apply, Propagation applies.

Proposition 6. The solution K′ ` θ : K′ read from the
solved form obtained by rewriting a unification problem ϕ of
basis K is also K ` θ : K′, and it is the most general unifier
for this problem.

Proof. For each rewriting rule, we verify that it is sound
and complete. Together with soundness, we also check changes
in kindings were necessary.

Rules Incompatible, Cyclic, Redundancy and Function are
immediate: the upper and lower constraints accept the same
solutions.

For Substitution, soundness is clear: θ(α) = θ(τ) then if θ
is a solution of ϕ[τ/α], it is also a solution of ϕ. Looking
at kindings, let K1 be the basis for ϕ, and K2 the basis
for ϕ[τ/α]. We have K1 ` {α 7→ τ} : K2, and K2 ` θ :
K′, since θ(α) = θ(τ), θ ◦ {α 7→ τ} = θ, and K1 ` θ :
τ . For completeness, the side-conditions guarantee that α
has no kind (reduction rules only introduce kinds for fresh
variables). Then it is safe to replace α by τ in ϕ, and the
same solutions are accepted.

For Bad constraint, no substitution can apply to α, so that
the constraint is equivalent to ⊥.

For Constraint, if we have a solution K ` θ : K′ of the upper
side, then it has to map both α1 and α2 to α′ :: (C′, ∃ε̄′.R′),
with C′ |= C1 and C′ |= C2. Since C1 ∧ C2 is the weakest
constraint implying both C1 and C2, we can extend θ into
K, α :: (C1 ∧ C2, ∃ε̄1ε̄2.R1 ∪ R2) ` θ{α 7→ α′} : K′, and it is
a solution to the lower side (θ(α) = θ(α1) = θ(α2) = α′),
showing completeness. Reciprocally, with K1 and K2 bases
for the upper and lower sides, if we have a solution K2 ` θ :
K′ of the lower side, then K1 ` {α1 7→ α, α2 7→ α} : K2, and
since θ(α) = θ(α1) = θ(α2), θ ◦ {α1 7→ α, α2 7→ α} = θ, and
K1 ` θ : K′ is a solution to the upper side.

For Propagation, soundness is immediate (the lower side
subsumes the upper side). Any solution K ` θ : K′ of the
upper side must have θ(τ1) = θ(τ2) to be admissible, so it is
also complete.

Soundness shows that the solution K′ ` θ : K′ we read from
a solved unification problem, is also a solution K ` θ : K′

to the original problem. Thanks to completeness, we know
that any other solution K ` θ1 : K′′ of the original problem
can be extended in a solution K′ ` θ2 : K′′ of the solved
problem. Since θ2 satisfies all the solved constraints, there
is a K′ ` θ3 : K′′ such that θ2 = θ3 ◦ θ, and, when restricted
to the original domain, θ1 = (θ3 ◦ θ)|FV(ϕ). So θ is the most
general unifier.

Theorem 7. If K;Γ . e : τ can be reduced to K ` θ : K′

by the type reconstruction algorithm, K′; θ(Γ) ` e : θ(τ) is
derivable, and θ is the most general solution; otherwise it
reduces to ⊥ and there is no solution.

Proof. We verify by induction on the structure of e that
an inference problem is translated into an equivalent unifi-
cation problem.

The first case only splits a complete problem in its kinding
environment and typing problem.

The second case handles the Variable rule. Kinded βi’s en-
sure soundness: if K′ = {βi :: (Ci,∃ε̄i.θ(Ri))}αi::(Ci,∃ε̄i.Ri)∈K,
then K ` θ : K′, so that K′, K ` θ : K′ (since θ|Dom(K′) = id),
and any solution K′ ` θ′ : K′′ of the right hand side is
such that K′′, K ` (θ′ ◦ θ)|B : K′′; this proves K′′; θ′(Γ), x :
∀B.θ′(K).θ′(τ1) ` x : (θ′◦θ)|B(θ′(τ1)), and (θ′◦θ)|B(θ′(τ1)) =
θ′(θ(τ1)) = θ′(τ) gives the left hand side. For completeness,
suppose θ′ is a solution to the left hand side. Then θ′|B is the
instantiation substitution. We can extend θ′ in θ1 = θ′◦θ−1,
since βi’s are fresh, and θ1 is still a solution of the left hand
side. θ1 is also a solution of the right hand side.

Abstraction and Application are as in ML.

The Let rule requires to solve constraints on e1 before pro-
ceeding. This corresponds to generating a derivation, and
adding the Generalize step. The result is then used to type
e2. Information related to variables of B is discarded from
the global constraint as superfluous. This is sound as con-
straints were already solved once, and cannot be refined as
these variables are not accessible through the environment.
Completeness requires considering the case when we do not
use the Generalize step on e1. Generalizable variables are
kept as free variables. Then they cannot be generalized when
typing e2, since they are in the environment. Since this is
equivalent to choosing θ = id in the corresponding Variable

rules, and the Variable case is complete, Let is complete.

Constant is similar to Variable.

Since we already proved rewriting on unification problems to
terminate, type inference terminates with either a solution
or ⊥.

