Private row types: abstracting the unnamed

Jacques Garrigue

Graduate School of Mathematical Sciences, Nagoya University

garrigue@math.nagoya-u.ac.jp

March 15, 2006

Abstract

In addition to traditional record and variant types, Objective Caml has structurally poly-
morphic types, for objects and polymorphic variants. These types allow new forms of poly-
morphic programming, but they have a limitation when used in combination with modules:
there is no way to abstract their polymorphism in a signature. Private row types remedy
to this situation: they are manifest types whose “row-variable” is left abstract, so that an
implementation may instantiate it freely. They have useful applications even in the absence
of functors. Combined with recursive modules, they provide an original solution to the ex-
pression problem.

1 Introduction

Polymorphic objects and variants, as offered by Objective Caml, allow new forms of polymorphic
programming. For instance, a function may take an object as parameter, and call some of its
methods, without knowing its exact type, or even the list of its methods [15]. Similarly, a list
of polymorphic variant values can be used in different contexts expecting different numbers of
constructors, as long as the types of constructor arguments agree, and all constructors present in
the list are allowed [6].

These new types are particularly interesting in programming situations where one gradually
extends a type witha new methods or constructors. This is typically supported by classes for
objects, but this is also possible with polymorphic variants, thanks to the dispatch mechanism
which was added to pattern matching. This is also true for recursive types, but then one has to be
careful about making fix-points explicit, so as to allow extension. A typical example of this style
is the expression problem, where one progressively and simultaneoulsy enriches a small expression
language with new constructs and new operations [17]. This problem is notoriously difficult to
solve, and Objective Caml was, to the best of our knowledge, the first language to do it in a type
safe way, using either polymorphic variants [7] or classes [14].

If we think of these situations as examples of incremental modular programming, we realize
that an essential ML feature does not appear in this picture: functors. This is surprising, as
they are supposed to be the main mechanism providing high-level modularity in ML. There is a
simple reason for this situation: it is currently impossible to express structural polymorphism in
functors. One may of course specify polymorphic values in interfaces, but this does not provide
for the main feature of functors, namely the ability to have types in the result of a functor depend
on its parameters. To understand this, let’s see how functor abstraction works.

let add (pl : float array) (p2 : float array) =
let 11 = Array.length pl and 12 = Array.length p2 in

Array.init (max 11 12)
(fun i -> if i < 11 then if i < 12 then pl.(i) +. p2.(i) else pl.(i) else p2.(i))

This program computes the sum of two polynomials. We might want to abstract the representation
of arrays, to emphasize that this program uses them functionally (arrays in OCaml are mutable.)

module type Vect = sig
type t

val init : int -> (int -> float) -> t
val length : t -> int
val get : t -> int -> float
end
module Poly (V : Vect) = struct
let add pl p2 =
let 11 = V.length pl and 12 = V.length p2 in
V.init (max 11 12)
(fun i -> if i < 11 then if i < 12 then V.get pl i +. V.get p2 i else V.get pl i
else V.get p2 i)
end

We have given the name t to float array, and made it abstract as a parameter. This works
nicely, but what happens if we want to represent vectors as objects, calling methods inside the
functor?
module type 0OVect = sig
type t = <length: int; get: int -> float>
val init : int -> (int -> float) -> t
end
module OPoly (V : OVect) = struct
let add (p1l : V.t) (p2 : V.t) =
let 11 = pl#length and 12 = p2#length in
V.init (max 11 12)
(fun i -> if i < 11 then if i < 12 then pl#get i +. p2#get i else pl#get i
else p2#get i)
end

This looks like it works again, but there is a hidden limitation in the above code: only methods
length and get would be allowed. That is, we cannot use an object with any extra method. What
we would like is actually the above signature to contain

type t = <length: int; get: int -> float; ..>

”

allowing extra methods. Yet the “..” in the above type represents an internal type variable,
usually called the row-variable, and free type variables are not allowed in type definitions. With
an usual type variable, we could define an abstract type and use it in place of the type variable.
This would amount to something like

type t_row
type t = <length: int; get: int -> float; t_row>

However row-variables cannot be “named” in this way, so we cannot abstract them.

What we need to overcome this problem is a middle-ground between abstract types, which are
completely opaque, and concrete types, which cannot be further refined.

One option to introduce such semi-abstract types would be to exploit subtyping: one might
allow defining upper or lower bounds for abstract types. This is the idea behind F-bounded
polymorphism [3], which has been integrated into a number of languages such as Generic Java [2],
Moby [5], or Scala [11]. In particular, Moby and Scala do have a module system able to express
functors, and Scala gives an elegant solution to the expression problem [19].

We avoided F-bounded polymorhism, because subtyping in Objective Caml is fully explicit:
any use of a value whose type is semi-abstract would have required a coercion. We rather chose
to stick with the fully structural approach inherent to OCaml, simply abstracting extensibility as
if it were a type variable. This means that we follow the idea of adding an abstract t_row, but
that we will keep it unnamed. Here is an example, using our syntax for private row types’.

module type OVect = sig

type t = private <length: int; get: int -> float; ..>

val init : int -> (int -> float) -> t

end

With this definition, the functor 0Poly now accepts any object type having at least the methods

1The “private” part of the naming will get clearer in section 2.2. The qualifiers “row” and “structural” are more
or less interchangeable in this paper. The author somehow prefers structural, but most people seem to find the
concept of row easier to grasp.

length and get with proper types. As seen here, a private row type is defined by a structural
type, either object or variant, where the only free type variable is the row variable.

As the solution looks so simple, one might wonder why it was not introduced long ago. One
answer is that the problem doesn’t occur if one writes everything using classes rather than functors
(but then why have both in the same language?) Another is that the t_row above just describes
a correct intuition, while formalization is a bit trickier.

There has been examples in the past combining classes with functors. Such a combination has
been used by the FOC project for instance [1]. But in the absence of private row types, classes
were only used to provide late-binding at the value level, and classes or object types did not appear
in parameters of functors. We will also see that private row types, in combination with recursive
modules, are even more interesting for polymorphic variants, as variants have no class syntax to
express late-binding.

Private row types take their name from their relation to private types. As a side-effect of
abstraction, private row types can restrict the ability to create values of a given type. This
is already nice in itself, as it provides private abbreviations for free. This also offers a way of
understanding the meaning of private types, as types whose structure is partially abstract.

The body of this paper is composed of two sections. The next one presents various examples
using private row types, for functors, privacy, and extensible recursion. Section 3 formalizes the
definitions, combining structural polymorphism with applicative functors.

2 Using private row types

In this section we give examples of various uses of private row types, in combination with other
features. All examples were type-checked using Objective Caml 3.09. The only new syntax
compared to previous versions of the language is the “private” keyword, which indicates a private
row type.

2.1 Simple functors

Private row types are essential in combining functors with structural polymorphism. A natural
application is our introduction example:

module type OVect = sig
type t = private <length: int; get: int -> float; ..>
val init : int -> (int -> float) -> t
end
module OPoly (V : OVect) = struct
let add (pl : V.t) (p2 : V.t) =
let 11 = pl#length and 12 = p2#length in
V.init (max 11 12)
(fun i -> if i < 11 then if i < 12 then pl#get i +. p2#get i else pl#fget i
else p2#get i)
end

We can develop it more, by extending with a new function mul for external product.

module type OVect2 = sig
type t = private <length: int; get: int -> float; map: (float -> float) -> t; ..>
val init : int -> (int -> float) -> t
end
module OPoly2 (V : 0OVect2) = struct
include 0Poly (V)
let mul x (p : V.t) = p#map (fun y -> x *. y)
end
module OPoly2 : functor (V : OVect2) ->
sig
val add : V.t -> V.t -> V.t
val mul : float -> V.t -> V.t
end

We added an extra method map to t, and used it inside Poly2. We also passed an argument of
type OVect2 to OPoly which expected an OVect. This is accepted as OVect2.t is an instance of
OVect.t.

An other typical case where we need to use functors with objects, is when the functionality we
need is already provided as a functor.

module OMap(X : sig type t = private <compare : t -> int; ..> end)

= Map.Make(struct type t = X.t let compare (x:t) y = x#compare y end)
class vector (n : int) (f : int -> float) = object (s : ’s)

val v = Array.init n f

method length = n

method get i = v. (i)

method map f = < v = Array.map f v >

method compare (vec : ’s) = compare v (Array.init vec#length vec#get)
end
module VMap = OMap(struct type t = vector end)
module VPoly = OPoly2(struct type t = vector let init = new vector end)

Here the functor Map.Make from the standard library expects a type t and a function compare
t -> t -> int. Since t is not allowed any polymorphism, we have to wrap it in a new functor
expecting only one type, which provides this time a method compare. We define a class vector
with all the methods required by OMap and 0Poly2, so we can pass it as parameter to both.
Examples involving polymorphic variants also arise naturally. Consider for instance a simple
property base, such that we may add new types of properties.

type basic = [‘Bool of bool | ‘String of string]
module Props(X : sig type t = private [> basic] end) =
struct
let base : (string,X.t) Hashtbl.t = Hashtbl.create 17
let put = Hashtbl.add base
let put_bool k b = put k (‘Bool b)
let put_str k s = put k (‘String s)
let get = Hashtbl.find base
let to_string (v : X.t) = match v with
‘Bool b -> if b then "true" else "false"
| ‘String s -> s
| _ -> "other" (* required by typing *)

end
The notation [> basic] is an abbreviation for [> ‘Bool of bool | ‘String of string]. It means
that the actual variant type X.t will have to contain at least the constructors of basic, and
eventually more. The “>” implies the presence of a row variable. This notation is not new to
this proposal, but without the “private” keyword one could not use it in a type declaration. An
interesting consequence of extensibility is that any pattern-matching on X.t needs to contain a
default case, as it may actually contain more cases than basic. This is similar to Zenger&Odersky’s
approach to extensible datatypes, which also requires defaults [18].

In order to extend this basic property type, we only need to define a new type and apply the
functor. Here we show interactive definitions at the toplevel, including the types inferred by the
compiler (in italic).

type extended = [basic | ‘Int of int] ;;
type extended = [‘Bool of bool [‘Int of int | ‘String of string]
module MyProps = Props(struct type t = extended end) ;;
module MyProps :
sig
val base : (string, extended) Hashtbl.t
val put : string -> extended -> unit
val put_bool : string -> bool -> unit
val put_str : string —-> string —-> unit
val get : string -> extended
val to_string : extended -> string
end

Note that here, extended is a “final” type, not extensible, thus we may write complete pattern-
matchings for it. We may want to use this property to refine the to_string function. The notation
#basic is an abbreviation for the or-pattern collecting all cases from basic, i.e. (‘Bool _ |‘String _
let to_string (v : extended) = match v with
‘Int n -> string_of_int n
| #basic -> MyProps.to_string v ;;
val to_string : extended -> stiring

Lastly, the functorial approach allows to extend the type of a polymorphic variant in a different
compilation unit. This was not possible before, when combining polymorphic variants and mutable
values. Here is an example which causes a compile time error.

(* base.ml *)

type basic = [‘Bool of bool | ‘Int of int | ‘String of string]
let base : (string, [>basic]) Hashtbl.t = Hashtbl.create 17

$ ocamlc -c base.ml

File "base.ml", line 2, characters 41-58:

The type of this expression, (string, _[> basic]) Hashtbl.t,
contains type variables that cannot be generalized

Since base is not a value, its type cannot be made polymorphic. A final type for it should be
determined in the same compilation unit. Since no such type is given here, this results in an
error. Using the above functor avoids the problem, by delaying the creation of the hash table
to the application of the functor. Note that using a functor means that any code accessing the
property base must be functorized too. This is a classical downside of doing linking through
functor application. As a counter part, this enhances modularity, allowing to use several property
bases in the same program for instance.

2.2 Relation to private types

Since version 3.07, released in 2003, Objective Caml has private types, introduced by Pierre Weis
[10]. Like private row types, private types are intended to appear in signatures, abstracting some
behavior of the implementation. To do that, they simply restrict (non-polymorphic) variants and
records, prohibiting the creation of values outside of the module where they were defined, while
still allowing pattern-matching or field access. Contrary to private row types, they do not allow
refinement of type definitions. Their main intent is to allow to enforce invariant properties on
concrete types, like it is possible with ADTs, while avoiding any overhead.

module Relative : sig
type t = private Zero | Pos of int | Neg of int
val inj : int -> t
end = struct
type t = Zero | Pos of int | Neg of int
let inj n =
if n = 0 then Zero else
if n > O then Pos n else Neg (-n)
end
open Relative ;;
let string_of_rel = function
Zero -> "O"
| Pos n -> string_of_int n

| Neg n -> "-" ~ string_of_int n;;
val string_of_rel : rel -> string
Zero;;

Cannot create values of the private type Relative.t

Interestingly, we can simulate private types with private row types. The kind of variant re-
finement used here is opposite to the previous section: we model restrictions on construction by
assuming that some constructors may actually not be there. This gives us more flexibility than
with the original private types, as some constructors may be declared as present, to make them
public.

module Relative : sig

type t = private [< ‘Zero | ‘Pos of int | ‘Neg of int > ‘Zero]
val inj : int -> t
end = struct
type t = [‘Zero | ‘Pos of int | ‘Neg of int]
let inj n =
if n = 0 then ‘Zero else
if n > O then ‘Pos n else ‘Neg (-n)

end
let zero : Relative.t = ‘Zero;;
val zero : Relative.t = ‘Zero

let one : Relative.t = ‘Pos (-1);;
This exzpresstion has type [> ‘Pos of int] but is here used with type
Relative.t

You can see that ‘Zero, being public, can be given type Relative.t, but ‘Pos(-1) cannot, which
protects abstraction.

Private record types can be modeled by object types, this time in the usual way. As an extra
feature we naturally gain the possibility of hiding some fields. This allows to define module-private
methods, like in Java, while OCaml only has object-private methods.

module Vector : sig

type ’a ¢ = private < length: int; get: int -> ’a; compare: ’a ¢ -> int; .. >

val init : int -> (int -> ’a) -> ’a ¢

val map : (a -> ’b) -> ’a c -> ’b ¢

end = struct
class [’a]l ¢ v = object (s : ’s)
method v = v
method length = Array.length v
method get i : ’a = v. (1)
method compare (vec : ’s) = compare v vec#v
end
let init n f = new c (Array.init n f)
let map f v = new ¢ (Array.map f v#v)
end

Here we have used a private object type to hide the method v, while enforcing its presence in the
actual object. This allows accessing the contents of the object in a more efficient way, yet without
abstraction it would result in unsoundness, as one could use it to mutate these contents.

Another approach would be to use only an abstract type for the array returned by v. However,
one has to keep in mind that object typing in OCaml is purely structural: one can freely create
an object by hand, and give it the same type as an existing class, eventhough its methods might
cunningly call methods from different objects, breaking the coherence of the definitions. Only
private object types can protect against this, while still allowing the programmer to call methods
in a natural way. As with private types, this allows to enforce invariants, for instance saying that
for a value v of type Vector.c, calling v#get i always succeeds when 0 < i < v#length. There
is unfortunately no support for inheritance.

2.3 Recursion and the expression problem

Examples in previous sections have kept to a simple structure. In particular, the variant types
involved were not recursive. As we indicated in introduction, polymorphic variants are known
to provide a very simple solution to the expression problem, allowing one to extend a recursive
type with new constructors, with full type safety, and without any recompilation. However, the
original solution had a small drawback: one had to close the recursion individually for each
operation defined on the datatype. Moreover it relied quite heavily on type inference to produce
polymorphic types.

With the introduction of recursive modules, a natural way to make things more explicit is to
close the recursion at the module level. However, this also requires private row types, to allow
extension without introducing mind-boggling coercions (see mixmod.ml at [7] for an example with
coercions.)

We present here a variation on the expression problem, where we insist only on the addition of

new constructors, since adding new operations is trivial in this setting. We first define a module
type describing the operations involved.

module type Ops = sig
type expr
val eval : expr -> expr
val show : expr -> string
end

We then define a first language, with only integer constants and addition. To keep it extensible,
we leave the recursion open in the variant type, and have operations recurse through the parameter
of a functor.

module Plus = struct
type ’a exprO = [‘Num of int | ‘Plus of ’a * ’al
module F(X : Ops with type expr = private ([> ’a exprO] as ’a)) =
struct
type expr = X.expr exprO
let eval : expr -> X.expr = function
‘Num _ as e -> e
| ‘Plus(el,e2) -> match X.eval el, X.eval e2 with
‘Num m, ‘Num n -> ‘Num(m+n)
| e12 -> ‘Plus el2
let show : expr -> string = function
‘Num n -> string_of_int n
| ‘Plus(el,e2) -> "(""X.show el”"+""X.show e2"")"
end
module rec L : (Ops with type expr = L.expr exprO) = F(L)
end

Observe how closing the recursion is now easy: we just have to take a fix-point of the functor.

The next step is to define a second language, adding multiplication. Inside the functor, we
instantiate the original addition language, and use it to delegate known cases in operations, using
variant dispatch.

module Mult = struct
type ’a exprO = [’a Plus.exprO | ‘Mult of ’a * ’a]
module F(X : Ops with type expr = private ([> ’a exprO] as ’a)) =
struct
type expr = X.expr exprO
module L = Plus.F(X)
let eval : expr -> X.expr = function
#L.expr as e -> L.eval e
| ‘Mult(el,e2) -> match X.eval el, X.eval e2 with
‘Num m, ‘Num n -> ‘Num(m*n)
| el2 => ‘Mult el2
let show : expr -> string = function
#L.expr as e -> L.show e
| ‘Mult(el,e2) -> "(""X.show el”™"*""X.show e2"")"
end
module rec L : (Ops with type expr = L.expr expr0) = F(L)
end

That’s it. Here is a simple example using the final language.

Mult.L.show(‘Plus(‘Num 2, ‘Mult(‘Num 3, ‘Num 5)));;

- : string = "(2+(3*5))"
This whole approach may seem verbose at first, but a large part of it appears to be boilerplate.
Half of the lines of P1lus have to be repeated in Mult, and would actually be in any similar code.
From a more theoretical point of view, this example makes clearer the relation between solutions
to the expression problem that use type abstraction, such as [19], and our original solution which
used only polymorphism.

Combining object types with recursive modules might provide other applications, but they are

less immediate, as classes already provide a form of open recursion.

T I= « type variable

| u(?) abstract type

| 7—71 function type
K == 0|K,a:(C,R) kinding environment
0 = 7|KpT kinded type
o = 0|va.l polytype

Figure 1: Types and kinds

3 Formalization

We provide here a short description of the formal system underlying private row types. It is
based on our formalism for structural polymorphism [8] for the core language part, combined with
Leroy’s description of an applicative functor calculus [9)].

We will not give full details of these two systems, as both of them are rather complex, yet very
few changes are actually needed. In order to introduce private row types, we only need two things.
One is the ability to specify inside structural types that they have an identity (a name), and are
only compatible with types having the same identity. The other is to allow refining private row
types through module subtyping, and check that all such refinements are legal.

Actually, following the intuition that row types are just structural types with a row variable,
the first aspect may seem trivial: why not simply use an abstract type for this row variable.
This would mean that private row types should actually be two types: a structural type, with a
manifest definition, and an associated abstract type, used as row variable for the manifest one.
This is exactly what we will do, up to the point that there is actually no such thing as a single
row variable, capturing all possible refinements of a type. More precisely, we could use one for
object types, as one can only refine them by adding new methods, but this is impossible for variant
types, as existing constructors may also disappear. For this reason, the formalism we use here is
based on kinds [12] rather than row variables, but we will still use an abstract type representing
a “virtual” row variable.

3.1 Core type system

We will directly use the formalism from [8], as it is already general enough. We only have to add
parameterized abstract types. We repeat the basic definitions in the appendix.

The syntax for types and kinds is given in figure 1. Simple types 7 are defined as usual. They
include type variables, function types, and named abstract types with type parameters. Polytypes
o are extended with a kinding environment K that restricts possible instances for constrained
variables. K is a set of bindings « :: (C, R), C a constraint and R a set of relations from labels
to types, describing together the possible values admitted for the type a. The only relation we
use, —, is not a function: a label may be related to several types. Recursive types can be defined
using a mutually recursive kinding environment, i.e. where kinds are related to each other. Note
that we only introduce abstract types here; type abbreviations can be seen as always expanded.

In order to have a proper type system, we only need to define a constraint domain. Our
constraint domain will include both object and variant types, and support for type identity. We
assume a set £ of labels, denoting methods or variant constructors.

(k,L,U,p) € {o,v} X P, (L) X (Ppin(L)U{L}) x {0,1}

k distinguishes objects and variants. L represents a lower bound on available methods or con-
structors (required or present ones), and should be a finite subset of £. U represents an upper
bound, and should be either a finite subset of £ (for objects, only U = L is allowed), or L itself. p
is 1 for private types, 0 for normal types. The kinds corresponding to the syntax used in previous
sections are given in figure 2, respectively for object types, open variants, and closed variants. For
both of objects and variants, we obtain a “final” (non-refinable) type by choosing L = U.

def

<My T My i Thy > = ac (o {my,...,mp b L£,0,{my — 1,...,m, — T} D a
[>l10f7'1‘...‘ln0f7'n} def a::(V,{ll,...,ln},ﬁ,(),{ll|—>Tl’_,_7ln;—>7-n)})[>a
[<liofr|...|lhofr >0...l5] &

[(v,{ll,...,lk},{ll,...,ln},O,{ll }—>7'1,...,ln HTH})D(]
Figure 2: Kinds corresponding to surface syntax

We define an entailment relation on constraints, that is reflexive and transitive. We first
distinguish inconsistent constraints.

(o,L,Up)=Ll ifU#LandU # L
VLUp =L fLgU

An object type can only be extensible or final: its upper bound is either L or all labels. On the
other hand, a variant type with a finite upper bound may still be refined by removing tags, so
that the only restriction is that the lower bound should be included in the upper bound.
Then entailment can refine a constraint as long as it is not private. Note that refinement goes
backward.
(k,L’,U",p) = (k,L,U,0) if LC L' and U D U’

Next we must define predicates on our constraints, and use them in propagation rules. Our
only predicate is uniq, denoting when only one type can be associated to a label. For a constraint
C = (k,L,U,p) and a label | € L U {row}:

C'+ uniq(l) %ef k=oVIeLV(p=1AleU)VI=row

l— a3 ANl — as Aunig(l) = a; = as.

In the original system without private rows, the definition was unig(l) “r=ovie L, meaning
that unification is triggered either if we consider an object type, or a required label in a variant
type. Now it is also triggered for possible labels in private variant types. That is, not only private
types cannot have their constraint further refined, but all their possible labels must have unique
types —this ensures that no typing information will be added to them. The special label row is
used to encode our virtual row; it is always unique, and will be associated to an abstract type.

It is easy to see that these definitions satisfy the conditions for a valid constraint domain, given
in appendix. This means that we have subject reduction (leading to type soundness) and principal
type inference for a type system using them.

Note that this extension of the core type system is also required in order to handle first-class
polymorphism, available through polymorphic methods and record fields. In that case, row is only
associated with a universal type variable.

3.2 Module type system

The second part is at the module level: we must introduce private type definitions, and allow
refinement through module subtyping. In order to formalize, we will switch to Leroy’s module
calculus [9]. We will proceed by adding and modifying rules in this calculus, without reproducing
all rules for the sake of space.

Leroy leaves the base language unspecified. We have to be more specific, in particular allowing
parameterized type definitions. We will see manifest type definitions as kinded types: type t;(&) =
K>7. Note that K may contain variables outside of @, as long as their kinds are no longer refinable,
i.e. either L = U or p = 1. It would be clearly unsound to allow variables of refinable kinds to be
free. “E't o type” checks that ¢ is a valid polytype under environment E, and that no refinable
type variable is free.

We have two rules for manifest type definitions. The public case is identical to [9], up to our
type definitions.
Erva.0type ¢ ¢BV(E) E;typeti(d)=0Fs:S
EF (type t;(d) = 0;s) : (type t;(d) = 6;.5)
As we have explained before, we understand the declaration of a private row type ¢ as defining

an abstract type t,.y, and using it inside a manifest type t. Both definitions have the same type
parameters.

E;type trowi(d) FVa.0 type t; & BV(E)
E;type trowi(d);type t;(d) =0+ s: S
E (type t; = private 0p; s) : (type trowi(&); type t;(@) = 6;.5)

0=K,0:(k,L,U1, RU{row — troui(d@))}) >3

6o=K,8: (k,L,UO,R)>3 L#U

0y is a row type, with a single non-quantified refinable type variable 3. In 0, we make its kind
private, and mark it with the abstract type t,,.;, which is defined along ¢;.

Once we have introduced private row types, we should allow refinement through subtyping.
However, the standard approach of having t,,, manifest on one side, and abstract on the other,
will not work here, as we want to allow the enclosing kinds to be different. Here is the original
rule for subtyping.

where

ErO~rG
EF (type t;(d) = 60) <: (type t;(@) = 6")
As you can see, the trouble here is that this rule is limited to equivalent type representations. In
order to accommodate refinement, we add a new rule, using entailment.

(k,L,U,0) k= (k, L', U",0) E+bK~K
(Vi) l—T7eRANl—T eR=>EFT~T
Et (type ti(@) = K,B:: (k,L,U,p, R) > [3)
<: (type t;(@) = K', B8 (k,L’,U',1,R') > B3)

This rule says that, a row type definition (either private or not) is subsumed by a private row
type definition when: (1) the original definition entails the private one (both assumed public), (2)
kinding environments K and K’ are identical, up to the equivalence of the types they contain, (3)
all labels common to both definitions are associated to equivalent types, (4) if row — 7 € R, then
we know that the original definition is also private, and both row variables are equivalent under
E (i.e. they are the same t,4,(&).)

Another slight modification we need is to allow the introduction of abstract types in the
supertype. This accounts for the case where the original type definition is public, and we make
it private through subtyping, introducing a new t,,,. While it seems sound to allow it for any
abstract type, in the following rule we limit ourselves here to hidden abstract types, that the user
cannot explicitly refer, to avoid changing the set of accessible identifiers bound by a module.

Etr M :sig Dy;...; D, end D; # (type trow) (1 <i < n)
EF M :sig Dy;...; Dg;type trow; Dg+1;.. .5 Dy end

Our last concern is about substitution. Some typing rules substitute manifest definitions for
some paths. Our whole encoding is based on the assumption that a manifest type is defined along
its abstract row variable, in the same module or signature. If we substitute another abstract row
type for the original one, we are left with an incoherent signature. A way to tackle the problem
at this level is to force the simultaneous substitution of enclosing kinds. That is, if we substitute
trow with ¢, inside a kind (k, L, U, 1, R U {row + t,4,}) (this is the only place it may appear),
then we have to substitute the whole kind with the one defined by the ¢’ corresponding to ¢/ .,
(this ¢’ exists by our invariant.) A more natural way to see it, is that there is no need to substitute
trow itself (it never appears alone), but when substituting ¢ we should look for occurrences of ¢,y
inside a kind. If the type system keeps abbreviations, like OCaml does, rather than just replacing
them by their manifest type, there is actually nothing to do: no occurrence of t,,, will be visible
anyway.

10

3.3 Extra features

Independently of these questions of formalism, another issue appears with the introduction of the
with construct for signatures. This construct is not present in [9], but it is needed in practice
for any implementation, to avoid expanding all signatures by hand. We are using it in our own
example of section 2.3. The technical difficulty with with comes from the fact it only substitutes
one definition at a time, and the environment of the signature to be modified is not available in
the new definition. It had to be extended to allow private row types, particularly recursive ones.
This is not yet enough for mutually recursive types, and it seems that there are approaches more
promising than with to manipulate signatures [13].

A last design decision is related to the handling of variance. In order to allow more subtyping,
in OCaml both abstract types and algebraic datatypes have variances associated to their type
parameters. For instance the type list(a) is covariant, which can be written type list(4a) in
its type definition. For abstract types variance annotations are explicit, but for algebraic datatypes
they are inferred from the definition of the type. As private row types have a structural definition,
one might think of inferring their variance. However, the presence of an associated abstract type
clearly indicates that variance should be explicit. This also means that this variance must be
respected: i.e. an implementation should have a stronger variance than the private row type it
replaces, and variance can only be weakened through subtyping. This reasoning can be used to
explain why private types, while they do not allow refinement, use also explicit variances.

4 Conclusion

We have introduced a new form of type definition, which is both manifest and abstract at the
same time. We branded it as private, as it behaves in a way very similar to both private types, and
private methods as they are understood in Java. Nonetheless, the power of this new feature is not
limited to privacy, but goes a long way towards abstraction allowing incremental extension. As
this feature relies heavily on the expressive power of modules, it is most interesting when combined
with recent extensions of module systems, such as recursive modules [4, 16] or, in an hopefully
close future, combinable signatures [13].

While we have already considered a large number of examples using private polymorphic vari-
ants types, the interaction of private row types with objects is still more speculative. A natural
extension would be to have private class types. However they would be of limited use, as one
cannot inherit from a class whose type is private. There seems to be much work to do yet in that
direction.

References

[1] Boulmé, S., T. Hardin and R. Rioboo, Polymorphic data types, objects, modules and functors:
is it too much?, RR 014, LIP6, Université Paris 6 (2000).

[2] Bracha, G., M. Odersky, D. Stoutamire and P. Wadler, Making the future safe for the past:
Adding genericity to the Java programming language, in: Proc. AMC Symposium on Object
Oriented Programming, Systems, Languages and Applications, 1998.

[3] Canning, P., W. Cook, W. Hill, W. Olthoff and J. C. Mitchell, F-bounded polymorphism for
object-oriented programming, in: Proc. ACM Symposium on Functional Programming and
Computer Architectures, 1989, pp. 273-280.

[4] Crary, K., R. Harper and S. Puri, What is a recursive module?, in: Proc. ACM Conference
on Programming Language Design and Implementation, 1999, pp. 50-63.

[5] Fisher, K. and J. Reppy, The design of a class mechanism for Moby, in: Proc. ACM Confer-
ence on Programming Language Design and Implementation, 1999.

[6] Garrigue, J., Programming with polymorphic variants, in: ML Workshop, Baltimore, 1998.

11

[7] Garrigue, J., Code reuse through polymorphic variants, in: Workshop on Foundations of
Software Engineering, number 25 in Lecture Notes in Software Science (2000), pp. 93-100,
http://wwwfun.kurims.kyoto-u.ac.jp/ “garrigue/papers/fose2000.html.

[8] Garrigue, J., Simple type inference for structural polymorphism, in: The Ninth International
Workshop on Foundations of Object-Oriented Languages, Portland, Oregon, 2002.

[9] Leroy, X., Applicative functors and fully transparent higher-order modules, in: Proc. ACM
Symposium on Principles of Programming Languages, 1995, pp. 142-153.

[10] Leroy, X., D. Doligez, J. Garrigue, D. Rémy and J. Vouillon, “The Objective Caml system
release 3.08, Documentation and user’s manual,” Projet Cristal, INRIA (2004).

[11] Odersky, M., V. Crémet, C. Rockl and M. Zenger, A nominal theory of objects with dependent
types, in: Proc. European Conference on Object-Oriented Programming, 2003.

[12] Ohori, A., A polymorphic record calculus and its compilation, ACM Transactions on Program-
ming Languages and Systems 17 (1995), pp. 844-895.

[13] Ramsey, N., K. Fisher and P. Govereau, An expressive language of signatures, in: Proc.
International Conference on Functional Programming, 2005.

[14] Rémy, D. and J. Garrigue, On the expression problem (2004), http://pauillac.inria.fr
/“remy/work/expr/.

[15] Rémy, D. and J. Vouillon, Objective ML: An effective object-oriented extension to ML, Theory
and Practice of Object Systems 4 (1998), pp. 27-50.

[16] Russo, C. V., Recursive structures for Standard ML, in: Proc. International Conference on
Functional Programming, 2001, pp. 50-61.

[17) Wadler, P., The expression problem, Java Genericity mailing list (1998),
http://www.cse.ohio-state.edu/"gb/cis888.07g/java-genericity/20.

[18] Zenger, M. and M. Odersky, FEatensible algebraic datatypes with defaults, in: Proc. Interna-
tional Conference on Functional Programming, 2001, pp. 241-252.

enger, M. and M. Odersky, Independently extensible solutions to the expression problem, in:
19] Z M. and M. Odersky, Ind dently extensible solutions to th ' blem, i
Proc. Workshop on Foundations of Object-Oriented Languages, 2005.

A Core type system

This appendix includes the main definitions from [8].

A.1 Constraint domain

A constraint domain describes a class of constraints, and how they interact with the type system.
Definition 1 A constraint domain C is composed of the following items.

1. A theory Tc with an entailment relation |= satisfying the following properties

(a) There is a constraint L, such that for any C we have L = C.
(b) A constraint C such that C |= L is invalid. Validity is decidable.
(¢) Entailment is reflexive and transitive: C |= C; if C = C" and C' |= C" then C' = C".

(d) For any two constraints C and C', there is a constraint C AN C' such that CNC' = C,
CAC' =, and for all C" such that C" = C and C" = C’, we have C" |=C ANC".

12

FVk(Vay ...a, K'>7

) FVK’K/(T) \ {al,...,an}
FVk a:(c,r) (@)

)

)

{a} UFVk(R)
0
= FVK(Tl) U FVK(TQ)

FVik(u
FVk(ri — 1

Figure 3: Free variables under K

2. An observation relation b checking some atomic properties of a constraint: C + p(a) where
p and a are respectively a predicate and a label for the domain. Observation should be
compatible with entailment:

IfC EC" and C'F p(a) then C'+ p(a).
3. A set of relating predicates of the form a ., T, which relate labels and types.

4. A set of propagation rules Ec, of the form
Va.(z —r a1 AN A, as Ap(x) = a1 = ag)

where A is either the same variable x or a label.

A.2 Types and kinds

Types and kinds were defined in section 3.

Definition 2 A kind k = (C, R) is well formed if
1. the constraint C is satisfiable.

2. for each x v, cy N A, as Ap(x) = a1 = ag in € and each a —, 11 and [a/x]A —, 15 in
R such that C + p(a), we have 71 = To.

We define kinding environments as containing only well formed kinds. Notice that all type
variables do not necessarily have a kind, only those that represent constrained types do.

Free variables FVk (o) of a polytype ¢ under a kinding environment K are defined as the
minimum set satisfying the equations of figure 3.

Definition 3 A type substitution ¢, extended as usual on monotypes and polytypes, is admissible
between the kinding environments K and K', written K+ ¢ : K', if for all « :: (C, R) in K, ¢(a) is
a type variable o' and it satisfies the following properties.

1. & : (C'",R) e K
2. C"EC
3. ¢(R)C R

Condition 1 ensures that all kinded variables are mapped to kinded variables. Condition 2
ensures that constraints are instantiated correctly (according to entailment). Condition 3 ensures
that all type constraints are kept.

We will write K|p for the restriction of the kinding environments K to variables in D, and K|
for its restriction to variables outside of D.

13

VARIABLE GENERALIZE

K,KoF¢:K Dom(s) C B K;Tte:7 B=FVk(r)\FVk()
KTz :VB.Kog>1kF 2 :¢(7) Klg;T'Fe:VBK|p>T
ABSTRACTION LET

Kilxz:7kFe:7 KiTkFei:o KiTbz:obeg: T
KiT'HFfunax —e:7— 1/ KiI'Fletx=e1iney: T
APPLICATION CONSTANT

KiI'tey:7—717 K;T'key:7 KoF¢:K Teonst(c) =Ko>7
K;I'kejep: 7 K;T'kFe:g(r)

Figure 4: Typing rules

Objects
object; ;i a:z(o,{ly,.lnt, {l1s s ln}, 0,{l1 = 1yl = an})
Pla—a)—...— (a—a,) >«
call; oan (o, {1},L£,0,{l—BHra—p
Variants
tag; Doas(W{HLL,0,{l~ 80— a
matchy, . 1, ¢ o (V0 {l1, .., 10, {1 = a1, by o))

> —p0)—...=(ay—0)—a—p
Figure 5: Constants for objects and variants

A.3 Terms and typing

Expressions are the standard ones,

e == z|funz—e|ee core lambda

| clletz=ceine constants and let
Type judgments are extended with a kinding environment,
KiT'kFe:T

where K is a well-formed kinding environment and I' is a set of bindings x : o from term variables
to polytypes.

Typing rules appear in figure 4. They are in the syntax-directed style, instantiating and
generalizing in one step, which simplifies the handling of eventual mutual recursion in the kinding
environment. For information, we also include in figure 5 the types of the constants associated
with our constraint domain.

Theorem 1 (Subject reduction) If K;T'F Ele] : 0 and e — ¢’ by BeTA : ((fun x — e1) e2) —
[ea/x]er or LET : let x = ey in eo — [ea/x]er, then KsT'F Ele’] : o

A solution to a typing problem K;T'>e : 7 is a substitution K F ¢ : K’ such that K’;¢(T') F e :
¢(7) is derivable. We have a type reconstruction algorithm satisfying the following theorem.

Theorem 2 (Principality) IfK;T'>e: 7 can be reduced to K+ ¢ : K’ by the type reconstruction

algorithm, K';<(T') e : ¢(7) is derivable, and < is the most general solution; otherwise it reduces
to 1 and there is mo solution.

14

