Private Row Types: Abstracting the Unnamed

Jacques Garrigue

Graduate School of Mathematical Sciences,
Nagoya University, Chikusa-ku, Nagoya 464-8602
garrigue@math.nagoya-u.ac. jp

Abstract. In addition to traditional record and variant types, Objective Caml has
structurally polymorphic types, for objects and polymorphic variants. These types
allow new forms of polymorphic programming, but they have a limitation when
used in combination with modules: there is no way to abstract their polymor-
phism in a signature. Private row types remedy this situation: they are manifest
types whose “row-variable” is left abstract, so that an implementation may in-
stantiate it freely. They have useful applications even in the absence of functors.
Combined with recursive modules, they provide an original solution to the ex-
pression problem.

1 Introduction

Polymorphic objects and variants, as offered by Objective Caml, allow new forms of
polymorphic programming. For instance, a function may take an object as parameter,
and call some of its methods, without knowing its exact type, or even the list of its
methods [1]. Similarly, a list of polymorphic variant values can be used in different
contexts expecting different sets of constructors, as long as the types of constructor
arguments agree, and all constructors present in the list are allowed [2].

These new types are particularly interesting in programming situations where one
gradually extends a type with new methods or constructors. This is typically supported
by classes for objects, but this is also possible with polymorphic variants, thanks to the
dispatch mechanism which was added to pattern matching. This is even possible for
recursive types, but then one has to be careful about making fix-points explicit, so as
to allow extension. A typical example of this style is the expression problem, where
one progressively and simultaneously enriches a small expression language with new
constructs and new operations [3]]. This problem is notoriously difficult to solve, and
Objective Caml was, to the best of our knowledge, the first language to do it in a type
safe way, using either polymorphic variants [4] or classes [5].

If we think of these situations as examples of incremental modular programming, we
realize that an essential ML feature does not appear in this picture: functors. This is sur-
prising, as they are supposed to be the main mechanism providing high-level modularity
in ML. There is a simple reason for this situation: it is currentlyl] impossible to express
structural polymorphism in functors. One may of course specify polymorphic values in
interfaces, but this does not provide for the main feature of functors, namely the ability
to have types in the result of a functor depend on its parameters. To understand this,
let’s see how functor abstraction works.

' As of Objective Caml 3.08.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 44-1601 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Private Row Types: Abstracting the Unnamed 45

let add (pl : float array) (p2 : float array) =
let 11 = Array.length pl and 12 = Array.length p2 in
Array.init (max 11 12)
(fun i -> if i < 11 then if i < 12 then pl.(i) +. p2.(1)
else pl.(i) else p2.(i))

This program computes the sum of two polynomials. We might want to abstract the
representation of arrays, to emphasize that this program uses them functionally (arrays
in OCaml are mutable.)

module type Vect = sig
type t
val init : int -> (int -> float) -> t
val length : t -> int
val get : t -> int -> float
end
module Poly (V : Vect) = struct
let add pl p2 =
let 11 = V.length pl and 12 = V.length p2 in
V.init (max 11 12)
(fun i -> if i < 11 then if i < 12 then V.get pl i +. V.get p2 i
else V.get pl i else V.get p2 i)
end

We have given the name t to float array, and made it abstract as a parameter. The
type inferred for addis V.t -> V.t -> V.t, which depends on what implementation
of Vect we will pass as parameter to Poly.

What happens now if we want to make explicit that vectors are to be represented as
objects, calling methods inside the functor? Here is a first attempt.

module type OVect = sig
type t = <length: int; get: int -> float>
val init : int -> (int -> float) -> t
end
module OPoly (V : OVect) = struct
let add (p1 : V.t) (p2 : V.t) : V.t =
let 11 = pl#length and 12 = p2#length in
V.init (max 11 12)
(fun i -> if i < 11 then if i < 12 then pl#get i +. p2#get i
else pl#get i else p2#get i)
end

Type t is an object type. It gives the list of methods in the object, and their types. Meth-
ods are called with the obj#method notation. Objects and their types in OCaml are fully
structural, and they can be seen as polymorphic records[6], extended with explicit struc-
tural subtyping. The code above typechecks correctly, but it doesn’t give us enough poly-
morphism. Since t has a concrete definition in 0Vect, any module implementing OVect
will have to include exactly the same definition. Structural subtyping allows coercing an
object with more methods to type t, returning it in init or passing it to add, but other
methods become inaccessible. That is, the result of add would still have only methods
length and get. What we would like is to be able to define implementations where t

46 J. Garrigue

has more methods than in OVect, so that we could still access them in the result of add.
Intuitively, this amounts to defining t in OVect as

type t = <length: int; get: int -> float; ..>

where the ellipsis “. .” allows extra methods. But free type variables are not allowed
in types definition (think of type t = ’a,) and the “. .” in the above type represents
an internal type variable, usually called the row variable, which is free here. The first
solution that comes to mind is to do as we would with normal type variables, and define
an abstract type corresponding to this “. .”.

type t_row
type t = <length: int; get: int -> float; t_row>

This requires the ability to name the row variable, which is anonymous in OCaml. We
formalize this idea at the beginning of section[3l We also find that it is only a first step,
as incremental refinement of type definitions would be clumsy, and this formalization
cannot fully handle polymorphic variant types.

A better approach to this problem is to find a middle-ground between abstract types,
which are completely opaque, and concrete types, which cannot be further refined.

One option to introduce such semi-abstract types would be to exploit subtyping: one
might allow defining upper or lower bounds for abstract types. This is the idea behind
F-bounded polymorphism [7], which has been integrated into a number of languages
such as Generic Java [8], Moby [9]], or Scala [10]. In particular, Moby and Scala do
have a module system able to express functors, and Scala gives an elegant solution to
the expression problem [[11].

In a language offering complete type inference, like Objective Caml does, subtyping
has to be explicit, if we are to keep types simple. This makes the F-bounded polymor-
phism approach impractical, because any use of a value whose type is semi-abstract
would require an explicit coercion. It is more natural to stick with the fully structural
approach inherent to OCaml, simply abstracting extensibility (rather than the whole
type) as if it were a type variable. This means that we actually follow the idea of adding
an abstract t_row, but that we will keep it unnamed. Here is our syntax for it.

type t = private <length: int; get: int -> float; ..>

A private row type@ is defined by a structural type, either object or variant, where the
only free type variable is the row variable. Superficially, this looks exactly like the
definition we just rejected as not well-formed. But here the “private” keyword implicitly
binds the row variable as an anonymous abstract type, at the same level as the type
definition. Using this definition in OVect, the functor 0Poly now accepts any object
type having at least the methods length and get with proper types.

There have been examples in the past combining classes with functors. Such a com-
bination has been used by the FOC project for instance [12]. But in the absence of
private row types, classes were only used to provide late-binding at the value level, and
classes or object types did not appear in parameters of functors. We will also see that

2 The “private” part of the naming will get clearer in section[2.2] The qualifiers “row” and “struc-
tural” are more or less interchangeable in this paper. The author somehow prefers structural,
but some people seem to find the concept of row easier to grasp.

Private Row Types: Abstracting the Unnamed 47

private row types, in combination with recursive modules, are even more interesting
for polymorphic variants, as they provide a powerful way to structure programs using
them.

The body of this paper is composed of two sections. The next one presents various
examples using private row types, for functors, privacy, and extensible recursion. Sec-
tion 3 formalizes the definitions, combining structural polymorphism with applicative
functors.

2 Using Private Row Types

In this section we give examples of various uses of private row types, in combination
with other features. All examples were type-checked using Objective Caml 3.09. The
only new syntax compared to previous versions of the language is the “private” key-
word, which indicates a private row type. While some function definitions contain type
annotations, they are only there for demonstrative purposes, and the definitions would
still be typable without them, leading to a more general type —i.e. type inference is still
principal.

2.1 Simple Functors

Private row types are essential in combining functors with structural polymorphism.
A natural application is our introduction example. For definitions prefixed with #, we
show in italic the types inferred, as in an interactive session.

module type OVect = sig
type t = private <length: int; get: int -> float; ..>
val init : int -> (int -> float) -> t
end
module OPoly (V : OVect) = struct ... end ;;
module OPoly : functor (V: OVect) -> sig wal add : V.t -> V.t -> V.t end

We can develop it more, by adding a map method and using it in a function mul for
external product.

module type OVect2 = sig
type t = private
<length: int; get: int -> float; map: (float -> float) -> t; ..>
val init : int -> (int -> float) -> t
end
module OPoly2 (V : OVect2) = struct
include 0Poly(V)
let mul x (p : V.t) = p#map (fun y -> x *. y)
end ;;
module OPoly2 : functor (V : OVect2) ->
sig
val add : V.t -> V.t -> V.t
val mul : float -> V.t -> V.1
end

48 J. Garrigue

Since we wish to extend OPoly, we include an instance of it. Note how we pass an argu-
ment of type OVect?2 to 0Poly which expects an OVect. This is accepted as OVect2.t
is an instance of OVect.t.

Another typical case where we need to use functors with objects, is when the func-
tionality we need is already provided as a functor.

module OMap(X : sig type t = private <compare : t -> int; ..> end)

= Map.Make(struct type t = X.t let compare (x:t) y = x#compare y end)
class vector (n : int) (f : int -> float) = object (s : ’s)

val v = Array.init n £

method length = n

method get i = v. (i)

method map £ = < v = Array.map f v >

method compare (vec : ’s) = compare v (Array.init vec#length vec#get)
end
module VMap = OMap(struct type t = vector end)
module VPoly = OPoly2(struct type t = vector let init = new vector end)

Here the functor Map . Make from the standard library expects a type t and a function
compare : t -> t -> int. Since t is not allowed any polymorphism, we have to
wrap it in a new functor expecting only one type, which provides this time a method
compare. We define a class vector —which implicitly also defines a type vector for
its objects—, with all the methods required by OMap and OPoly2, so we can pass its
type as parameter to both. Here the type annotations on f and vec are required, as class
definitions may not contain free type variables.

Examples involving polymorphic variants also arise naturally. Consider for instance
a simple property base, such that we may add new types of properties.

type basic = [‘Bool of bool | ‘String of string]
module Props(X : sig type t = private [> basic] end) =
struct
let base : (string,X.t) Hashtbl.t = Hashtbl.create 17
let put_bool k b = Hashtbl.add k (‘Bool b)
let put_str k s = Hashtbl.add k (‘String s)
let to_string (v : X.t) = match v with
‘Bool b -> if b then "true" else "false"
| ¢String s -> s
| _ => "other" (* required by typing *)
end
The notation [> basic] is an abbreviation for [> ‘Bool of bool | ‘String ofstring].
It means that the actual variant type X.t will have to contain at least the constructors
of basic, and eventually more. The “>” implies the presence of a row variable. This
notation is not new to this proposal, but the “private” keyword is needed to bind the
implicit row variable in a type definition. An interesting consequence of extensibility
is that any pattern-matching on X.t needs to contain a default case, as it may actu-
ally contain more cases than basic. This is similar to Zenger&Odersky’s approach to
extensible datatypes, which also requires defaults [13].
In order to extend this basic property type, we only need to define a new type and
apply the functor.

Private Row Types: Abstracting the Unnamed 49

type extended = [basic | ‘Int of int] ;;
type extended = [‘Bool of bool [‘Int of 4nt | ‘String of string]
module MyProps = Props(struct type t = extended end) ;;
module MyProps :
sig
val base : (string, extended) Hashtbl.t
val put_bool : string -> bool -> unit
val put_str : string -> string -> unit
val to_string : extended -> siring
end

Note that here, extended is a “final” type, not extensible, thus we may write complete
pattern-matchings for it. We may want to use this property to refine the to_string
function. The notation #basic is an abbreviation for the or-pattern collecting all cases
from basic,i.e. (‘Bool _ |‘String _).

let to_string (v : extended) = match v with
‘Int n -> string_of_int n
| #basic -> MyProps.to_string v ;;
val to_string : extended -> string

The functorial approach is also useful when combining polymorphic variants and
mutable values. It allows to extend the type of a polymorphic variant in a different
compilation unit, which was not possible before. Here is an example which causes a
compile time error.

(* base.ml *)

type basic = [‘Bool of bool | ‘String of string]

let base : (string, [>basic]) Hashtbl.t = Hashtbl.create 17
$ ocamlc -c base.ml

File "base.ml", line 2, characters 41-58:

The type of this expression, (string, _[> basic]) Hashtbl.t,
contains type wvariables that cannot be generalized

Since base is not a value, its type cannot be made polymorphic. A final type for it
should be determined in the same compilation unit. Since no such type is given here,
this results in an error. Using the above functor avoids the problem, by delaying the
creation of the hash table to the application of the functor. Note that using a functor
means that any code accessing the property base must be functorized too. This is a
classical downside of doing linking through functor application. As a counter part, this
enhances modularity, allowing to use several property bases in the same program for
instance.

2.2 Relation to Private Types

Since version 3.07, released in 2003, Objective Caml has private types, introduced by
Pierre Weis [14]. Like private row types, private types are intended to appear in signa-
tures, abstracting some behavior of the implementation. To do that, they simply restrict
(non-polymorphic) variants and records, prohibiting the creation of values outside of

50 J. Garrigue

the module where they were defined, while still allowing pattern-matching or field ac-
cess. Contrary to private row types, they do not allow refinement of type definitions.
Their main intent is to allow to enforce invariant properties on concrete types, like it is
possible with abstract datatypes, while avoiding any overhead.

module Relative : sig
type t = private Zero | Pos of int | Neg of int
val inj : int -> t
end = struct
type t = Zero | Pos of int | Neg of int
let inj n = if n=0 then Zero else if n>0 then Pos n else Neg (-n)
end
open Relative ;;
let string_of_rel = function
Zero -> "O"
| Pos n -> string_of_int n

| Neg n -> "-" = string of_int nj;;
val string_of_rel : rel -> string
Zero;;

Cannot create values of the private type Relative.t

Interestingly, we can simulate private types with private row types. The kind of vari-
ant refinement used here is opposite to the previous section: we model restrictions on
construction by assuming that some constructors may actually not be there. This gives
us more flexibility than with the original private types, as some constructors may be
declared as present, to make them public.

module Relative : sig
type t = private [< ‘Zero | ‘Pos of int | ‘Neg of int > ‘Zero]
val inj : int -> t
end = struct
type t = [‘Zero | ‘Pos of int | ‘Neg of int]
let inj n = if n=0 then ‘Zero else if n>0 then ‘Pos n else ‘Neg (-n)
end
let zero : Relative.t = ‘Zero;;
val zero : Relative.t = ‘Zero
let one : Relative.t = ‘Pos (-1);;
This ezpression has type [> ‘Pos of int] but %s here used with type
Relative.t

The private definition of t has one public constructor, ‘Zero, as implied by the “>
‘Zero” bit of the definition, which says that it must be present in the implementation,
but ‘Pos and ‘Neg are allowed to be absent, so they are private. As a result, ‘ Zero can
be given type Relative.t, but ‘Pos(-1) cannot, which protects abstraction.

Private record types can be modeled by object types, this time in the usual way. As
an extra feature we naturally gain the possibility of hiding some fields. This allows to
define module-private (or friend) methods, like in Java, while OCaml only has object-
private methods.

Private Row Types: Abstracting the Unnamed 51

module Vector : sig
type ’a ¢ = private
< length: int; get: int -> ’a; compare: ’a c -> int; .. >
val init : int -> (int -> ’a) -> ’a c
val map : (’a => ’b) -> ’a ¢ => ’b ¢
end = struct
class [’a]l ¢ v = object (s : ’s)
method v = v
method length = Array.length v
method get i : ’a = v. (1)
method compare (vec : ’s) = compare v vec#v
end
let init n f = new c (Array.init n f)
let map f v = new ¢ (Array.map f v#v)
end

Here we have used a private object type to hide the method v, while enforcing its pres-
ence in the actual object. This allows accessing the contents of the object in a more
efficient way. If v were visible outside of Vector, encapsulation would be broken, as
one could use it to mutate these contents.

One might think that it would be enough to use an abstract type for the array returned
by v, without hiding v itself. However, object typing in OCaml is purely structural: one
can freely create an object by hand, and give it the same type as an existing class, even
though its methods might cunningly call methods from different objects, breaking the
coherence of the definitions. Only private object types can protect against this, while
still allowing the programmer to call methods in a natural way. As with private types,
this allows to enforce invariants, for instance saying that for a value v of type Vector.c,
calling v#tget i always succeeds when 0 < i < v#length.

Note that private object types do not interact directly with classes, and as such they
are not as expressive as abstract views for instance [[15]. In particular one cannot inherit
from a private type.

2.3 Recursion and the Expression Problem

Examples in previous sections have kept to a simple structure. In particular, the variant
types involved were not recursive. As we indicated in introduction, polymorphic vari-
ants are known to provide a very simple solution to the expression problem, allowing
one to extend a recursive type with new constructors, with full type safety, and with-
out any recompilation. However, the original solution has a small drawback: one has to
close the recursion individually for each operation defined on the datatype. Moreover it
relies quite heavily on type inference to produce polymorphic types.

With the introduction of recursive modules, a natural way to make things more ex-
plicit is to close the recursion at the module level. However, this also requires pri-
vate row types, to allow extension without introducing mind-boggling coercions (see
mixmod.ml at [4] for an example with coercions.)

We present here a variation on the expression problem, where we insist only on the
addition of new constructors, since adding new operations is trivial in this setting. If
you find it difficult to follow our approach, reading [4] first should help a lot. We first
define a module type describing the operations involved.

52 J. Garrigue

module type Ops = sig
type expr
val eval : expr -> expr
val show : expr -> string
end

We then define a first language, with only integer constants and addition. To keep it
extensible, we leave the recursion open in the variant type, and have operations recurse
through the parameter of a functor.

module Plus = struct
type ’a exprO = [‘Num of int | ‘Plus of ’a * ’al
module F(X : Ops with type expr = private [> ’a exprO] as ’a) =
struct
type expr = X.expr exprO
let eval : expr -> X.expr = function
‘Num _ as e -> e
| ‘Plus(el,e2) -> match X.eval el, X.eval e2 with
‘Num m, ‘Num n -> ‘Num(m+n)
| e12 -> ‘Plus el2
let show : expr -> string = function
‘Num n -> string_of_int n
| ‘Plus(el,e2) -> "(""X.show el”"+""X.show e2"")"
end
module rec L : (Ops with type expr = L.expr expr0) = F(L)
end

Observe how closing the recursion is now easy: we just have to take a fix-point of the
functor.

The next step is to define a second language, adding multiplication. Inside the func-
tor, we instantiate the original addition language, and use it to delegate known cases in
operations, using variant dispatch.

module Mult = struct
type ’a exprO = [’a Plus.exprO | ‘Mult of ’a * ’al
module F(X : Ops with type expr = private [> ’a expr0O] as ’a) =
struct
type expr = X.expr exprO
module L = Plus.F(X)
let eval : expr -> X.expr = function
#L.expr as e -> L.eval e
| ‘Mult(el,e2) -> match X.eval el, X.eval e2 with
‘Num m, ‘Num n -> ‘Num(m*n)
| el2 -> ‘Mult el2
let show : expr -> string = function
#L.expr as e -> L.show e
| ‘Mult(el,e2) -> "(""X.show el™"*""X.show e2"")"
end
module rec L : (Ops with type expr = L.expr expr0) = F(L)
end

That’s it. Here is a simple example using the final language.

Private Row Types: Abstracting the Unnamed 53

Mult.L.show(‘Plus(‘Num 2, ‘Mult(‘Num 3, ‘Num 5)));;
- : string = "(2+(3*5))"

This whole approach may seem verbose at first, but a large part of it appears to be
boilerplate. Half of the lines of P1us have to be repeated in Mult, and would actually be
in any similar code. From a more theoretical point of view, this example makes clearer
the relation between solutions to the expression problem that use type abstraction, such
as [11], and our original solution which used only polymorphism.

Combining object types with recursive modules also has applications, but they are
less immediate, as classes already provide a form of open recursion.

3 Formalization

Before giving a complete formalization, we first describe a much simpler one, which is
limited to private object types. The idea is to formalize objects as rows, in the style of
Rémy [16]. Here are our core types.

m=a | 7(TP) abstractions
m=v|t—1|{p) types
m=v|0|l:T;p rows

n=x o kinds
n=1|Vouk.o polytypes

QA =0 a <

Types are composed of abstractions, function types, and object types. An object type is
described by a row, which is a list of pairs label-type, terminated either by the empty list
or an abstraction. Abstractions are either type variables or abstract types (which may
have parameters, types or rows.) In order to indicate the contexts where an abstraction
may be used, we introduce two kinds: x for types and ¢ for rows. We allow fields to
commute in rows, that is

11:‘61;[2:‘62;}):12:‘62;[1:‘Cl;p ifh?élz

The same label may occur twice in a row (as for labeled arguments [[17]].) This simplifies
kinds —they don’t need to track which labels are used—, but this has no practical
impact, as there is no way to create such an object.

If we start with this core type system, moving to the module level is trivial: we
just need to add kinds to abstract types. This creates no difficulty, as Leroy’s modular
module system already handles simple kinds [18]]. In such a system, the signature OVect
would be:

module type OVect = sig
type t_row : ¢
type t : % = <length: int; get: int — float; t_row>
val init : int — (int — float) — t

end

Then defining a particular instance just requires providing a concrete definition for
t_row.

54 J. Garrigue

Unfortunately, type refinement in this system proves to be very clumsy. The trouble
is that the natural encoding of OVect2 would not be an instance of OVect. We need
extra type definitions to make it possible.

module type OVect2 = sig
type t_row’ : ¢
type t_row : ¢ = map : (float — float) — t; t_row’
type t : % = <length: int; get: int — float; t_row>
val init : int — (int — float) — t

end

The fact one has to change the name of the abstract row is particularly confusing.

This clumsiness leads to our implicit syntax for private row types: rather than make
abstract rows explicit, and have them pollute signatures, we prefer to leave them im-
plicit, just indicating their presence. Implementations do not need to give a concrete
definition for abstract rows, as the type system can recover them by comparing a pri-
vate type definition and its implementation. Technically this amounts to an extension of
the subtyping relation for modules. And as we keep rows implicit, we can omit kinds
from the surface language.

We might have gone even further, and allowed any free variable to be automatically
converted into an anonymous abstract type. We refrained from this for two reasons. This
contradicts the principle of minimality in language changes, and this doesn’t fit well the
intuition of “private” type. Yet this might be an interesting choice when designing a
more implicit type system for modules.

While this sketch of a formalization gives a good intuition of what private row types
are, sufficient for practical uses, we will use a different formalization for our core lan-
guage. The main reason is that this system does not extend nicely to private variant
types. As can be seen in Rémy’s paper, allowing variant tags to disappear from a type
require additional presence variables. If we were to apply this scheme, we would need
an abstract presence type for each constructor we want to keep private, adding a lot of
complexityé).

We provide in the rest of this section a condensed description of the formal sys-
tem underlying private row types. It is based on our formalism for structural polymor-
phism [19] for the core language part, combined with Leroy’s description of an ap-
plicative functor calculus [20]. A combination of these two systems already provides a
complete description of Objective Caml’s type system (without polymorphic methods,
labeled parameters, and extensions.)

We will not give full details of these two systems, as both of them are rather complex,
yet very few changes are needed. One is the ability to specify inside structural types
that they have an identity (a name), and are only compatible with types having the same
identity. The other is to allow refining private row types through module subtyping, and
check that all such refinements are legal.

While we will still internally use an abstract type to represent a “virtual” row vari-
able, the formalism we describe here does not have explicit row variables. It is rather

3 The internal representation of polymorphic variant types in the Objective Caml compiler does
use such presence variables, but they are not shown to the programmer, and they are not ab-
stracted individually.

Private Row Types: Abstracting the Unnamed 55

Ti=0 type variable

| 1(%) abstract type

[t—1 function type
K:=0]|K,o: (C,R) kinding environment
0:=1|Kp1 kinded type
c:=0|Va.0 polytype

Fig. 1. Types and kindings

def

<yl i tese> = o (0l endn), £,0,{0 — 1y, > T) O
<t > S o (0, {1 b AL o a1 0, {1 = Ty Dy T) O
(>0 0f Ty | o | 1y of Tl & 00i (v {1, ooy n}y £,0, {11 = T1se by Ta)) b
[<liofty|...|lhofty>1y...0,] &

o (V7{ll,...,lk}7{ll7...,ln},o, {ll — ‘517...,1,1 i—>’Cn})l>0(

Fig. 2. Kindings corresponding to surface syntax

based on an expressive kinding relation [6], which describes constraints on types rather
than simply categories.

3.1 Core Type System

We will directly use the formalism from [19], as it is already general enough. We only
have to add parameterized abstract types. This section may seem obscure without a good
understanding of the formalism used, yet understanding figure [2] and the entailment
relation should be sufficient to go on to the module level. An important point is that the
definitions here ensure automatically subject reduction (leading to type soundness) and
principal type inference, without need of extra proofs.

The syntax for types and kindings is given in figure[Il Simple types T are defined as
usual. They include type variables, function types, and named abstract types with type
parameters. Polytypes G are extended with a kinding environment K that restricts possi-
ble instances for constrained variables. K is a set of bindings o :: (C,R), C a constraint
and R a set of relations from labels to types, describing together the possible values
admitted for the type o. There is no specific syntax in types for object and variants, as
they are denoted by type variables constrained in a kinding environment. The kindings
corresponding to the syntax used in previous sections, using the constraint domain de-
fined lower, are given in figure 2] respectively for open or closed, object and variant
types. The only relation we use in kindings, +—, is not a function: a label may be related
to several types. Recursive types can be defined using a mutually recursive kinding en-
vironment, i.e. where kinds are related to each other. It should be clear by now that the
notion of kind in this type system bears no resemblance to the simple kinds we con-
sidered first. Note that we only introduce abstract types here; type abbreviations can be
seen as always expanded.

In order to have a proper type system, we only need to define a constraint domain.
Our constraint domain includes both object and variant types, and support for identi-
fying a type by its name. We assume a set L of labels, denoting methods or variant

56 J. Garrigue

constructors. L includes a special label row used to encode our virtual row. The C in a
kind is an element of the following set.

(k,L,U,p) € {o,v} X P (L) x (Pin(L)U{L}) x {0,1}

k distinguishes objects and variants. L represents a lower bound on available methods or
constructors (required or present ones), and should be a finite subset of L. U represents
an upper bound, and should be either a finite subset of £, or L itself. p is 0 for normal
types, 1 for private types, and will be used at the module level. For both of objects and
variants, we obtain a “final” (non-refinable) type by choosing L = U.

We define an entailment relation on constraints, noted “C }= C'”, which is reflexive
and transitive. We first distinguish inconsistent constraints.

(o,L,U,p) =L ifU#LandU # L
(vLU.p) = L ifLg U

An object type can only be extensible or final: its upper bound is either L or all labels.
On the other hand, a variant type with a finite upper bound may still be refined by
removing tags, so that the only restriction is that the lower bound should be included in
the upper bound.

Entailment can refine a constraint as long as it is not private. Note that refinement
goes backward: a variable with the kind on the right of the entailment relation can be
instantiated to one with the kind on the left.

(k,L',U',p) = (k,L,U,0) if LC L' andU D U’

Next we use our constraints to selectively propagate type equalities. For a constraint
C = (k,L,U,p) and a label [:

C t unig(l) &ef k=oVIeLV(p=1Al€U)VI=row
l»—>OLl/\l»—>O(2/\Lmiq(l) = 0] = 0.

The first line defines a predicate uniq, denoting when only one type can be associated
to a label. The second line is a propagation rule. It means that, for a kind (C,R), when
a label satisfies the property uniq, then types associated to this label in R should be
unified. In the original system without private rows, the definition of unig was k =
oV € L, meaning that unification is triggered either if we consider an object type,
or a required label in a variant type. Now it is also triggered for possible labels in
private variant types. That is, all possible labels in private types must have unique types.
Combined with that fact their constraint cannot be further refined, this ensures that no
typing information will be added to them. The special label row is always unique, and
will be associated to an abstract type denoting the identity of a private row type.

It is easy to see that these definitions satisfy the conditions for a valid constraint
domain, as stated in [[19].

Note that this extension of the core type system is also required in order to handle
first-class polymorphism, available through polymorphic methods and record fields. In
that case, row is only associated with a universal type variable.

Private Row Types: Abstracting the Unnamed 57

3.2 Module Type System

The second part is at the module level: we must introduce private type definitions, and
allow refinement through module subtyping. In order to formalize this, we will switch
to Leroy’s module calculus [20], which has 4 kinds of judgements: well-formedness
(E F o type), module typing (E F s : S), type equivalence (E - 0 ~ 6'), and module
subtyping (E - S <: S’.) We will proceed by adding and modifying rules in this calculus,
without reproducing all rules for the sake of space.

Leroy leaves the base language unspecified. We have to be more specific, in partic-
ular allowing parameterized type definitions. We will see manifest type definitions as
kinded types: type #;(0.) = K>1. Note that while variables of refinable kinds must all
appear in @, as there is no way to quantify a variable explicitly outside of the type defi-
nition, variables whose kind is no longer refinable, i.e. either L = U or p = 1, are seen
as implicitly quantified, and may appear in K but not in &. “E - 6 type” checks that ¢
is a valid polytype under environment £, and that no refinable type variable is free.

The basic typing rule for type definitions is unchanged, up to our addition of type
parameters.

EFVa.0type 1 ¢BV(E) E;typefi(d)=0Fs:S
E - (type 1;(Q) = 6;5) : (type #;(0) = 6;S)

As it does not handle directly private row types, we first need to translate private
definitions into normal ones, both inside modules and signatures. As we have explained
before, we do it by defining an abstract type t,,,, along with the manifest type ¢, using it
as row.

type 1;(0.) = private 0y = type tLowi(0); type 1;(0) = 6

00 =K,B:: (k,LU,O,R)>B LAU
0 =K,B:: (k,L,U,1,RU{row t;0;(Q))})>B

0 is a row type, with a single non-quantified refinable type variable . In 6, we make
its kind private, and mark it with the abstract type #,,,,;, which is defined along ¢;.

Once we have introduced private row types, we should allow refinement through
subtyping. However, the standard approach of having t,,,,; manifest on one side, and
abstract on the other, will not work here, as we want to allow the enclosing kinds to be
different. Here is the original rule for subtyping.

EFor o
EF (typet(Q) =0) <: (typet(d) =0)

where

As you can see, the trouble here is that this rule is limited to equivalent type represen-
tations. In order to accommodate refinement, we add a new rule, using entailment.

(k,L,U,0) = (k,L',U'.0) EFK~K' row ty(d) R
(V) I—»TeRNI—TeR =EFTRT
Et (typet () =K,B:: (k,L,U,p,R)>B)
<:(typeri(a)=K',B:: (k,L',U',1,R)>P)

This rule says that, a row type definition (either private or not) subsumes a private row
type definition when: (1) the original definition entails the private one (both assumed

58 J. Garrigue

public), (2) kinding environments K and K’ are identical, up to the equivalence of the
types they contain, (3) all labels common to both definitions are associated to equivalent
types, which also implies that if row — T € R, then E - T & #,5,,; (). The requirement
Fow — toi(0) € R’ additionally ensures that the abstract row is declared inside the
same signature.

Another slight modification we need is to allow the introduction of hidden types
in subtyping. This accounts for two situations. The first one is when the original type
definition is public, and we make it private through subtyping. We need to introduce a
new abstract t,,,; in the subtype, matching the implicit one in the supertype.

trowi g BV(D,‘) (1 <i< I’l)
EtsigDy;...;Dy end <: sig Dy;...;Di;type trowi(0); D15 ... Dy end

The second one occurs when we define a type alias for a private type, and then export
it as being itself a private type. Here is an example.
module M : sig type t = private [> ‘A] end = struct
module M1 = struct type t = private [> ‘A | ‘B] end
type t = Ml.t
end

We need to add type towi = M| .towi in the signature of our implementation, in order
to use the subtyping rule for private row types:

trowi € BV(D;) Dy = (type t;(c) =K,B:: (k,L,U,1,R)>B) row—TER
Etsig Dy;...;Dy;S end <:sig Dy;...;Di_1;type trowi(0) = T;Dg; S end

These rules together provide a complete formalization of private row types.

3.3 Extra Features

Independently of these questions of formalism, another issue appears with the introduc-
tion of the with construct for signatures. This construct is not present in [20], but it is
needed in practice for any implementation, to avoid expanding all signatures by hand.
We are using it in our own example of section The technical difficulty with with
comes from the fact it only substitutes one definition at a time, and the environment of
the signature to be modified is not available in the new definition. It had to be extended
to allow private row types, particularly recursive ones. This is not yet enough for mutu-
ally recursive types, and it seems that there are approaches more promising than with
to manipulate signatures [21]].

A last design decision is related to the handling of variance. In order to allow more
subtyping, in OCaml both abstract types and algebraic datatypes have variances asso-
ciated to their type parameters. For instance the type 1ist(o) is covariant, which can
be written type list(+0) in its type definition. For abstract types variance annota-
tions are explicit, but for algebraic datatypes they are inferred from the definition of
the type. As private row types have a structural definition, one might think of inferring
their variance. However, the presence of an associated abstract type clearly indicates
that variance should be explicit. This also means that this variance must be respected:

Private Row Types: Abstracting the Unnamed 59

i.e. an implementation should have a stronger variance than the private row type it re-
places, and variance can only be weakened through subtyping. This reasoning can be
used to explain why private types, while they do not allow refinement, use also explicit
variances.

4 Conclusion

We have introduced a new form of type definition, which is both manifest and abstract
at the same time. We branded it as private, as it behaves in a way very similar to both
private types in OCaml, and private methods as they are understood in Java. Nonethe-
less, the power of this new feature is not limited to privacy, but goes a long way towards
abstraction allowing incremental extension. As this feature relies heavily on the expres-
sive power of modules, it is most interesting when combined with recent extensions of
module systems, such as recursive modules [2212324]] or, in an hopefully close future,
combinable signatures [21]].

Another desirable addition is support for unions of private variant types. One can
already define unions of concrete polymorphic variant types, and use them through
dispatch. The private case is more complex, as one must ensure that the combined types
are compatible. We are currently working on this question.

Acknowledgements

Comments from Didier Rémy, Keiko Nakata, Romain Bardou, and anonymous referees
were a great help in improving this paper. I thank them all.

References

1. Rémy, D., Vouillon, J.: Objective ML: An effective object-oriented extension to ML. Theory
and Practice of Object Systems 4 (1998) 27-50

2. Garrigue, J.: Programming with polymorphic variants. In: ML Workshop, Baltimore (1998)

3. Wadler, P.: The expression problem. Java Genericity mailing list (1998) http://www.
daimi.au.dk/“madst/tool/papers/expression.txt.

4. Garrigue, J.: Code reuse through polymorphic variants. In: Workshop on Founda-
tions of Software Engineering, Sasaguri, Japan (2000) http://www.math.nagoya-u.
ac.jp/ garrigue/papers/fose2000.html.

5. Rémy, D., Garrigue, J.: On the expression problem. http://pauillac.inria.fr/
“remy /work/expr/(2004)

6. Ohori, A.: A polymorphic record calculus and its compilation. ACM Transactions on Pro-
gramming Languages and Systems 17 (1995) 844-895

7. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded polymorphism for
object-oriented programming. In: Proc. ACM Symposium on Functional Programming and
Computer Architectures. (1989) 273-280

8. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the future safe for the past:
Adding genericity to the Java programming language. In: Proc. ACM Symposium on Object
Oriented Programming, Systems, Languages and Applications. (1998)

60

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

J. Garrigue

. Fisher, K., Reppy, J.: The design of a class mechanism for Moby. In: Proc. ACM Conference

on Programming Language Design and Implementation. (1999)

Odersky, M., Crémet, V., Rockl, C., Zenger, M.: A nominal theory of objects with dependent
types. In: Proc. European Conference on Object-Oriented Programming. (2003)

Zenger, M., Odersky, M.: Independently extensible solutions to the expression problem. In:
Workshop on Foundations of Object-Oriented Languages. (2005)

Boulmé, S., Hardin, T., Rioboo, R.: Polymorphic data types, objects, modules and functors:
is it too much? RR 014, LIP6, Université Paris 6 (2000)

Zenger, M., Odersky, M.: Extensible algebraic datatypes with defaults. In: Proc. ACM
International Conference on Functional Programming. (2001) 241-252

Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system
release 3.09, Documentation and user’s manual. Projet Cristal, INRIA. (2005)

Vouillon, J.: Combining subsumption and binary methods: an object calculus with views. In:
Proc. ACM Symposium on Principles of Programming Languages. (2001) 290-303

Rémy, D.: Type inference for records in a natural extension of ML. In Gunter, C.A., Mitchell,
J.C., eds.: Theoretical Aspects Of Object-Oriented Programming. Types, Semantics and Lan-
guage Design. MIT Press (1993)

Garrigue, J., Ait-Kaci, H.: The typed polymorphic label-selective A-calculus. In: Proc. ACM
Symposium on Principles of Programming Languages. (1994) 35-47

Leroy, X.: A modular module system. Journal of Functional Programming 10 (2000) 269—
303

Garrigue, J.: Simple type inference for structural polymorphism. In: Workshop on Founda-
tions of Object-Oriented Languages, Portland, Oregon (2002)

Leroy, X.: Applicative functors and fully transparent higher-order modules. In: Proc. ACM
Symposium on Principles of Programming Languages. (1995) 142-153

Ramsey, N., Fisher, K., Govereau, P.: An expressive language of signatures. In: Proc. ACM
International Conference on Functional Programming. (2005)

Crary, K., Harper, R., Puri, S.: What is a recursive module? In: Proc. ACM Conference on
Programming Language Design and Implementation. (1999) 50-63

Russo, C.V.: Recursive structures for Standard ML. In: Proc. ACM International Conference
on Functional Programming. (2001) 50-61

Nakata, K., Garrigue, J.: Recursive modules for programming. In: Proc. ACM International
Conference on Functional Programming, Portland, Oregon (2006)

	Introduction
	Using Private Row Types
	Simple Functors
	Relation to Private Types
	Recursion and the Expression Problem

	Formalization
	Core Type System
	Module Type System
	Extra Features

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

