# Formalizing quantum circuits with MathComp/Ssreflect

Takafumi Saikawa and Jacques Garrigue

Nagoya University

### Motivation

### We want to formalize quantum circuits



### Basic differences: bits and qubits

|  | Classical                                                | Quantum                                                         |
|--|----------------------------------------------------------|-----------------------------------------------------------------|
|  | $bit \in \{0, 1\}$                                       | $qubit \in \mathbb{C}^2$                                        |
|  | functions in <b>Set</b>                                  | unitary transformations in $\mathbf{FdHilb}$                    |
|  | direct product:                                          | tensor product                                                  |
|  | $\mathbf{Set}(X \times Y, Z) \cong \mathbf{Set}(X, Z^Y)$ | $\mathbf{FdHilb}(X \otimes Y, Z) \cong \mathbf{FdHilb}(X, Z^Y)$ |

#### Problem

• Each gate (= unitary transformation) is fairly simple:

$$= \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• but when put in a circuit, it becomes a monster:

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} \otimes \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} xa & xb & ya & yb \\ xc & xd & yc & yd \\ za & zb & wa & wb \\ zc & zd & wc & wd \end{bmatrix}$$

## State-as-function

#### lensor power

Tensor power

- ullet Tensor power  $V^{\otimes n}$ 
  - = iterated tensor product  $V\otimes \cdots \otimes V$
- ullet If  $V=K^m$ ,  $V^{\otimes n}\cong K^{m^n}$

Array of qubits

- ullet Qubit  $\in \mathbb{C}^2$
- Array of qubits  $\in (\mathbb{C}^2)^{\otimes n}$

Functional view

The state of n qubits can be seen as a function from a classical state to  $\mathbb{C}$ :

$$\mathsf{qustate}_n = \left(\mathbb{C}^2\right)^{\otimes n} \cong \mathbb{C}^{2^n} \cong \left(\{0,1\}^n \to \mathbb{C}\right)$$

Gates are unitary transformations on these state functions.

#### Lens

# Lens, curry-uncurry, tocus



- Lens = injection between finite ordinals, indicating the choice of wires (red wires in the picture)
- Curry / Uncurry = currying along a given lens which quotients away the unused (black) wires
- Focusing = composing curry, gate and uncurry to build the diagram

lens n m =  $(\{1,\ldots,m\} \rightarrow \{1,\ldots,n\})$ 

curry and uncurry

For T a vector space and  $\ell$ : lens n m,

$$(T^2)^{igotimes n} \cong T^{2^n} \stackrel{\operatorname{curry}_\ell}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} (T^{2^{n-m}})^{2^m} \cong \left(\left(T^{2^{n-m}}\right)^2\right)^{igotimes m}$$
 $\operatorname{uncurry}_\ell = \operatorname{curry}_\ell^{-1}$ 

focus

lens

And for G unitary,

 $\texttt{focus}_\ell \ G = \texttt{uncurry}_\ell \circ G \circ \texttt{curry}_\ell$ 

### Polymorphic operator

For focus to typecheck, the unitary operator G must actually be polymorphic:

$$G: \forall T: \mathsf{vector} \; \mathsf{sp.}, (T^2)^{\bigotimes n} \overset{\mathsf{unitary}}{\longrightarrow} (T^2)^{\bigotimes n} \quad (= \mathsf{endo} \; n)$$
 
$$\mathsf{focus}_{\ell} \; G = \lambda T. (\mathsf{uncurry}_{\ell} \circ G_{T^{2^{n-m}}} \circ \mathsf{curry}_{\ell})$$

Example:

$$= focus_{\{1\mapsto 1, 2\mapsto 3\}_3} CNOT$$

# Parametricity and naturality

### Polymorphism is not enough

- We know from its type that G is polymorphically linear / unitary
- But it could be unitary / linear differently for each T
- I.e., the matrix representing the linearity might differ between different T s
- And focus does change T

#### Parametricity

We want G to be represented by a single matrix:

$$\exists M : \mathsf{matrix}, \ \forall T : \mathsf{vector} \ \mathsf{sp.}, \ \forall v : (T^2)^{\bigotimes n}, \ G_T(v) = Mv.$$

#### Naturality

We can rephrase parametricity without reference to a matrix, using naturality:



# Proving properties

### Proof strategy

- Prove basic properties of lenses. Some of them are hard.
- Use them to prove properties of tensor powers and endomorphisms.
- Need also lemmas to connect with matrix representations.

### Proofs of properties

- Equivalence of parametricity and naturality. (We assume them below.)
- If G is unitary, so is focus $\ell$  G.
- For  $\ell$ : lens n m and  $\ell'$ : lens m p, focus $_{\ell \circ \ell'} = \mathtt{focus}_{\ell} \circ \mathtt{focus}_{\ell'}$
- For  $\ell$ : lens n m and  $\ell'$ : lens n p disjoint, focus $_{\ell'}$   $G'\circ \mathtt{focus}_{\ell}$   $G=\mathtt{focus}_{\ell}$   $G\circ \mathtt{focus}_{\ell'}$  G'



and many more!

# **Applications**

### Shor's code

```
Definition bit_flip_enc : endo 3 :=
 tsapp [lens 0; 2] cnot \v tsapp [lens 0; 1] cnot.
Definition bit_flip_dec : endo 3 :=
 tsapp [lens 1; 2; 0] toffoli \v bit_flip_enc.
```

Definition sign\_flip\_dec := bit\_flip\_dec \v hadamard3. Definition sign\_flip\_enc := hadamard3 \v bit\_flip\_enc.

Definition shor\_enc : endo 9 := focus [lens 0; 1; 2] bit\_flip\_enc \v focus [lens 3; 4; 5] bit\_flip\_enc \v focus [lens 6; 7; 8] bit\_flip\_enc \v focus [lens 0; 3; 6] sign\_flip\_enc. Definition shor\_dec : endo 9 := focus [lens 0; 3; 6] sign\_flip\_dec \v focus [lens 0; 1; 2] bit\_flip\_dec \v focus [lens 3; 4; 5] bit\_flip\_dec \v focus [lens 6; 7; 8] bit\_flip\_dec.

Definition shor\_code (chan : endo 9) := shor\_dec \v chan \v shor\_enc.

# Kindergarten Quantum Mechanics (wip)

[Coecke & Kissinger 2017] Picturing Quantum Processes. Definition cap : mor n  $(n-2) := \dots$ 

Definition cup : mor (n-2) n := ...





Lemma straighten : cap [lens 1; 2] \v cup [lens 0; 1] =e idmor 1. Lemma transpose\_cup (M : tsquare 1) :

focus [lens 0] (tsmor M) v cup (n:=2) [lens 0; 1] =e focus [lens 1] (tsmor (transpose\_tsquare M)) \v cup [lens 0; 1].

Problem: proving properties of focusing on non-endomorphic transformations is much harder.

The code is available at: https://github.com/t6s/qecc/