
� �

Formalizing quantum circuits with MathComp/Ssreflect
Takafumi Saikawa and Jacques Garrigue Nagoya University� �

� �
Motivation� �

We want to formalize quantum circuits

Shor’s 9-qubit code (correcting both flips)� �

|ψ〉 • • H • •

E

• • H • • |ψ〉
|0〉 •
|0〉 •

|0〉 H • • • • H •

|0〉 •
|0〉 •

|0〉 H • • • • H •

|0〉 •
|0〉 •

© Self / Wikimedia Commons / CC-BY-SA-3.0� �
Basic differences: bits and qubits
Classical Quantum
bit ∈ {0, 1} qubit ∈ C2

functions in Set unitary transformations in FdHilb
direct product: tensor product
Set(X × Y, Z) ∼= Set(X,ZY ) FdHilb(X ⊗ Y, Z) ∼= FdHilb(X,ZY )

Problem
Each gate (= unitary transformation) is fairly simple:

•
= CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


but when put in a circuit, it becomes a monster:[

x y
z w

]
⊗
[
a b
c d

]
=


xa xb ya yb
xc xd yc yd
za zb wa wb
zc zd wc wd


� �
State-as-function� �

Tensor power
Tensor power� �

Tensor power V ⊗n

= iterated tensor product V ⊗ · · · ⊗ V
If V = Km, V ⊗n ∼= Kmn

� �
Array of qubits� �

Qubit ∈ C2

Array of qubits ∈
(
C2
)⊗n

� �
Functional view� �

The state of n qubits can be seen as a function from a classical state to C:

qustaten =
(
C2
)⊗n ∼= C2n ∼= ({0, 1}n→ C)

Gates are unitary transformations on these state functions.� �

� �
Lens� �

Lens, curry-uncurry, focus

Lens = injection between finite ordinals, indicating
the choice of wires (red wires in the picture)

Curry / Uncurry = currying along a given lens
which quotients away the unused (black) wires

Focusing = composing curry, gate and uncurry to
build the diagram

lens� �

lens n m = ({1, . . . ,m}� {1, . . . , n})� �
curry and uncurry� �

For T a vector space and ` : lens n m ,

(T 2)
⊗

n ∼= T 2n
(
T 2n−m

)2m ∼= ((T 2n−m
)2)⊗mcurry`

uncurry` = curry
−1
`� �

focus� �
And for G unitary,

focus` G = uncurry` ◦G ◦ curry`� �
Polymorphic operator
For focus to typecheck, the unitary operator G must actually be polymorphic:

G : ∀T : vector sp., (T 2)
⊗

n unitary−→ (T 2)
⊗

n (= endo n)

focus` G = λT.(uncurry` ◦GT 2n−m ◦ curry`)
Example: •

= focus{17→1,2 7→3}3 CNOT

� �
Parametricity and naturality� �

Polymorphism is not enough
We know from its type that G is polymorphically linear / unitary

But it could be unitary / linear differently for each T

I.e., the matrix representing the linearity might differ between different T s

And focus does change T

Parametricity
We want G to be represented by a single matrix:

∃M : matrix, ∀T : vector sp., ∀v : (T 2)
⊗

n, GT (v) =Mv.

Naturality
We can rephrase parametricity without reference to a matrix, using naturality:

T T⊗I
k

T⊗I
k

T ′ T ′⊗I
k

T ′⊗I
k

∀ϕ ϕ⊗I
k

ϕ⊗I
k

fT

fT ′

� �
Proving properties� �

Proof strategy
Prove basic properties of lenses.
Some of them are hard.

Use them to prove properties of tensor powers and endomorphisms.

Need also lemmas to connect with matrix representations.

Proofs of properties
Equivalence of parametricity and naturality. (We assume them below.)

If G is unitary, so is focus` G.

For ` : lens n m and `′ : lens m p, focus`◦`′ = focus` ◦ focus`′
For ` : lens n m and `′ : lens n p disjoint,
focus`′ G

′ ◦ focus` G = focus` G ◦ focus`′ G′

G

G′
=

G

G′

and many more!
� �
Applications� �

Shor’s code
Definition bit_flip_enc : endo 3 :=

tsapp [lens 0; 2] cnot \v tsapp [lens 0; 1] cnot.

Definition bit_flip_dec : endo 3 :=

tsapp [lens 1; 2; 0] toffoli \v bit_flip_enc.

Definition sign_flip_dec := bit_flip_dec \v hadamard3.

Definition sign_flip_enc := hadamard3 \v bit_flip_enc.

Definition shor_enc : endo 9 :=

focus [lens 0; 1; 2] bit_flip_enc \v

focus [lens 3; 4; 5] bit_flip_enc \v

focus [lens 6; 7; 8] bit_flip_enc \v

focus [lens 0; 3; 6] sign_flip_enc.

Definition shor_dec : endo 9 :=

focus [lens 0; 3; 6] sign_flip_dec \v

focus [lens 0; 1; 2] bit_flip_dec \v

focus [lens 3; 4; 5] bit_flip_dec \v

focus [lens 6; 7; 8] bit_flip_dec.

Definition shor_code (chan : endo 9) :=

shor_dec \v chan \v shor_enc.

Kindergarten Quantum Mechanics (wip)
[Coecke & Kissinger 2017] Picturing Quantum Processes.
Definition cap : mor n (n-2) := ...

Definition cup : mor (n-2) n := ...

straigthen : = transpose_cup : =

Lemma straighten : cap [lens 1; 2] \v cup [lens 0; 1] =e idmor 1.

Lemma transpose_cup (M : tsquare 1) :

focus [lens 0] (tsmor M) \v cup (n:=2) [lens 0; 1] =e

focus [lens 1] (tsmor (transpose_tsquare M)) \v cup [lens 0; 1].

Problem: proving properties of focusing on non-endomorphic transformations is
much harder.
� �
The code is available at: https://github.com/t6s/qecc/� �

Takafumi Saikawa, Jacques Garrigue Formalizing quantum circuits with MathComp/Ssreflect PlanQC, September 15, 2022 1 / 1

https://github.com/t6s/qecc/

