Formalizing quantum circuits with MathComp/Ssreflect

Takafumi Saikawa and Jacques Garrigue Nagoya University

Lens

curry and uncurry

For T a vector space and $\ell:$ lens n m ,

$$
\left(T^{2}\right)^{\otimes n} \cong T^{2^{n}} \xrightarrow{\text { curry }_{\ell}}\left(T^{2^{n-m}}\right)^{2^{m}} \cong\left(\left(T^{2^{n-m}}\right)^{2}\right)^{\otimes m}
$$

focus And for G unitary,	
	focus $_{\ell} G=$ uncurry $_{\ell} \circ G \circ$ curry $_{\ell}$

Polymorphic operator

For focus to typecheck, the unitary operator G must actually be polymorphic:

$$
\begin{aligned}
G: & \forall T: \text { vector sp. },\left(T^{2}\right)^{\otimes n} \xrightarrow{\text { unitary }}\left(T^{2}\right)^{\otimes n} \quad(=\text { endo } n) \\
& \text { focus } \ell=\lambda T .\left(\text { uncurry }_{\ell} \circ G_{T^{2 n-m}} \circ \text { curry }_{\ell}\right)
\end{aligned}
$$

Example:

$$
\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \otimes\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cccc}
x a & x b & y a & y b \\
x c & x d & y c & y d \\
z a & z b & w a & w b \\
z c & z d & w c & w d
\end{array}\right]
$$

$$
\square
$$

$=$ focus $_{\{1 \mapsto 1,2 \mapsto 3\}_{3}}$ CNOT
Parametricity and naturality
Polymorphism is not enough
\square

- But it could be unitary / linear differently for each T
- I.e., the matrix representing the linearity might differ between different Ts

- And focus does change t

Parametricity

We want G to be represented by a single matrix:

$$
\exists M \text { : matrix, } \forall T \text { : vector sp., } \forall v:\left(T^{2}\right)^{\otimes n}, G_{T}(v)=M v .
$$

Naturality

We can rephrase parametricity without reference to a matrix, using naturality:

Proving properties

Proof strategy
 - Prove basic properties of lenses.

Some of them are hard.

- Use them to prove properties of tensor powers and endomorphisms.
- Need also lemmas to connect with matrix representations.

Proofs of properties

- Equivalence of parametricity and naturality. (We assume them below.)
- If G is unitary, so is focus ℓ.
- For $\ell:$ lens n m and $\ell^{\prime}:$ lens m p, focus $\ell_{\ell \ell^{\prime}}=$ focus $\ell \circ{\text { focus } \ell^{\prime}}^{\prime}$
- For $\ell:$ lens n m and ℓ^{\prime} : lens n p disjoint,
focus $\ell^{\prime} G^{\prime} \circ$ focus $\ell=$ focus ℓ $G \circ$ focus $\ell^{\prime} G^{\prime}$

- and many more!

Applications

Shor's code

Definition bit_flip_enc : endo 3
tsapp [lens 0; 2] cnot $\backslash v$ tsapp [lens 0; 1] cnot.
Definition bit_flip_dec : endo 3 :=
tsapp [lens 1; 2; 0] toffoli \v bit_flip_enc
Definition sign_flip_dec := bit_flip_dec \v hadamard3. Definition sign_flip_enc := hadamard3 \v bit_flip_enc.

Definition shor_enc : endo 9 :=
focus [lens 0; 1; 2] bit_flip_enc \v
focus [lens 3; 4; 5] bit_flip_enc \v
focus [lens 6; 7; 8] bit_flip_enc \V
focus [lens 0; 3; 6] sign_flip_enc
finition shor_dec : endo 9 :=
focus [lens 0; 3; 6] sign_flip_dec \v
focus [lens 0; 1; 2] bit_flip_dec \V
focus [lens 3; 4; 5] bit_flip_dec \v
focus Llens 6; 7; 8] bit_flip_dec
shor_dec \v chan \v shor_enc.

Kindergarten Quantum Mechanics (wip)

[Coecke \& Kissinger 2017] Picturing Quantum Processes.
Definition cap : mor n (n-2) :=
Definition cup : mor (n-2) n :=
straigthen:
Lemma straighten : cap [lens 1; 2] \v cup [lens 0; 1] =e idmor
Lemma transpose_cup (M : tsquare 1)
focus [lens 0] (tsmor M) \v cup ($\mathrm{n}:=2$) [lens 0; 1] =e
focus [lens 1] (tsmor (transpose_tsquare M)) \v cup [lens 0; 1].
Problem: proving properties of focusing on non-endomorphic transformations is much harder.
The code is available at: https://github.com/t6s/qecc/

