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Abstract
A practical type system for ML-style recursive modules
should address at least two technical challenges. First, it
needs to solve the double vision problem, which refers to
an inconsistency between external and internal views of re-
cursive modules. Second, it needs to overcome the tension
between practical decidability and expressivity which arises
from the potential presence of cyclic type definitions caused
by recursion between modules. Although type systems in
previous proposals solve the double vision problem and are
also decidable, they fail to typecheck common patterns of
recursive modules, such as functor fixpoints, that are essen-
tial to the expressivity of the module system and the modular
development of recursive modules.

This paper proposes a novel type system for recursive
modules that solves the double vision problem and type-
checks common patterns of recursive modules including
functor fixpoints. First, we design a type system with a
type equivalence based on weak bisimilarity, which does not
lend itself to practical implementation in general, but accom-
modates a broad range of cyclic type definitions. Then, we
identify a practically implementable fragment using a type
equivalence based on type normalization, which is expres-
sive enough to typecheck typical uses of recursive modules.
Our approach is purely syntactic and the definition of the
type system is ready for use in an actual implementation.
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1. Introduction
Modular programming is considered the key enabling tech-
nology for large-scale software development and mainte-
nance. Consequently, a modern programming language usu-
ally provides its own module system to facilitate modular
programming. The ML module system [22], among oth-
ers, provides powerful support for modular programming
and data abstraction through nested modules, higher-order
functors (functions from modules to modules), and abstract
types.

While regarded as a powerful mechanism for modular
programming, the ML module system does not traditionally
support recursive modules. This is in sharp contrast to typed
object-oriented languages such as Java, which put almost no
restriction on recursion between components. One could ar-
gue that recursive modules are harder to support in ML pre-
cisely because of the strengths of the language, such as its
type system, which supports polymorphic type inference, or
the absence of default values such as null pointers, which
makes more difficult defining a semantics for recursive mod-
ule initialization. Due to the lack of recursive modules, ML
programmers often have to consolidate conceptually sepa-
rate mutually recursive definitions into a single module, thus
compromising modular programming. In response, recently,
several authors have proposed recursive module extensions
to ML [6–9, 21, 26, 28, 34], some of which are successfully
implemented in Moscow ML [2] and OCaml [3].



Despite such abundant literature and practical implemen-
tations, however, the number of examples of using recur-
sive modules reported in the literature is still rather limited:
expression/binding recursive modules [6], Okasaki’s boot-
strapped heaps [31], polymorphic recursion [21], tree/forest
recursive data structures [28], and the expression prob-
lem [13]. While they give us some idea of how recursive
modules can be useful in practice, their scarcity may also
demonstrate that existing systems are either too cumbersome
or not expressive enough to accommodate other interesting
examples.

Specifically, to reach its full power, a type system for re-
cursive modules needs to address the double vision prob-
lem [9] and cyclic type definitions. The double vision prob-
lem refers to the inability to identify the external name of
an abstract type with its internal name inside the recursive
module where the type is defined. It has proven difficult to
solve and only Dreyer [8] and Montagu and Rémy [26] suc-
cessfully solve it in a type-theoretic way.

Independently of recursive type definitions, recursive
modules allow us to indirectly introduce recursion in types
that span across module boundaries. The potential presence
of arbitrary cyclic types would require equi-recursive type
constructors of higher-kind, for which no practical algorithm
for type equivalence is known [6], and non-contractive types,
for which the equational theory is not known. Moreover, one
has to decide what to do with type cycles hidden through
opaque sealings. Most previous proposals choose to reject
type cycles, whether or not they are hidden through opaque
sealings, in a conservative way at the expense of reducing the
flexibility and expressive power of recursive modules. Here,
we use the term “conservatively” because it is generally
impossible to accurately detect cycles without breaking ab-
straction. For example, Dreyer [8] supports only a restricted
form of functor fixpoints, and Montagu and Rémy [26] do
not support functor fixpoints returning structures at all. As
we will see in Sections 2 and 3, however, there are important
examples that are rejected by these approaches.

In this paper, we start our analysis by providing three
practical examples illustrating basic uses of recursive mod-
ules: tree and forest recursive data structures adapted from
[28]; encodings of classes and objects using functors and
functor fixpoints; and an implementation of a compiler back-
end. These examples demonstrate that, when sufficiently ex-
pressive, recursive modules have a wide range of applica-
tions and help us improve modularity. We then address the
double vision problem and decidability of typechecking sep-
arately. To solve the double vision problem, we introduce a
notion of path substitutions, which are mappings from ex-
ternal names to internal names of abstract types. Locally en-
riching the typing context with path substitutions proves suf-
ficient to solve the double vision problem. To avoid restrict-
ing expressivity, we allow the type system to account for
arbitrary cyclic type definitions. Specifically, we use weak

bisimilarity [23] on a labeled transition system on types [28]
to build our type equivalence relation. Using weak bisimi-
larity, we generalize extensional equality, or bisimilarity, on
infinite trees to account for type abbreviations. This type sys-
tem is proven sound but may be difficult to implement in
general. We then propose an algorithmic type system by re-
jecting transparent type cycles (as defined in Section 3.2).
The algorithmic type system is sound and complete with re-
spect to the one based on weak bisimilarity if the program
does not contain transparent type cycles, and can still type-
check all our motivating examples.

The main motivation of this work is to design a type
system that typechecks flexible uses of recursive modules
already supported by OCaml, and possibly more. (OCaml
3.12.0, the most recent version, does not completely solve
the double vision problem.) Hence, we focus only on typ-
ing issues and do not investigate a logical account of recur-
sive modules in contrast to Dreyer [7, 8] and Montagu and
Rémy [26], who give logical interpretations of recursive type
generativity and abstract types, respectively.

Our contributions are summarized as follows:

• We provide three practical examples that are useful for
understanding basic uses of recursive modules.

• We propose a novel type system that solves the double
vision problem and rejects only transparent type cycles,
which is sufficient to keep typechecking practically im-
plementable and does not impede expressivity. We also
define a light-weight call-by-value operational semantics
and show that the type system is sound with respect to it.

• Our type system is purely syntactic and may thus act as
a reference for the implementation of an external pro-
grammable module language. We believe that our type
system is simpler than previous proposals.

The rest of the paper is organized as follows. Section 2
gives three practical examples of using recursive modules.
Section 3 presents technical challenges, namely the double
vision problem and cyclic type definitions. It also discusses
previous approaches to these challenges and the key ideas
of our approach. Section 4 gives the concrete syntax of our
language. Section 5 explains the type system, and Section 6
shows the operational semantics and a type soundness re-
sult. Section 7 presents an algorithmic type equivalence re-
lation. Section 8 discusses separate compilation of mutually
recursive modules and type reconstruction for our language.
Section 9 discusses related work and Section 10 concludes.

2. Examples of Using Recursive Modules
This section illustrates typical uses of recursive modules and
gives us a baseline for what a practical type system for recur-
sive modules should handle. All the examples typecheck in
OCaml 3.12.0 (with Figures 3 and 4 being given appropriate
definitions for the omitted part).



module rec Tree : sig

type t

val max : t -> int

end = struct

type t = Leaf of int | Node of int * Forest.f

let max x = match x with Leaf i -> i

| Node (i, f) -> let j = Forest.max f in

if i > j then i else j

end

and Forest : sig

type f

val max : f -> int

end = struct

type f = Tree.t list

let rec max x = match x with [] -> 0

| hd :: tl -> let i = Tree.max hd in

let j = max tl in if i > j then i else j

end

Figure 1. Tree and Forest mutually recursive modules

2.1 Basic Terminology
Basic modular programming constructs in the ML module
system are structures, signatures, and functors. A structure,
or a module, is a collection of related declarations such as
definitions of datatypes and associated operations. A func-
tor, or a parameterized module, is a function from structures
to structures. A signature and a functor signature, which are
also called module types, specify an interface for a structure
and a functor, respectively. An opaque signature sealing al-
lows one to hide the implementation details of a module be-
hind the signature; hence, one may define abstract types via
sealings. The notion of modules extends to nested modules
which allow modules as components, and the notion of func-
tors extends to higher-order functors which take functors as
arguments.

2.2 Tree and Forest Mutually Recursive Modules
The first example is Tree and Forest mutually recursive
modules in Figure 1, which is adapted from [28]. Tree

is a module for trees whose leaves and nodes are labeled
with integers while Forest is a module for a list of those
integer trees. Components of Tree and Forest refer to
each other in a mutually recursive way: type components
Tree.t and Forest.f refer to each other and similarly
value components Tree.max and Forest.max, which find
the maximum integer that a given tree and forest contain,
respectively. In this example, we enforce type abstraction
inside the recursion by sealing each module with a signature
specifying an abstract type individually.

The main benefit of using recursive modules in this ex-
ample is the modularity between Tree and Forest. Without
recursive modules, the programmer has to consolidate two
conceptually separate modules, each of which may usually
include dozens of function definitions, into a single mod-
ule. This merges two separate namespaces into a single one,

module type Point = sig

val get x : unit -> int

val move : int -> unit

end

module PointF (X : sig end) = struct

let x = ref 0

let get x () = !x

let move d = x := !x + d

end

let new point () =

(module PointF(struct end) : Point)

module type Show = sig

val show : unit -> string

end

module ShowF (P : Point) = struct

let show () =

Printf.sprintf "x = %i" (P.get x ())

end

module type ShowPoint = sig

include Point

include Show

end

module ShowPointF (P : ShowPoint) = struct

include PointF(P)

include ShowF(P)

end

(* Create a new showpoint, by tying the knot *)

let new showpoint () =

let module M = struct

module rec SP : ShowPoint = ShowPointF(SP)

end in (module M.SP : ShowPoint)

let sp = new showpoint ()

let a = let module SP = (val sp : ShowPoint) in

SP.move 2; SP.show ()

let sp as p =

(module (val sp : ShowPoint) : Point)

Figure 2. Encodings of classes and objects

thereby reducing the modularity and readability of the pro-
gram. For example, similar functions in Tree and Forest

with the same name such as max should now be renamed
max tree and max forest to avoid a name collision.

Tree/Forest-style recursive modules are indeed used in
a real world project such as Amthing [1] which is a multi-
threaded GUI library for OCaml. For example, recursive
modules Focus/Focusee and Signal/Event are a variant
of the Tree/Forest pattern.

2.3 Encodings of Classes and Objects
The second example is an encoding of classes and objects
using functors and functor fixpoints. The basic idea is to turn
classes (or traits [35]) into functors receiving the object to be



constructed and returning a list of methods. Figure 2 demon-
strates this idea using recursive modules and first-class mod-
ules. First-class modules, as provided by Moscow ML and
OCaml, allow us to pack a module as a value of the core
language, which can later be dynamically unpacked with the
same signature. While the type system we will present does
not support first-class modules, they can easily be added. A
more powerful encoding would represent object state as a
separate abstract type, avoiding the need for first-class mod-
ules and permitting more advanced operations such as binary
methods, but at the cost of more complexity.

Figure 2 first defines a Point interface and the corre-
sponding class, defined as a functor PointF. In this basic
case, where methods do not call one another, a functor is suf-
ficient to allow our points to have some state. We then define
a constructor new point by applying PointF to an arbitrary
argument, and wrapping the result in a first-class module us-
ing the packing construct (module ... : Point).

We now see how traits and inheritance can be encoded.
We first define an interface Show containing a single show

method. The corresponding trait is a functor ShowF which
receives a module satisfying the signature Point and uses
its method to define an implementation for show. The next
step, corresponding to inheritance, is to merge this trait
into the PointF class, which is done by defining a func-
tor taking an argument satisfying the signature ShowPoint

(the union of Show and Point) and returning the union of
PointF and ShowF. The last step is to define the constructor
new showpoint. Since methods may now call one another,
we need to tie the recursive knot by taking the fixpoint of
ShowPointF. For syntactic reasons, this has to be done in-
side a local module, before returning this fixpoint M.SP as a
first-class module.

Once we create such an object, we can use it as a normal
one. Syntactically, we first need to unpack it as (val sp :

ShowPoint) to be able to call its methods. Module subtyp-
ing also provides for object subtyping, and can be used by
unpacking and repacking.

Using recursive modules and first-class modules, we can
similarly encode other features of object-oriented languages
such as method overriding, virtual methods, or private meth-
ods.

2.4 An Implementation of a Compiler Back-end
The third example is an implementation of a compiler back-
end1 in Figures 3 and 4, where we omit many type and func-
tion definitions. Basically, it implements a compilation pass
for translating a machine independent intermediate language
into machine dependent ones, with different instructions.

The basic idea is similar to class and object encodings in
Section 2.3: we define a functor which takes the target lan-
guage and machine-specific translation functions and returns

1 It is inspired by the OCaml implementation and was suggested by Xavier
Leroy.

type id = ... (* identifier *)

type reg = ... (* register location *)

and reg s = reg list

type env = (id * reg s) list

(* The source language *)

type exp = Cint of int | Cadd of exp * exp

| Cif of exp * exp * exp | ...

type test = Leq | Lne | ...

module type S = sig

(* The target language *)

type spec op

type instr = Ladd | ... | Lspec of spec op

and instr s = instr list
... (* a bunch of declarations *)

val sel cond : exp -> test * exp * exp

val sel add : env -> exp -> exp -> instr s

-> instr * reg s * instr s

end

module FSelectgen (X : S) = struct

(* emit exp : env -> exp -> X.instr s *)

(* -> reg s * X.instr s *)

let emit exp env e i = match e with

| Cadd (e1, e2) ->

... X.sel add env arg1 arg2 i ...

| Cif (econd, eif, eelse) ->

let (cond, e1, e2) = X.sel cond econd in
...

let sel cond e = ...

let sel add env e1 e2 i =

let (r1, i1) = emit exp env e1 i in

let (r2, i2) = emit exp env e2 i1 in

(X.Ladd, concat r1 r2, i2)

(* The entry point to the translation *)

let emit e = emit exp empty env e (init ())

end

Figure 3. A machine independent translation

a list of translation functions tailored to the target machine.
The functor FSelectgen2 in Figure 3 is such a generic func-
tor, which implements translation functions for the general
machine. The target language instr contains, besides ma-
chine independent instructions, a special instruction Lspec

to support machine specific instructions. While FSelectgen
takes two functions sel cond and sel add as arguments,
which may exploit the optimizing instructions for condi-
tionals and arithmetic that the target machine provides, it
also defines default implementations, which do not exploit
such optimizing instructions, for both functions. Note that
function emit exp, which translates a source language ex-

2 The OCaml implementation uses its object system rather than recursive
modules, and a virtual class selector generic in the selectgen.ml file is
a counterpart of the functor FSelectgen.



module rec ProcA : sig ... end = struct

module Selectgen = FSelectgen(ProcA.Selection)

module Selection = struct

type spec op = Laddi of int

type instr = Ladd | ... | Lspec of spec op

and instr s = instr list
... (* a bunch of declarations *)

let sel add env e1 e2 i = match e1 with

| Cint n ->

let (r, i’) = Selectgen.emit exp env e2 i

in (Lspec (Laddi n), r, i’)

| -> Selectgen.sel add env e1 e2 i

let sel cond = Selectgen.sel cond

let emit = Selectgen.emit

end

end

Figure 4. A translation tailored to a specific target machine
with a special addition instruction

pression, uses machine dependent functions X.sel add and
X.sel cond rather than their default implementations.

Figure 4 shows an example of instantiating the general
functor FSelectgen to a specific machine. The recursive
module ProcA is a machine dependent translation that is
obtained by taking the fixpoint of FSelectgen. The target
machine provides a special instruction Laddi for the ad-
dition with integer constants, so the module Selection

defines a new implementation for the function sel add

which exploits the instruction Laddi. By tying the recur-
sive knot between FSelectgen and ProcA.Selection, we
obtain translation functions tailored to the target machine.
The module Selection reuses the default implementation
of sel cond provided by FSelectgen. For different tar-
get machines with different optimizing instructions, we can
similarly obtain machine dependent translations by taking
the fixpoint of FSelectgen.

We believe that all these examples provide strong evi-
dence that recursive modules are useful in practice and give
us more expressive power to improve modularity.

3. Technical Challenges
This section presents technical challenges for typechecking
recursive modules, namely the double vision problem [9]
and cyclic type definitions. As suggested in the introduction,
we address these issues separately, which allows us to clarify
the problems involved and propose a simpler solution. In the
following, we first look at the double vision problem and
then cyclic type definitions, examining previous approaches
and explaining our approach along the way.

3.1 The Double Vision Problem
The double vision problem refers to the inability to identify
the external name of an abstract type, which is cyclically
imported, with its internal name inside the recursive module

module rec Forest : sig

type f

val empty : unit -> f

val plant : Tree.t -> f -> f

end = struct

type f = Nil | Cons of Tree.t * f

let empty () = Nil

let plant x y = Cons (x, y)

end

and Tree : sig

type t

val empty : unit -> t

val plant : int -> Forest.f -> Forest.f

-> Forest.f

end = struct

type t = int * Forest.f

let empty () = 0, Forest.empty ()

let plant i x y = Forest.plant (i, x) y

end

Figure 5. The double vision problem

where it is defined. For example, consider Figure 5, a variant
of Figure 1. Here, we slightly modify the definitions of
types Tree.t and Forest.f so that we can use Figure 5 as
our running example, expressible in our language: Tree.t
is defined as a pair of an integer and a forest, where the
forest represents the branches of a tree, while Forest.f as
a datatype representing a list of trees. Hence, we need not
extend the entire system with parameterized type definitions
such as ’a list, which is feasible but beyond the scope of
this paper. Both modules Tree and Forest now contain a
new function called plant but with a different type, which
inserts a tree into a forest.

The example does not typecheck in OCaml 3.12.0 be-
cause of the function plant in Tree. Specifically, the ex-
pression (i, x) is of type int * Forest.f while the
function Forest.plant expects a value of type Tree.t,
which is an abstract type and thus cannot be identified with
int * Forest.f. Inside Tree, however, Tree.t is merely
a recursive reference to, or equivalently an external name
of, t which equals int * Forest.f. Hence, inside Tree,
the type system should also identify Tree.t with int *

Forest.f. The inability to do so is called the double vision
problem. OCaml partially solves this problem by automati-
cally adding a type equation pointing from the internal defi-
nition to the external definition, when typechecking the body
of a recursive module. However, in OCaml, a type definition
has at most one type equation and therefore this approach
is only applicable to datatype definitions, but not to type
abbreviations or datatype definitions with equations.

Previous approaches
To our knowledge, only RMC by Dreyer [8] and F. by Mon-
tagu and Rémy [26] solve the double vision problem in a
type-theoretic way. The key idea of RMC is to separate the



creation of the name for an abstract type from the defini-
tion of the type. Specifically, by elaboration similar to the
Definition of Standard ML [24], the RMC type system first
creates a semantic type variable and assigns it to both ex-
ternal and internal names of an abstract type. The seman-
tic type variable is then defined only once and the RMC
type system ensures its definition to be visible only inside
the module where the type variable is defined. For example,
the RMC type system first assigns a new type variable α to
both Tree.t and t inside Tree. Then, α is defined as int *

Forest.f inside Tree. As Forest.plant expects a value
of type Tree.t, or equivalently α, which is known to equal
int * Forest.f inside Tree, the function plant in Tree

typechecks in RMC. We remark that the type variable α is
abstract outside Tree. The typability in RMC, however, de-
pends on the order of definitions (see Section 3.2 in this pa-
per for details). This is why we should define Forest before
Tree. Indeed, if the order is reversed, the resultant program
does not typecheck in RMC.

F. by Montagu and Rémy is a variant of explicitly typed
System F extended with recursive types and values, intended
as a core language for modules. F. decomposes the intro-
duction and elimination of existential types into more atomic
constructs. In F., one may refer to a single type compo-
nent via using either its external name or internal name,
and thus the double vision problem arises. F. addresses the
problem simply by locally enriching the typing context with
equations between external and internal names. For exam-
ple, when typechecking the module Tree, F. locally ex-
tends the typing context with an equation ∀(t / Tree.t =
int * Forest.f). The equation means that the external
name Tree.t can be viewed internally as t which is de-
fined as int * Forest.f. Hence, Figure 5 also typechecks
in F. with the help of proper encodings. (F. does not sup-
port paths, so t and Tree.t should be represented as two
distinct type variables.)

Our approach: Path substitutions
We address the double vision problem in a similar way to
F.: our type system also extends the typing context locally
with path substitutions, which are mappings from external
names to internal names of abstract types. This is in con-
trast to RMC, which modifies the typing context globally.
Specifically, as in most previous work, we employ recur-
sive structures with explicitly typed recursion variables. We,
however, do not distinguish between forward and backward
references, and allow components of structures to refer to
each other (recursively) only via recursion variables. This
makes module component access uniform and simplifies the
use of path substitutions. To solve the double vision prob-
lem, when typechecking a recursive module, we add into the
typing context a path substitution of its internal recursion
variable for its external path. Then, when checking equiva-
lence on abstract types, we convert their external names to
internal names (whose definitions are available to the type

module type ST(type u) = rec(Y)sig

type t

val plant : int -> u -> u -> u

end

module type SF(type u) = rec(Z)sig

type f

val plant : u -> Z.f -> Z.f

end

module type S = rec(X)sig

module Tree : ST(X.Forest.f)

module Forest : SF(X.Tree.t)

end

rec(X : S)struct

module Tree : ST(X.Forest.f) =

rec(Y : ST(X.Forest.f) with

type t = int * X.Forest.f)

struct

type t = int * X.Forest.f

let plant (i : int) (x : X.Forest.f)

(y : X.Forest.f) = X.Forest.plant (i, x) y

end

module Forest : SF(X.Tree.t) =

rec(Z : SF(X.Tree.t) with

type f = Nil | Cons of X.Tree.t * Z.f)

struct

type f = Nil | Cons of X.Tree.t * Z.f

let plant (x : X.Tree.t) (y : Z.f)

= Z.Cons (x, y)

end

end

Figure 6. Encodings of Tree and Forest modules in our
language

system) by applying path substitutions, and thus identify
their two different names.

To illustrate how we exploit path substitutions in solving
the double vision problem, consider Figure 6, an encoding
of Figure 5 in the abstract syntax of our language (extended
with top-level parameterized signatures [17] for concision).
To simplify the code, we omit the empty function in both
Tree and Forest modules. The code may look a bit verbose
because it is written in the abstract syntax, but in practice,
most of the type annotations can be automatically inferred,
as discussed in Section 8.2. We wrap Tree and Forest mod-
ules in a top-level recursive module X and assign them recur-
sion variables Y and Z, respectively. Both Y and Z are anno-
tated with their principal signatures. To typecheck plant in
Tree, from which the double vision problem arises, the type
system should identify an abstract type X.Tree.t, which is
the type of the first argument of X.Forest.plant, with int
* X.Forest.f, which is the type of (i, x). To do that,
when typechecking Tree, the type system locally enriches
the typing context with a path substitution X.Tree 7→ Y.
Then, by rewriting X.Tree.t to Y.t, which equals int *



X.Forest.f, the type system typechecks plant. In this
way, we solve the double vision problem.

Our approach to the double vision problem differs from
those of RMC and F. in the following two points. First, we
address the problem in a purely syntactic way, as opposed to
RMC adopting SML-style elaboration into semantic objects.
Second, we address the problem in the context of path-based
recursive modules, whereas F. considers a low-level core
language in the style of System F, and has to be extended to
encode full fledged ML modules supporting recursion. Our
approach is close to the OCaml implementation of recursive
modules, but our approach to handling path substitutions is
more general and allows us to typecheck more programs.

3.2 Cyclic Type Definitions
Besides the double vision problem, another subtle issue in
typechecking recursive modules is to determine what kinds
of cyclic type definitions to support. Independently of re-
cursive type definitions, recursive modules allow us to indi-
rectly introduce recursion in types and also to hide it through
opaque sealings. Hence, we need to distinguish different
kinds of recursion in types. We say that a type cycle is
guarded if it goes through, or is intercepted by, a datatype.
Otherwise, it is unguarded. We say that an unguarded type
cycle is opaque if it is hidden through opaque sealings. Oth-
erwise, it is transparent.3

Examples of type cycles
The example below, written in OCaml syntax, illustrates
guarded and transparent type cycles in an observable sig-
nature.

sig

module rec X : sig

type s = Int of X.s (* guarded *)

type t = X.t (* transparent *)

type u = int * X.u (* transparent *)

end

end

In the next example, the cycle may appear to be hidden
through an opaque sealing, but actually it is still observable
(hence transparent). The reason is that our type system iden-
tifies types t and L.t using path substitutions introduced to
solve the double vision problem. In OCaml, where the dou-
ble vision problem remains, the cycle would be left opaque.

module rec L : sig type t end =

struct type t = int * L.t end (* transparent *)

In our system, opaque type cycles have to be built in a
more subtle way. Here, we use mutual recursion between
two modules to create an opaque type cycle. To make it
transparent, both type definitions are needed simultaneously,
but only one of them is available in each of M and N.

3 Dreyer [8] uses the term “transparent” for “unguarded”. We think our
naming better matches the intuition that a transparent type cycle should be
observable without peeking inside opaque sealings.

module rec M : sig type t end =

struct type t = int * N.t end (* opaque *)

and N : sig type t end =

struct type t = int * M.t end (* opaque *)

The distinction between the two last examples is seman-
tical. In our system, type abbreviations, even cyclic ones,
are handled in a structural way. In particular, inside L, L.t
would be equal to any other type defined as an infinite se-
quence of int’s such as type s = int * s. On the other
hand, while M.t and N.t are related to each other inside M

and N, they have no such infinite expansion.

Problems with unguarded type cycles
Transparent type cycles are problematic for keeping type-
checking practical. For example, Crary et al. [6] support
transparent type cycles such as the above X.u. For this, they
extend their type theory with equi-recursive type construc-
tors of higher kind. There is, however, no known practical
algorithm for checking their equivalence.

While opaque type cycles are harmless with respect to
typechecking, they may still introduce difficulties when
proving type soundness. Indeed, proving a type preservation
lemma requires proving typability in the presence of reduc-
tion, which may require removing opaque sealings. After
removing sealings, all opaque type cycles become transpar-
ent. Hence, if we do not reject opaque type cycles altogether
in the surface language, we eventually need to handle trans-
parent ones when proving type soundness.

To reject opaque type cycles, however, may reduce the
flexibility and expressive power of recursive modules, be-
cause it is generally impossible to detect such cycles with-
out breaking abstraction. This is explained in the example
below.

module type S = sig type t end

module F (X : S) : S = struct type t = X.t end

module G (X : S) : S = struct type t = int end

module rec Ffix : S = F(Ffix)

module rec Gfix : S = G(Gfix)

Ffix creates an opaque type cycle, whereas Gfix does not.
Yet, they are both defined as fixpoints of functors with the
same signature functor (X : S) -> S. Therefore, with-
out peeking at the actual definitions of F and G, we cannot
tell Ffix from Gfix and cannot reject Ffix while accepting
Gfix. We can reject opaque type cycles conservatively only
by rejecting some modules that do not contain such cycles at
all.

Dreyer’s approach
The RMC type system of Dreyer [8] rejects unguarded type
cycles altogether conservatively, whether they are transpar-
ent or opaque. The reason is that RMC removes opaque
sealings in its operational semantics (thus making opaque
type cycles transparent) and uses an equational theory in
which transparent type cycles are problematic [7]. Hence,



module Set (X : sig type t end)

: sig type t = X.t type f end =

struct

type t = X.t

type f = Nil | Cons of t * f

end

module rec Tree : sig type t end

= struct type t = int * Forest.f end

and Forest : sig type t = Tree.t type f end

= Set(Tree)

Figure 7. Cyclic type definitions

the potential presence of unguarded type cycles has to be
prevented. Specifically, in RMC, the internal definitions of
abstract types in sealed modules and the type components
of the argument modules in functor applications may not
depend on any type variables marked as undefined in the
typing context. A type variable is said to be undefined if
the typechecker has not accepted its definition yet. In this
way, RMC guarantees that even when opaque sealings are
stripped away, there are still no transparent type cycles. As
solving the double vision problem corresponds to locally
stripping away opaque sealings in some sense, this approach
is also compatible with Dreyer’s approach to the double vi-
sion problem.

Dreyer’s approach of rejecting unguarded type cycles,
however, imposes restrictions on uses of functor fixpoints.
Note that functor fixpoints are crucial for encoding objects
and classes as shown in Figure 2 and useful for flexible
code reuse as shown in Figure 4. In fact, Figure 4 also
hides the double vision problem since types such as spec op

and instr have external names (through ProcA) as well
as internal names (insides the module Selection). To il-
lustrate, consider Figure 7, which is a variant of Tree and
Forest modules defined using functor fixpoints. For clarity,
we include only type definitions. In Figure 7, Tree.t and
Forest.f refer to each other in a mutually recursive way:
Tree.t is defined as int * Forest.f, and Forest.f as
a datatype using Tree.t through the functor application
Set(Tree). The cycle between Tree.t and Forest.f is
guarded because it is intercepted by the datatype Forest.f.
The RMC type system, however, rejects Figure 7. The rea-
son is that the internal definition of the abstract type Tree.t
depends on the type variable for Forest.f which is marked
as undefined in the typing context. To reverse the order of
definitions does not help here because then the type variable
for Tree.t is marked as undefined at the point of the appli-
cation Set(Tree).

To exploit functor fixpoints in RMC, one should write
them in accordance with the following conditions. First,
given a functor application F(M), the module M must be de-
fined before the application. For example, the first example
below is allowed, while the second and third are not:

module rec M : S = ... and N : T = F(M)

module rec N : T = F(M) and M : S = ...

module rec M : S = F(M)

Here, we assume that either the signature S declares an
abstract type, or a type component of M refers to an abstract
type of N. Second, if a type component t of the (argument)
module M depends on an abstract type of N (whose definition
appears after the definition of M), t must be defined as a
datatype. The second condition similarly applies to general
mutually recursive modules. For example, in Figure 5, if
we change the order of definitions for modules Tree and
Forest, they do not typecheck in RMC. This explains why
we had to first define Forest before Tree, not vice versa, in
Figure 5.

Our approach: Weak bisimilarity
In this paper, we accept all opaque type cycles. As a result,
we need to deal with transparent type cycles in the soundness
proof. We therefore first work with a type system permitting
transparent type cycles and prove its type soundness. Then,
we identify a practically implementable fragment, producing
an algorithmic type system, by rejecting transparent type cy-
cles. As transparent type cycles are observable, we can accu-
rately detect them without peeking inside opaque sealings.

To account for transparent type cycles, we define a type
equivalence relation using weak bisimilarity [23]. Using
weak bisimilarity, we generalize extensional equality, or
bisimilarity, on arbitrary (non-regular) infinite trees to ac-
count for type abbreviations. Roughly speaking, two types
are equivalent if they have the same tree-like expansions
by unfolding type abbreviations. For instance, types t and
s are equivalent with respect to type abbreviations type

t = int * int, type s = u * u, and type u = int.
Weak bisimilarity also naturally handles the possibility that
unfolding type abbreviations goes on forever without pro-
ducing constructors, such as for type t = t. This allows
us to step aside the problem with non-contractive types [26].
We still need to avoid equating all such vacuous cycles by
carefully crafting their semantics.

We prove type soundness by a standard proof technique
for weak bisimilarity, i.e. finding a weak bisimulation. The
algorithmic type system is then obtained by additionally re-
jecting transparent type cycles, which renders type equiva-
lence based on weak bisimilarity easily decidable.

Comparison with OCaml and F.

Our approach to type cycles was inspired by OCaml, which
also rejects only transparent type cycles. Due to our solv-
ing the double vision problem, however, we detect more
transparent type cycles, which are opaque in OCaml, and
therefore end up rejecting more of them. The soundness of
OCaml’s recursive modules is not yet proved, but here again
weak bisimilarity may be used.

The handling of type cycles in F. [26] is harder to com-
pare because F. itself is only a core language. Moreover,



Module paths
p, q ::= X,Y, Z recursion variable

| p.M
Module expressions
m ::= rec(X : S)s recursive structure

| functor (X : S) → m functor
| p1(p2) functor application
| (m : S) opaque sealing
| p module path

Structure bodies
s ::= struct d1 . . . dn end structure definition
Definitions
d ::= module M = m module definition

| datatype t [= τ ′] = c of τ datatype definition
| type t = τ type abbreviation
| let l = e value definition

Module types
S ::= rec(X)sig D1 . . . Dn end signature

| functor (X : S1) → S2 functor signature
Specifications
D ::= module M : S module spec.

| datatype t [= τ ′] = c of τ datatype spec.
| type t = τ manifest type spec.
| type t abstract type spec.
| val l : τ value spec.

Programs
P ::= (rec(X : S)s, e)

Figure 8. The abstract syntax of the module language

while it accommodates recursion between type definitions,
the proposed translation from ML modules [25] does not in-
clude recursive modules. Technically, F. ensures syntacti-
cally that recursive types are always contractive, which al-
lows F. to use an equational theory for recursive types.
While this may make the syntactic theory simpler, this is
already a restriction. As a result, if we freely extend the
translation to recursive modules, it seems that functors suffer
from the same problem as in RMC: an abstract type gener-
ated by a functor cannot be directly used in its input, making
the construction of generative functor fixpoints impossible.
This confirms our intuition that, at least for the semantics, it
is better not to impose any restriction in terms of type cycles.

4. Syntax
Figure 8 gives the syntax of our module language, which is
based on that of OCaml. We use X,Y, Z as metavariables for
recursion variables and module variables, M,N for module
names, t for type names, and l for value names.

As explained in Section 3.1, we extend structures with
explicitly typed declarations of recursion variables. Every
structure is a recursive structure rec(X : S)s; every sig-

Core types τ ::= 1 | τ1 → τ2 | τ1 ∗ τ2 | p.t
Core expr. e ::= x | () | λx : τ.e | e1 e2

| (e1, e2) | πi(e) | p.c e
| case e of p.c x ⇒ e′ | p.l

Figure 9. The abstract syntax of the core language

nature is a recursively dependent signature rec(X)sig D1

. . . Dn end. Components of structures and signatures may
refer to each other (recursively) only via recursion variables.
A module path p, by which types, values, and submodules
may be projected, is a recursion variable X followed by a
series of module names separated by dots (.). Unlike OCaml,
we do not support applicative functors [19], so module paths
do not include functor application paths p1(p2); we support
only generative functors as in SML.

A module expression m is a recursive structure, a func-
tor, a functor application, a sealed module, or a path. The
forward declaration signature S in a recursive structure
rec(X : S)s should contain all the necessary information
to typecheck forward references in the body s. Functors are
higher-order, meaning that they may take functors as argu-
ments. Moreover, they behave generatively in the sense that
each application of the same functor generates fresh abstract
types from types that are declared abstractly in its signature.
We ensure this generativity simply by requiring every func-
tor application to be bound to a distinct name before being
used and by allowing projections from modules only via
module paths [20]. For simplicity, we permit only module
paths in functor applications. Signature sealing is opaque
as in OCaml and we do not support transparent signature
sealing à la SML.

A module type S is either a recursively dependent signa-
ture or a functor signature.

In a structure rec(X : S)struct d1 . . . dn end and a sig-
nature rec(X)sig D1 . . . Dn end, the variable X is bound
in d1 . . . dn and D1 . . . Dn, respectively. Free and bound
variables are defined in the usual way. We identify module
expressions and module types modulo renaming bound vari-
ables.

A definition d is a binding of a module, a datatype, a
type, or a value; a specification D declares a module, a
datatype, a manifest type, an abstract type, or a value. For
datatypes, we use an optional equality denoted by [= τ ′].
datatype t = τ ′ = c of τ means that the datatype t is a repli-
cation of another datatype τ ′ whose constructor c expects an
argument of type τ .

A program P is a pair of a top-level recursive structure
and a core expression to be evaluated. We assume that a
program does not contain free variables.

Figure 9 gives the syntax of the core language, which is
a simple functional language extended with type and value
paths. A type path p.t and a value path p.l refer to the type



component t and the value component l in the structure that
p refers to, respectively. We use x as a metavariable for term
variables and c for datatype constructors.

We introduce the core language mainly for an illustrative
purpose such as for proving type soundness and its definition
is largely orthogonal to the formulation of our type system.

In the rest of paper, we assume the following two useful
conventions: 1) all binding occurrences of bound variables
use distinct names; 2) no sequence of definitions or speci-
fications includes duplicate definitions or specifications for
the same name.

5. A Type System for Recursive Modules
Our type system solves the double vision problem by intro-
ducing path substitutions. It permits transparent as well as
opaque type cycles by considering weakly bisimilar types
as equivalent. A fragment allowing practical typechecking is
presented in Section 7, by additionally rejecting transparent
type cycles.

5.1 Typing Rules
For typing rules, we use module contexts Γ, path substitu-
tions ∆, and core contexts Σ. A module context Γ is a finite
mapping from recursion variables to their signatures; a set
∆ of path substitutions is a mapping from external module
paths to internal recursion variables; and a core context Σ is
a finite mapping from core variables to core types:

Module contexts Γ ::= · | Γ, X : S
Path substitutions ∆ ::= · | ∆, X.M 7→ Y
Core contexts Σ ::= · | Σ, x : τ

Note that unlike usual substitutions which substitute paths
for variables, ∆ substitutes variables for paths. Moreover, ∆
maintains only the shortest external path for each internal
recursion variable. For example, when X.M.N and Y.N are
external paths for Z, ∆ contains only Y.N 7→ Z and not
X.M.N 7→ Z. In this case, by construction, ∆ must contain
X.M 7→ Y and thus we can deduce X.M.N 7→ Z.

Our typing rules use the following judgments:

Γ;∆; p ` m : S Well-typed modules
Γ;∆;X ` d : D Well-typed definitions
Γ;∆; p ` S1 ≤ S2 S1 is a subtype of S2

Γ;∆;X ` D1 ≤ D2 D1 is a sub-specification of D2

Γ ` S wf Well-formed signatures
Γ ` D wf Well-formed specifications
` P : (S, τ) Well-typed programs
Γ;∆;Σ ` e : τ Well-typed expressions
Γ ` τ wf Well-formed types
Γ ` p 3 D The signature of p contains D
Γ;∆ ` τ1 ≈ τ2 τ1 is weakly bisimilar to τ2

The judgment Γ;∆; p ` m : S includes context path p,
which is the external path for module m. The judgment
Γ;∆;X ` d : D includes as a context path the recursion

variable X of the module to which definition d belongs.
By exploiting context paths, our type system generates path
substitutions to solve the double vision problem when type-
checking recursive structures. The subtyping judgments for
module types and specifications also include a context path
so that our type system solves the double vision problem
arising when checking subtyping relations. Subtyping rules
are explained in Section 5.4. We use a dummy path φ as
a placeholder for path contexts. In typing rules, ill-formed
paths such as φ.M never appear. The membership judgment
Γ ` p 3 D means that under context Γ, the signature of
module p contains a specification D (see Section 5.2 for de-
tails). We use weak bisimilarity Γ;∆ ` τ1 ≈ τ2 for type
equivalence, which exploits path substitutions ∆ to identify
external names with internal names of abstract types (see
Section 5.5).

Figure 10 shows typing rules for the module language.
Most of the rules are standard and similar to those in the
literature [18, 19, 28, 37]; we highlight only distinguishing
features.

To solve the double vision problem, the rule typ-str adds
a new path substitution p 7→ X to the typing context. When
typechecking the structure body, the type system exploits the
fact that the context path p is an external reference of the
recursion variable X . For example, when typechecking the
module Tree in Figure 6, the rule typ-str adds a substitution
X.Tree 7→ Y into the context. Our type system generates
path substitutions for the shortest external paths only: the
rule typ-mdef sets the context path to the shortest external
path X.M of module m; if m is a recursive structure whose
recursion variable is Y , the rule typ-str then adds a substitu-
tion X.M 7→ Y .

The rule typ-str requires that the forward declaration
signature S be equivalent to the resultant signature. Here,
by equivalence Γ;∆; p ` S1 ≡ S2, we mean that both
Γ;∆; p ` S1 ≤ S2 and Γ;∆; p ` S2 ≤ S1 hold. The reason
why we require the equivalence is simply that components
that are not specified in S cannot be reached; their definitions
are dead code. Recall that we allow components of structures
to refer to each other only via recursion variables.

The rule typ-path assigns module type S to module path
q.M if the signature of module q contains a module specifi-
cation module M : S. The rule typ-self assigns module type
S/q to module path q if q is of type S. Roughly speaking,
strengthening S/q [15, 18] makes each abstract type t in S
manifestly equal to itself by changing specification type t in
S to type t = q.t. For further discussion on strengthening,
we refer the reader to Section 5.3.

The subsumption rule typ-seal accounts for signature
sealing and coerces the type S ′ of module m into S. Here, we
use [p] to mean p if m is a recursive structure in which case
the double vision problem may arise; otherwise, it means a
dummy path φ.



Module expressions Γ;∆; p ` m : S

X ∈ dom(Γ)

Γ;∆; p ` X : Γ(X)
typ-var

Γ ` q 3 module M : S

Γ;∆; p ` q.M : S
typ-path

Γ;∆; p ` q : S

Γ;∆; p ` q : S/q
typ-self

Γ ` S wf Γ, X : S;∆, p 7→ X;X ` di : Di (1 ≤ i ≤ n) Γ;∆; p ` rec(X)sig D1 . . . Dn end ≡ S

Γ;∆; p ` rec(X : S)struct d1 . . . dn end : rec(X)sig D1 . . . Dn end
typ-str

Γ ` S wf Γ, X : S;∆;φ ` m : S′

Γ;∆; p ` functor (X : S) → m : functor (X : S) → S ′
typ-fun

Γ ` S wf Γ;∆; p ` m : S′ Γ;∆; [p] ` S′ ≤ S

Γ;∆; p ` (m : S) : S
typ-seal

Γ;∆; p ` q1 : functor (X : S1) → S2 Γ;∆; p ` q2 : S′
1 Γ;∆;φ ` S′

1 ≤ S1

Γ;∆; p ` q1(q2) : [X 7→ q2]S2

typ-app

Definitions Γ;∆;X ` d : D

Γ;∆;X.M ` m : S

Γ;∆;X ` module M = m : module M : S
typ-mdef

Γ ` τ wf
Γ;∆;X ` type t = τ : type t = τ

typ-type

Γ ` τ wf [Γ ` q 3 datatype t = c of τ ]

Γ;∆;X ` datatype t [= q.t] = c of τ : datatype t [= q.t] = c of τ
typ-data

Γ;∆; · ` e : τ

Γ;∆;X ` let l = e : val l : τ
typ-val

Module types Γ ` S wf

Γ, X : rec(X)sig D1 . . . Dn end ` Di wf (1 ≤ i ≤ n)

Γ ` rec(X)sig D1 . . . Dn end wf
wf-sig

Γ ` S1 wf Γ, X : S1 ` S2 wf

Γ ` functor (X : S1) → S2 wf
wf-fsig

Specifications Γ ` D wf

Γ ` S wf
Γ ` module M : S wf

wf-mspec
Γ ` τ wf [Γ ` q 3 datatype t = c of τ ]

Γ ` datatype t [= q.t] = c of τ wf
wf-data

Γ ` τ wf
Γ ` type t = τ wf

wf-type
Γ ` type t wf

wf-abs
Γ ` τ wf

Γ ` val l : τ wf
wf-vspec

Programs ` P : (S, τ)

·; ·;φ ` rec(X : S)s : S′ X : S; ·; · ` e : τ

` (rec(X : S)s, e) : (S′, τ)
typ-prog

Figure 10. Typing rules for the module language

Since we allow cyclic type definitions, the rules typ-type

and wf-type do not check whether there is a type cycle
involving t. They only check that the type τ is well-formed,
i.e. whether every type path used in τ is declared in the
typing context.

The rule typ-prog sets the context path to a dummy path
φ and inspects the top-level module rec(X : S)s. As the
recursion variable X is bound in the top-level expression e
(to be evaluated), it inspects e under the context (X : S, ·, ·).

Figure 11 shows typing rules for the core language. As
most of the rules are standard, we highlight only distinguish-
ing features; see Appendix A for the omitted rules. The rule
c-typ-path assigns type τ to value path p.l if the signature
of module p contains a value specification val l : τ . A type
path p.t is well-formed if the signature of module p contains

a specification for the type t (the rules c-wf-data, c-wf-type,
and c-wf-abs).

5.2 Membership
In Figures 10 and 11, we use the membership judgment
Γ ` p 3 D which is inspired by νObj of Odersky et al. [30].
The judgment means that under context Γ, the signature of
module p contains a specification D. The rule mem-spec

below precisely describes this idea:

Γ;∆; q ` p : rec(X)sig D1 . . . Dn end

Γ ` p 3 [X 7→ p]Di

mem-spec

Since the recursion variable X is local, the rule mem-spec

replaces it with the corresponding external module path p. In
the premise, any ∆ and q may be used.



Core expressions Γ;∆;Σ ` e : τ

Γ ` p 3 val l : τ

Γ;∆;Σ ` p.l : τ
c-typ-path

Core types Γ ` τ wf

Γ ` p 3 datatype t [= τ ′] = c of τ

Γ ` p.t wf
c-wf-data

Γ ` p 3 type t = τ

Γ ` p.t wf
c-wf-type

Γ ` p 3 type t

Γ ` p.t wf
c-wf-abs

Figure 11. Typing rules for the core language (excerpt)

5.3 Type Strengthening
To propagate type equalities across module boundaries, we
introduce a type strengthening operation [15, 18]. To illus-
trate, consider the following code (written in OCaml syntax):

module type S = sig type t end

module M : S = struct type t = int end

module N = M

module F (X : S) = X

module L = F(M)

In the above code, the module M declares an abstract type t

via a sealing. If the type system assigned exactly the same
signature S to both modules M and N, the abstract types M.t
and N.t would be considered different. Here, we assume
that two abstract types are equal only if their paths are the
same. However, since N is merely another name for M, the
type system should identify the two types M.t and N.t.
Strengthening extends the signature of M so that the abstract
type t in the signature becomes manifestly equal to itself
(using its external path M.t). By assigning the strengthened
signature sig type t = M.t end to N, the type system
can now identify M.t with N.t. The same technique applies
to the module L, which is another alias for M obtained by
applying the identity functor F. In order to identify M.t and
L.t, F should have type functor (X : S) -> S with

type t = X.t rather than just functor (X : S) -> S.
The strengthening operation S/q extends the signature S

of module q and makes each abstract type t in S manifestly
equal to itself using its external path. It is defined as follows:

(rec(X)sig D end)/q , rec(X)sig D/q end

(D1 . . . Dn)/q , D1/q . . . Dn/q

(functor (X : S1) → S2)/q , functor (X : S1) → S2

(module M : S)/q , module M : S/q.M

(datatype t = c of τ)/q , datatype t = q.t = c of τ

(datatype t = p.t = c of τ)/q , datatype t = p.t = c of τ

(type t = τ)/q , type t = τ

(type t)/q , type t = q.t

(val l : τ)/q , val l : τ

For notational convenience, we write D for a sequence of
specifications D1 . . . Dn. Datatype and manifest type spec-
ifications may have only one type equality as in OCaml.
Hence, if a datatype is already a replication of another one,
we do not strengthen it again. We also do not strengthen
manifest type specifications.

The rule typ-self in Figure 10 uses the strengthening oper-
ation: if module path q is of module type S, it is also of mod-
ule type S/q. Using the rule typ-self, our type system cor-
rectly propagates type equalities across module boundaries
including first-order functor boundaries. To fully propagate
type equalities across higher-order functor boundaries, how-
ever, we need to extend our system with applicative func-
tors [19] or singleton kinds [39], which is beyond the scope
of this paper.

5.4 Subtyping Rules
Figure 12 shows subtyping rules. As the double vision prob-
lem may arise in checking subtyping relations, the rules
sub-sig and sub-mod update the context path appropriately
as in the rules typ-str and typ-mdef in Figure 10. The rules
sub-sig and sub-fsig implicitly assume alpha-conversion of
bound variables, as indicated by the use of the same recur-
sion variable X . The rule sub-sig for subtyping on signa-
tures permits depth, width, and permutation subtyping as in
record subtyping. The rule sub-fsig for subtyping on functor
signatures is, as usual, contravariant in argument signatures
and covariant in result signatures. The rules for subtyping on
specifications are standard except that we use weak bisimi-
larity Γ;∆ ` τ1 ≈ τ2 for type equivalence.

5.5 Type Equivalence by Weak Bisimilarity
This section defines our type equivalence relation as the
largest weak bisimulation [23] of a labeled transition system
on types [28]. The labeled transition system is parameterized
by the typing context (Γ,∆). Alternatively, we could have
defined type equivalence more declaratively using mixed
induction-coinduction in the style of [29]. Indeed, our ac-
count of cyclic types and type abbreviations relies on the
ability to mix induction and coinduction, which weak bisim-
ilarity naturally supports by definition.

Figure 13 shows the labeled transition system on types,
which consists of two sets of rules: one for labeled tran-
sitions and the other for silent transitions. Informally, two
types are weakly bisimilar, or equivalent, if their tree-like ex-
pansions share the same pattern of labeled transitions. More-
over, given a type τ , all the types reachable from τ by silent
transitions are equivalent to τ . Technically, labeled transi-
tions analyze the structure of a given type, while silent tran-
sitions allow us to analyze trivially equivalent types such as
type abbreviations and datatype replications.

For labeled transitions, we use 0 to denote a stuck state
to which no transition can be applied. The rules l-tran-unit,
l-tran-abs, and l-tran-data transform the unit type 1, abstract
types p.t, and datatypes q.t to 0 with the labels 1, p.t, and



Γ, X : rec(X)sig D1 . . . Dn end;∆, p 7→ X;X ` Dσ(i) ≤ D′
i (1 ≤ i ≤ m) σ : {1, · · · ,m} 7→ {1, · · · , n}

Γ;∆; p ` rec(X)sig D1 . . . Dn end ≤ rec(X)sig D′
1 . . . D′

m end
sub-sig

Γ;∆;φ ` S′
1 ≤ S1 Γ, X : S′

1;∆;φ ` S2 ≤ S′
2

Γ;∆; p ` functor (X : S1) → S2 ≤ functor (X : S′
1) → S′

2

sub-fsig
Γ;∆;X.M ` S ≤ S′

Γ;∆;X ` module M : S ≤ module M : S ′ sub-mod

Γ;∆ ` τ1 ≈ τ2 Γ;∆ ` τ ′
1 ≈ τ ′

2

Γ;∆;X ` datatype t = τ ′
1 = c of τ1 ≤ datatype t = τ ′

2 = c of τ2
sub-data

Γ;∆ ` τ1 ≈ τ2

Γ;∆;X ` datatype t [= τ ′
1] = c of τ1 ≤ datatype t = c of τ2

sub-data2
Γ;∆ ` τ1 ≈ τ2

Γ;∆;X ` type t = τ1 ≤ type t = τ2
sub-type

Γ;∆;X ` type t ≤ type t
sub-abs-abs

Γ;∆;X ` type t = τ ≤ type t
sub-type-abs

Γ;∆;X ` datatype t [= τ ′] = c of τ ≤ type t
sub-data-abs

Γ;∆ ` τ1 ≈ τ2

Γ;∆;X ` val l : τ1 ≤ val l : τ2
sub-val

Figure 12. Subtyping rules

Labeled transition rules

Γ;∆ ` 1
1
⇀ 0 (l-tran-unit)

Γ;∆ ` τ1 → τ2
ari⇀ τi (l-tran-fun)

Γ;∆ ` τ1 ∗ τ2
prd

i⇀ τi (l-tran-prod)

Γ ` p 3 type t p 7→ q /∈ ∆

Γ;∆ ` p.t
p.t
⇀ 0

l-tran-abs

Γ ` p 3 datatype t = c of τ p 7→ q /∈ ∆

Γ;∆ ` p.t
p.t
⇀ 0

l-tran-data

Γ;∆ ` p1.t1 ⇀ · · · ⇀ pn.tn ⇀ p1.t1

Γ;∆ ` p1.t1
pi.ti

⇀ 0
l-tran-cycle

Silent transition rules

Γ ` p 3 type t = τ

Γ;∆ ` p.t ⇀ τ
s-tran-type

Γ ` p 3 type t p 7→ q ∈ ∆

Γ;∆ ` p.t ⇀ q.t
s-tran-abs

Γ ` p 3 datatype t = c of τ p 7→ q ∈ ∆

Γ;∆ ` p.t ⇀ q.t
s-tran-data

Γ ` p 3 datatype t = q.t = c of τ

Γ;∆ ` p.t ⇀ q.t
s-tran-alias

Figure 13. A labeled transition system

q.t, respectively. As their labels are distinct from each other,
the unit type, abstract types, and datatypes are equivalent
to only themselves (and their aliases). The rule l-tran-cycle

allows us to transform a path p1.t1 pertaining to a silent cycle
(which otherwise would go on forever without emitting any
label) into 0, with the label pi.ti of any member of this cycle;

as a result, all members of this cycle are seen as equivalent,
but they are still distinct from members of other silent cycles.
The rule l-tran-fun transforms a function type τ1 → τ2 to
either τ1 with the label ar1 or τ2 with the label ar2. Similarly,
the rule l-tran-prod transforms a product type τ1∗τ2 to either
τ1 with the label prd1 or τ2 with the label prd2.

Silent transition rules cover type abbreviations, path sub-
stitutions, and datatype replications. First, the rule s-tran-type

unfolds a type abbreviation. Second, the rules s-tran-abs and
s-tran-data inspect path substitutions ∆ so as to transform
an external type path p.t to its internal type path q.t. Finally,
the rule s-tran-alias transforms a replicated datatype p.t to
its original one q.t.

For the silent transition rules s-tran-type, s-tran-abs, and
s-tran-data, we use a new judgment p 7→ q ∈ ∆ which is
defined as follows:

• p 7→ X ∈ ∆, p 7→ X,∆′

• if p 7→ q ∈ ∆, then p.M 7→ q.M ∈ ∆ for any M .

As we now have transition rules, we are ready to define
weak bisimilarity. Let us start with defining several new
notations. We write Γ;∆ ` τ1 ⇀∗ τ2 for the transitive
reflexive closure of the single-step silent transition. We write
Γ;∆ ` τ1

l
⇀∗ τ2 to mean Γ;∆ ` τ1 ⇀∗ τ3, Γ;∆ ` τ3

l
⇀ τ4,

and Γ;∆ ` τ4 ⇀∗ τ2 for some τ3 and τ4. For a binary
relation S, we write τ1Sτ2 to mean (τ1, τ2) ∈ S and define
its inverse as {(τ1, τ2) | (τ2, τ1) ∈ S}.

Definition 5.1 (Weak simulation). A binary relation S over
types is a weak simulation under context (Γ,∆) if and only
if, whenever Γ;∆ ` τ1Sτ2,

1. if Γ;∆ ` τ1 ⇀ τ ′
1, then there exists some τ ′

2 such that
Γ;∆ ` τ2 ⇀∗ τ ′

2 and Γ;∆ ` τ ′
1Sτ ′

2;

2. if Γ;∆ ` τ1
l

⇀ τ ′
1, then there exists some τ ′

2 such that
Γ;∆ ` τ2

l
⇀∗ τ ′

2 and Γ;∆ ` τ ′
1Sτ ′

2.



Definition 5.2 (Weak bisimulation and weak bisimilar-
ity). A binary relation S is said to be a weak bisimula-
tion if both S and its inverse are weak simulations. We say
that τ1 and τ2 are weakly bisimilar under (Γ,∆), written
Γ;∆ ` τ1 ≈ τ2, if there exists a weak bisimulation S such
that Γ;∆ ` τ1Sτ2.

To illustrate how weak bisimulations work, we show how
to typecheck the function plant in Tree in Figure 6. Specif-
ically, we show a weak bisimulation S such that X.Tree.t
and int * X.Forest.f are weakly bisimilar. When type-
checking plant, the typing context is as follows:

Γ = X : S

Y : rec(Y)sig

type t = int * X.Forest.f

val plant : int -> X.Forest.f

-> X.Forest.f -> X.Forest.f

end

∆ = X.Tree 7→ Y

• We let S0 be {(X.Tree.t, int * X.Forest.f)}.
• Since Γ;∆ ` X.Tree.t ⇀ Y.t by the rule s-tran-abs,

we let S1 be {(Y.t, int * X.Forest.f)}.
• Since Γ;∆ ` Y.t ⇀ int * X.Forest.f by the rule

s-tran-type, we let S2 be {(int * X.Forest.f, int *

X.Forest.f)}.

Then, S = S0 ∪ S1 ∪ S2 ∪ SId is a desired weak bisimula-
tion where SId = {(τ, τ) | τ is a type}. Hence, the function
plant in Tree typechecks.

Conversely, X.t and X.u below are not weakly bisimilar.

rec(X)sig type t = X.t type u = X.u end

They both can go on forever without generating any label,
but they can also respectively emit the labels X.t and X.u

which are distinct.

6. Operational Semantics
This section presents a light-weight small-step operational
semantics similar to that of Traviata [28]. Specifically, we
give the operational semantics for a program (m, e) where
the evaluation begins by reducing the given expression e
under the top-level recursive structure m.

For core expressions, we use a call-by-value reduction
strategy using evaluation contexts. For module expressions,
especially for functor applications, we use a call-by-name
reduction strategy using module environments, which are
mappings from recursion variables to their definitions. We
do not statically reject ill-founded recursions and let them
diverge. We choose this style of operational semantics in or-
der to be independent of the evaluation strategy of recursive
modules and to be able to successfully evaluate our moti-
vating examples, which OCaml can handle as well. Addi-
tionally, it makes it easy to establish a type soundness re-

Values v ::= () | λx : τ.e | (v1, v2) | p.c v
Contexts κ ::= {} | κ e | v κ | (κ, e) | (v, κ)

| πi(κ) | p.c κ | case κ of p.c x ⇒ e
Environments E ::= · | E , X 7→ m

(λx.τ : e) v →β [x 7→ v]e
πi(v1, v2) →β vi

case p.c v of q.c x ⇒ e →β [x 7→ v]e

E ` r ;n r′ | E ′

E ` r.l → r′.l | E ′
red-path

E ` p 3 let l = e

E ` p.l → e | E
red-val

e →β e′

E ` e → e′ | E
red-beta

E ` e → e′ | E ′ κ 6= {}

E ` κ{e1} → κ{e′} | E ′ red-ctx

Figure 14. Small-step call-by-value operational semantics
using evaluation contexts for the core language

sult at the surface language level. However, this semantics
is not required by the type system, and we may eventually
choose a more usual backpatching operational semantics as
in RTG [7] or OCaml.

Since the evaluation of a functor application may diverge
without leading to a structure, we introduce extended mod-
ule paths which contain functor applications as components.

Module paths p ::= X | p.M
Extended module paths r ::= r(p) | r.M | p
Core expressions e ::= · · · | r.l

The extended module paths only appear during evaluation;
they may not be used in a source program. Note that in a
functor application path r(p), the argument p is a normal
module path. This is because we adopt the call-by-name
reduction strategy for module expressions. Core expressions
e now contain extended value paths r.l.

Figure 14 shows the definition of values v, evaluation
contexts κ, module environments E , and reduction rules for
the core language. We use the judgment E ` e → e′ | E ′

which means that under environment E , expression e reduces
to e′ with extended environment E ′. If the reduction of e does
not involve the reduction of a functor application, E and E ′

are the same. The rule red-path expands a value path r.l into
another one r′.l by a one-step expansion of its module path r.
The rule red-val unfolds the definition of a value path p.l if p
is a structure containing a value definition let l = e. The rule
red-beta covers the usual β-reductions, denoted by e →β e′.
The rule red-ctx is an inner reduction rule following the call-
by-value reduction order.

Figure 15 shows call-by-name reduction rules for the
module language. The path normalization judgment E ` r ;n

r′ | E ′ means a one-step expansion of module abbreviation
r.

The module reduction judgment E ` r → m | E ′ means
that under environment E , extended module path r reduces



Path normalization E ` r ;n r′ | E ′

E ` r → r′ | E ′

E ` r ;n r′ | E ′
pn-red

E ` r ;n r′ | E ′

E ` r.M ;n r′.M | E ′
pn-path

E ` r ;n r′ | E ′

E ` r(p) ;n r′(p) | E ′
pn-app

Module reduction E ` r → m | E ′

E ` r → (functor (X : S) → m) | E m ↪→ m′

m′ = rec(Y : S′)s Y /∈ dom(E)

E ` r(p) → Y | E , Y 7→ [X 7→ p]m′
red-app

E ` r → (functor (X : S) → m) | E
m ↪→ m′ m′ is not a structure

E ` r(p) → [X 7→ p]m′ | E
red-app2

E ` p 3 module M = m m ↪→ m′

E ` p.M → m′ | E
red-mdef

X ∈ dom(E)

E ` X → E(X) | E
red-var

Membership E ` p 3 d

E ` p → rec(X : S)struct d1 . . . dn end | E

E ` p 3 [X 7→ p]di
mem-def

Unsealing m ↪→ m′

m is not a signature sealing
m ↪→ m unseal

m ↪→ m′

(m : S) ↪→ m′ unseal2

Figure 15. Call-by-name reduction rules for the module
language

to its definition m with extended environment E ′. The rule
red-app chooses an alpha-equivalent structure of the func-
tor body m′ without sealings, if its recursion variable Y is
already used in the domain of the environment E . Hence,
the functor application path r(p) reduces to a new recursion
variable Y while the environment is extended with a map-
ping from Y to its definition. The rule red-mdef is defined in
terms of module paths instead of extended module paths be-
cause it uses as its premise a membership judgment, which
is also defined in terms of module paths.

The membership judgment E ` p 3 d means that under
environment E , module p contains a definition d. It is defined
in terms of module paths because functor application paths
are always first replaced with recursion variables by the rule
red-app before being applied to the membership judgment.

Γ;∆;Ω ` 1 % 1
n-unit

Γ ` p 3 type t p 7→ q /∈ ∆

Γ;∆;Ω ` p.t % p.t
n-abs

Γ;∆;Ω ` τ1 % τ ′
1 Γ;∆;Ω ` τ2 % τ ′

2

Γ;∆;Ω ` τ1 → τ2 % τ ′
1 → τ ′

2
n-fun

Γ;∆;Ω ` τ1 % τ ′
1 Γ;∆;Ω ` τ2 % τ ′

2

Γ;∆;Ω ` τ1 ∗ τ2 % τ ′
1 ∗ τ ′

2

n-prod

Γ ` p 3 datatype t = c of τ p 7→ q /∈ ∆

Γ;∆;Ω ` p.t % p.t
n-data

Γ ` p 3 type t = τ Γ;∆;Ω ] p.t ` τ % τ ′

Γ;∆;Ω ` p.t % τ ′
n-type

Γ ` p 3 type t p 7→ q ∈ ∆ Γ;∆;Ω ] p.t ` q.t % τ

Γ;∆;Ω ` p.t % τ
n-abs2

Γ ` p 3 datatype t = c of τ
p 7→ q ∈ ∆ Γ;∆;Ω ] p.t ` q.t % τ ′

Γ;∆;Ω ` p.t % τ ′ n-data2

Γ ` p 3 datatype t = q.t = c of τ
Γ;∆;Ω ] p.t ` q.t % τ ′

Γ;∆;Ω ` p.t % τ ′ n-self

Figure 16. Type normalization

As in the rule mem-spec in Section 5.2, the rule mem-def

replaces the local recursion variable X with its valid external
path p.

The unsealing judgment m ↪→ m′ strips away sealed
signatures in the module m.

Theorem 6.1 (Soundness). Let a program (m, e) be well-
typed. Then, the evaluation of e either returns a value or else
gives rise to an infinite reduction sequence.

We prove type soundness by the usual progress and type
preservation properties. Progress is easy, but type preserva-
tion is subtle: it does not hold when a value is passed across
opaque sealings. We address this by making all path substi-
tutions available globally; hence, we can always obtain the
most precise type of a given value using path substitutions.
This is indeed equivalent to removing opaque sealings, thus
breaking type abstraction. The key lemma in the soundness
proof states that the program remains well-typed after mak-
ing all path substitutions available globally, or equivalently
removing sealings. We prove the lemma by finding an appro-
priate weak bisimulation in the absence of sealings, which
equates all the types that are weakly bisimilar in the pres-
ence of sealings.

7. An Algorithmic Type System
This section presents an algorithmic type system which is
obtained by rejecting transparent type cycles. To reject such
cycles, we first define type normalization which fails if and



only if a type contains a dangling reference or a transpar-
ent type cycle. Then, we extend with type normalization the
rules for checking the well-formedness of types in Figure 10:
now a type is well-formed if and only if its normalization
succeeds. Finally, instead of weak bisimilarity, we employ
an algorithmic type equivalence relation based on type nor-
malization, which makes our type system clearly decidable.

Figure 16 defines a type normalization algorithm. The
judgment Γ;∆;Ω ` τ1 % τ2 means that the algorithm nor-
malizes type τ1 into type τ2 with respect to Γ and ∆. We
use a metavariable Ω for a set of type paths p.t. The notation
Ω ] p.t means Ω ∪ {p.t} whenever p.t /∈ Ω. Normalization
fails either if it tries to unfold a type path p.t which is already
a member of Ω or if the membership judgment for p.t fails.
The former indicates that the definition of p.t constitutes a
transparent type cycle, whereas the latter happens when p.t
is a dangling reference.

To reject transparent type cycles and thereby the program
containing such cycles altogether, we replace Γ ` S wf and
Γ `D wf with new well-formedness judgments Γ;∆ ` S wf
and Γ;∆ ` D wf in all typing rules in Figure 10. Moreover,
in the rules typ-type and wf-type, we check whether a given
type τ is normalizable, using the judgment Γ;∆; ∅ ` τ % τ ′:

Γ;∆; ∅ ` τ % τ ′

Γ;∆; p ` type t = τ : type t = τ
typ-type

Γ;∆; ∅ ` τ % τ ′

Γ ` type t = τ wf
wf-type

As for type equivalence, given two arbitrary types, we
first normalize them and then check equivalence on the nor-
malized types by syntactic equality. We employ a new judg-
ment Γ;∆ ` τ1 ≡ τ2 for the algorithmic type equivalence
relation, which means that two types τ1 and τ2 are equiva-
lent under Γ and ∆, and is defined as follows:

Γ;∆; ∅ ` τ1 % τ ′
1 Γ;∆; ∅ ` τ2 % τ ′

2 τ ′
1 = τ ′

2

Γ;∆ ` τ1 ≡ τ2
eq-types

The algorithmic type system uses type equivalence Γ;∆ ` τ1 ≡
τ2 instead of weak bisimilarity Γ;∆ ` τ1 ≈ τ2.

Thanks to the rules n-abs2 and n-data2 in Figure 16,
which exploit path substitutions, we still solve the double
vision problem while the type system remains decidable.

Lemmas 7.1 and 7.2 below imply that our algorithmic
type equivalence is sound and complete with respect to weak
bisimilarity if the program does not contain transparent type
cycles.

Lemma 7.1. Γ;∆ ` τ1 ≡ τ2 if and only if Γ;∆ ` τ1 ≈ τ2,
∃τ ′

1, Γ;∆; ∅ ` τ1 % τ ′
1 and ∃τ ′

2, Γ;∆; ∅ ` τ2 % τ ′
2.

Lemma 7.2. For any τ , Γ, ∆, and Ω, it is decidable whether
there exists a type τ ′ such that Γ;∆;Ω ` τ % τ ′.

As a corollary of Lemmas 7.1 and 7.2 and Theorem 6.1,
the algorithmic type system is sound and decidable.

Theorem 7.3. The algorithmic type system is sound and
decidable.

Without type parameters, our language of types can ex-
press only regular types. As practical algorithms are avail-
able both for equality and unification4 on regular types, we
could have built an algorithmic type system based on the full
weak bisimilarity, without excluding transparent type cy-
cles. However, extending our language with type parameters
introduces non-regular equi-recursive types. Strictly speak-
ing, equality of equi-recursive types with type parameters is
still decidable [6]. Solomon [38] has shown it to be equiv-
alent to the equivalence problem for deterministic push-
down automata (DPDA), which has been shown decidable
by Sénizergues [36]. There is, unfortunately, no known prac-
tical algorithm for DPDA-equivalence, and it is not known
whether there exists any algorithm for unification either.
Therefore, in the case of extending our language with type
parameters, the normalization based type system becomes
crucial in providing concrete algorithms for equality, unifi-
cation, and typechecking.

Technical considerations are not the only reason that one
would want to reject transparent type cycles. If we were to
allow them in the surface language, we would not only have
to accept them in definitions, but also infer them in core lan-
guage expressions, so as to keep the principality of type in-
ference. Experience with early versions of OCaml, which put
no restriction on regular types, has shown that they often lead
the typechecker to accept wrong programs, whose types may
be unsatisfiable. For instance, a slightly erroneous version of
List.append would lead to inferring the type µα. α list,
which allows only the value nil. To avoid this problem, sub-
sequent versions of OCaml restrict regular types to object
and polymorphic variant types. Disallowing transparent type
cycles during type inference is sufficient to avoid this issue.

8. Discussion
8.1 Separate Compilation
Our type system does not support separate compilation of
mutually recursive modules in its current form. To illustrate,
consider Figure 17. In order to compile the two recursive
modules Tree and Forest separately, we turn each mod-
ule into a functor that is parameterized over the recursive
variable X and later tie the recursive knot. Unfortunately, the
functor TreeFn suffers from the double vision problem. The
reason is that there is no way in the body of TreeFn to con-
nect X.Tree.t with V.t, which is the implementation of
X.Tree.t that the body of TreeFn provides.

To solve the double vision problem while supporting sep-
arate compilation, we require the programmer to explicitly
specify that the defining functor body be an implementa-
tion of (a submodule of) the functor parameter, for exam-
ple, using the notation where X.Tree 7→ V . Whenever it

4 Unification is required for type inference in the core language.



module type ST(type u) = rec(Y)sig

type t

val plant : int -> u -> u -> u

end

module type SF(type u) = rec(Z)sig

type f

val plant : u -> Z.f -> Z.f

end

module type S = rec(X)sig

module Tree : ST(X.Forest.f)

module Forest : SF(X.Tree.t)

end

module TreeFn (X : S) =

rec(V : ST(X.Forest.f) with

type t = int * X.Forest.f) where X.Tree 7→ V

struct

type t = int * X.Forest.f

let plant (i : int) (x : X.Forest.f)

(y : X.Forest.f) = X.Forest.plant (i, x) y

(* error without the equation in the box *)

(* as V.t = int * X.Forest.f 6= X.Tree.t *)

end

module ForestFn (X : S) =

rec(W : SF(X.Tree.t) with

type f = Nil | Cons of X.Tree.t * W.f)

struct

type f = Nil | Cons of X.Tree.t * W.f

let plant (x : X.Tree.t) (y : W.f)

= W.Cons (x, y)

end

module TreeForest = rec(X : S)struct

module Tree = TreeFn(X)

module Forest = ForestFn(X)

end

Figure 17. Separate compilation

encounters such an equation, the type system simply adds
a path substitution X.Tree 7→ V into the typing context.
Then, we can conclude that X.Tree.t and V.t are weakly
bisimilar (and also equivalent by the algorithmic type equiv-
alence relation), and thus solve the double vision problem
while supporting separate compilation. When declaring and
applying the functor TreeFn, the type system additionally
checks if the signature of the functor body V is a subtype of
that of the argument X.Tree.

This mechanism can be further simplified if we con-
sider a file based approach, similar to OCaml’s “packing”
mechanism [3]. The OCaml compiler provides two options:
“-for-pack Name” tells it that a module should be com-
piled as though it were a substructure of a module Name;
-pack then combines several separately compiled modules
into a hierarchical structure, whose name must match the
one declared by -for-pack. An explicit sealing signature

can be provided for this structure. To extend this approach
to recursive modules, one just has to provide in advance the
signature for Name, allowing it to be used recursively in all
modules compiled with “-for-pack Name”. The already
available sealing mechanism is sufficient to ensure the va-
lidity of the provided signature. Note that this is essentially
the same functionality as in the functor based scheme; we
are just generating automatically the where clauses accord-
ing to the name of the compiled module and its -for-pack
information.

To our knowledge, no previous work supports separate
compilation of recursive modules using functors while solv-
ing the double vision problem. Whereas others rely on
mixin-style recursive linking to support separate compila-
tion [10, 12, 32], which deviates much from ML modules,
we only slightly extend the notation of functors. We remark,
however, that our approach may be considered a restricted
form of mixin-style recursive linking.

8.2 Type Reconstruction
The type system requires that each recursion variable be an-
notated with the principal signature and the argument of each
function with a core type. We can easily relax this restriction
by requiring annotations only for components used in for-
ward references as in [34]. Furthermore, there are several
ways to reduce redundancy in annotations. For example, for
nested recursive modules, one needs to specify forward dec-
laration signatures only for leaf-level modules, which are
structures containing no module definitions. Starting with
those explicitly annotated signatures, a type reconstruction
algorithm may build up signatures for enclosing modules in
the bottom up fashion. For function definitions that do not
use forward references, we may use the usual type inference
algorithm to infer their types.

9. Related Work
9.1 Recursive Modules
Crary et al. [6] were the first to propose a type-theoretic
foundation of recursive modules. They introduce recursively
dependent signatures and recursive structures, and interpret
them in the context of a phase distinction formalism [16].
To avoid the double vision problem, their calculus requires
forward declaration signatures to be transparent. For exam-
ple, this means in Figure 5 that the specifications of Tree.t
and Forest.f should reveal their definitions, thus prevent-
ing data abstraction between Tree and Forest. To support
cyclic type definitions, they use equi-recursive type con-
structors [4] of higher kind, for which there is no known
practical algorithm for checking equivalence.

Russo [2, 34] proposes a recursive module extension to
Standard ML [24]. In his system, any abstract type com-
ponents must be implemented as being manifestly equal to
themselves. For example, in Figure 5, one must write type

t = Tree.t in Tree and type f = Forest.f in Forest.



Hence, forward declaration signatures may effectively in-
clude only manifest type specifications and datatype spec-
ifications as in [6].

Although OCaml [3, 21] provides a powerful and flex-
ible support for recursive modules, it does not have a for-
mal specification for typechecking recursive modules nor
its soundness proof. Furthermore, it does not fully solve
the double vision problem. To avoid this problem, OCaml
requires that abstract type specifications in forward decla-
ration signatures be defined internally by datatype defini-
tions. Specifically, when typechecking the body of a recur-
sive module, type abbreviations cannot be strengthened to
be equal to their external paths, while datatype definitions
can be. As for cyclic type definitions, our approach of re-
jecting only transparent type cycles is inspired by OCaml.
We, however, end up observing more transparent type cy-
cles due to our more robust approach to the double vision
problem. Moreover, OCaml’s support of applicative functors
makes it more difficult to accurately detect transparent type
cycles [27].

Nakata and Garrigue [28] propose a recursive module cal-
culus called Traviata, which is based on OCaml. While the
use of weak bisimilarity is inspired by Traviata, there are
several major differences. First, Traviata supports only first-
order applicative functors [19], while we support higher-
order generative functors. This restriction to first-order func-
tors is required to render type equivalence decidable in the
presence of applicative functors. Indeed, path normaliza-
tion is generally undecidable with applicative functors [14].
Second, in Traviata, the programmer has to manually spec-
ify type coercion from internal type paths to external ones
to solve the double vision problem, while our type system
solves this problem in a simple type theoretic way using path
substitutions. Finally, in Traviata, the programmer need not
specify forward declaration signatures; the type system can
infer them. In contrast, we require the programmer to anno-
tate such signatures as in [3, 6, 8, 34].

Dreyer [7] proposes RTG which gives a logical account
of recursive type generativity. He later extends its ideas and
techniques in the context of recursive modules and proposes
RMC [8]. Recently, Montagu and Rémy [26] propose F.,
which is a variant of System F, by decomposing the intro-
duction and elimination of existential types into more atomic
constructs. Although F. is a core calculus, it may be con-
sidered a simple logical foundation of recursive modules. In
contrast to RTG and F., we do not investigate a logical inter-
pretation of recursive modules, but focus on how to address
their typing issues from a practical point of view. Our type
system typechecks more recursive modules that are useful
in practice. For detailed comparisons with RMC and F., we
refer the reader to Section 3.

9.2 Units and Mixin Modules
Instead of extending the ML module system with recursive
modules, several authors [10–12, 30, 32] have investigated

mixin-style recursive composition [5] in conjunction with
ML-style abstraction mechanisms and hierarchical compo-
sition. Compared with recursive module extensions to ML,
the main benefit of using mixin-style recursive linking is that
it is more suitable for separate compilation of mutually re-
cursive definitions.

Flatt and Felleisen [12] propose units as a recursive link-
ing mechanism for Scheme. Units may be considered a gen-
eralization of functors, where imports may refer to exports.
Owens and Flatt [32] later extend units with ML-style nested
modules to provide hierarchical composition. They also pro-
vide encodings of ML-style structures and first-order func-
tors, but without module abbreviations, in their unit lan-
guage. In their language, an abstract type cannot be referred
to in two ways in a given scope, and thus only a restricted
form of the double vision problem arises when linking units,
which can be easily avoided. Their source language does
not include recursive type or value definitions, but it is later
extended with the rec construct for creating recursive def-
initions to define the operational semantics and prove type
soundness. The rec construct may introduce transparent type
cycles and they provide an axiomatic system for defining a
type equivalence on these cyclic types. In contrast, we ac-
count for transparent type cycles and type abbreviations by
means of weak bisimilarity, or mixed induction-coinduction,
which has a semantic foundation.

Recently, Dreyer and Rossberg [10] propose MixML as
a unifying framework for ML modules and mixin mod-
ules. MixML is able to express most interesting features
of the ML module system including recursive modules via
relatively simple encodings. Moreover, by mixin composi-
tion, it also supports separate compilation of mutually re-
cursive definitions. Since their mixin composition requires
bidirectional ML-style signature matching in the presence of
data abstraction and recursion, they need to solve a bidirec-
tional version of the double vision problem. For proving type
soundness, they elaborate MixML to an internal language,
showing that well-typed programs in MixML are translated
into well-typed programs in the internal language and the in-
ternal language is type-sound. Again, they have to deal with
transparent type cycles in their soundness proof. Since the
complete proof, including the definition of type equivalence
in the presence of type cycles, is not published yet at the
moment of writing this paper, further comparison with their
approach has to be deferred to future work.

While integrating ML modules with mixin modules is
a promising direction for further investigation, it requires
rather drastic changes to the current implementation of the
ML module system such as the OCaml implementation. In
contrast, our system may be regarded as a lightweight ex-
tension of the current implementation of recursive modules
in OCaml. In particular, we generalize OCaml’s approach to
the double vision problem and cyclic type definitions, and



also prove type soundness, which is one of our main contri-
butions.

10. Conclusion
This paper proposes a syntactic type system for recursive
modules which both solves the double vision problem and
accounts for cyclic type definitions. To solve the double
vision problem, we introduce path substitutions to locally
maintain consistency between external and internal views of
recursive modules. To account for cyclic type definitions, we
define a type equivalence relation by weak bisimilarity. Our
type system typechecks flexible uses of recursive modules
such as functor fixpoints, whose uses are restricted in pre-
vious work. We show that the type system is sound with
respect to a call-by-value operational semantics. As weak
bisimulations are hard to handle in practice, we also propose
an algorithmic type equivalence relation that is compatible
with our solution to the double vision problem. The algorith-
mic type system still typechecks flexible uses of functor fix-
points. Future work will include extending our system with
first-class modules as in [33] and applicative functors [19],
both of which are already available in OCaml.
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[26] B. Montagu and D. Rémy. Modeling abstract types in modules
with open existential types. In POPL ’09: Proceedings of the
36th annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 354–365, 2009.

[27] K. Nakata. Bug report, nr. 0003674. http://caml.inria.
fr/mantis/view.php?id=3674, 2005.

[28] K. Nakata and J. Garrigue. Recursive modules for program-
ming. In ICFP ’06: Proceedings of the eleventh ACM SIG-
PLAN International Conference on Functional Programming,
pages 74–86, 2006.

[29] K. Nakata and T. Uustalu. Resumptions, weak bisimilarity
and big-step semantics for While with interactive I/O: An
exercise in mixed induction-coinduction. In SOS ’10: Seventh
Workshop on Structural Operational Semantics, pages 57–75,
2010.

[30] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nom-
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A. Typing Rules for the Core Language

Core expressions Γ;∆;Σ ` e : τ

x : τ ∈ Σ
Γ;∆;Σ ` x : τ

c-typ-var
Γ;∆;Σ ` () : 1

c-typ-unit

Γ ` τ wf Γ;∆;Σ, x : τ ` e : τ ′

Γ;∆;Σ ` λx : τ.e : τ → τ ′
c-typ-lam

Γ;∆;Σ ` e1 : τ1 → τ
Γ;∆;Σ ` e2 : τ2 Γ;∆ ` τ1 ≈ τ2

Γ;∆;Σ ` e1 e2 : τ
c-typ-app

Γ;∆;Σ ` e1 : τ1 Γ;∆;Σ ` e2 : τ2

Γ;∆;Σ ` (e1, e2) : τ1 ∗ τ2
c-typ-pair

Γ;∆;Σ ` e : τ1 ∗ τ2

Γ;∆;Σ ` πi(e) : τi

c-typ-proj

Γ ` q 3 datatype t [= τ ′′] = c of τ
Γ;∆;Σ ` e : τ ′ Γ;∆ ` τ ≈ τ ′

Γ;∆;Σ ` q.c e : q.t
c-typ-con

Γ;∆;Σ ` e1 : τ1

Γ ` q 3 datatype t [= τ ′] = c of τ
Γ;∆ ` τ1 ≈ q.t Γ;∆;Σ, x : τ ` e2 : τ2

Γ;∆;Σ ` case e1 of q.c x ⇒ e2 : τ2
c-typ-case

Γ ` p 3 val l : τ

Γ;∆;Σ ` p.l : τ
c-typ-path

Core types Γ ` τ wf

Γ ` 1 wf
c-wf-unit

Γ ` τ1 wf Γ ` τ2 wf

Γ ` τ1 → τ2 wf
c-wf-fun

Γ ` τ1 wf Γ ` τ2 wf

Γ ` τ1 ∗ τ2 wf
c-wf-prod

Γ ` p 3 datatype t [= τ ′] = c of τ

Γ ` p.t wf
c-wf-data

Γ ` p 3 type t = τ

Γ ` p.t wf
c-wf-type

Γ ` p 3 type t

Γ ` p.t wf
c-wf-abs

Figure 18. Typing rules for the core language


