
Mathematical Structures in Computer (2023), 1–32
doi:10.1017/S0960129523000087

An Intuitionistic Set-theoretical Model of Fully
Dependent CCω

Masahiro Sato1, and Jacques Garrigue2

1SIOS Technology, Inc., 2-12-3 Minami-Asabu, Minato-ku, Tokyo 106-0047, Japan
2Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
Corresponding author. Email: garrigue@math.nagoya-u.ac.jp

Abstract
Werner’s set-theoretical model is one of the simplest models of CIC. It combines a functional view of
predicative universes with a collapsed view of the impredicative sort ‘Prop’. However this model of Prop
is so coarse that the principle of excluded middle P ∨¬P holds. Following our previous work (Sato and
Garrigue, 2016), we interpret Prop into a topological space (a special case of Heyting algebra) to make
the model more intuitionistic without sacrificing simplicity. We improve on that work by providing a
full interpretation of dependent product types, using Alexandroff spaces. We also extend our approach to
inductive types by adding support for lists.

Keywords: type theory, model, intuitionistic logic

1. Introduction
There are various models of type theory. Werner’s set-theoretical model (Werner, 1997) provides
an intuitive model of CIC. It combines a functional view of predicative universes with a collapsed
view of the impredicative sort Prop. However this model of Prop is so coarse that the principle of
excluded middle P ∨¬P holds in it.

In this paper, we construct a set-theoretical model of CCω in which the principle of excluded
middle does not hold, making it closer to completeness.

CC (the Calculus of Constructions (Coquand and Huet, 1988)) is a pure type sys-
tem (Barendregt, 1991) with two sorts, impredicative ∗ and predicative □. CCω replaces □ by
a cumulative hierarchy of predicative sorts Typei. CIC (the Calculus of Inductive Constructions)
adds inductive types to CCω .

Werner (1997) provided a remarkably simple model of CIC. In this model, λx : A.t is inter-
preted by a set-theoretical function for predicative sorts. Yet such a simple approach is known to
fail for impredicative sorts as it runs afoul of Reynolds’ paradox (Reynolds, 1984). Therefore, the
model for Prop is two-valued. Hence the principle of excluded middle is valid in this model, mak-
ing it classical. Later, Miquel and Werner (2003) have shown that proving the soundness of this
model was not as easy as it seems, but this does not change the simplicity of the model itself. This
simple approach is to be contrasted with Luo’s model of ECC (CCω extended with strong sums
Σx : A.B) which uses ω-sets (Luo, 1991), syntactic models based on combinatory logic (Stefanova
and Geuvers, 1995; Geuvers, 2001), or more recent models such as categorical models (Jacobs,
2001; Streicher, 1991) or models based on homotopy theory (Univalent Foundations Program,
2013). This is the drawback of simplicity: while Werner’s approach avoids many complications
of more precise models, it is at times counter-intuitive, as it completely ignores the intuitionistic
aspect of CCω .

© Cambridge University Press 2023

https://doi.org/10.1017/S0960129523000087
mailto:garrigue@math.nagoya-u.ac.jp

2 M. Sato, J. Garrigue

Our goal has been to recover the intuitionistic part of CCω without increasing the complexity
of the model. Barras (2010) provided a first way to do it, by interpreting CCω in IZF (intuitionistic
Zermelo-Fraenkel set theory (Aczel and Rathjen, 2010)) rather than ZF. While this is an interesting
result, and the fact it is backed by a fully formalized proof is very impressive, this requires one to
work in the radically different world of IZF, where it is difficult to express meta-reasoning about
the expressiveness of the language. For this reason we prefer to stay inside classical set theory
ZF, but we change the interpretation of Prop to be some topological space. The open sets of a
topological space form a Heyting algebra. Heyting algebras are used when constructing models
of intuitionistic logic, but usually their elements are not understood as sets. In our model, proofs
shall be interpreted as elements of denotations of propositions, hence these denotations must be
sets, and the order must be set inclusion. Using topological spaces solves this problem.

This leaves the question of how to interpret proofs, in a way that makes the whole interpretation
coherent. In our previous work (Sato and Garrigue, 2016), propositions were already interpreted as
open sets, but proofs were interpreted by a fixed value, that had to be included in all true proposi-
tions. This choice was too inflexible to accomodate propositions parameterized over proofs, which
we had to reject. While this type of parameterization is rare, it is for instance required to express
proof-irrelevance as a proposition. In this paper, we are able to lift this restriction by shifting the
interpretation to Alexandroff spaces (Arenas, 1999), and making the interpretation of proofs a
function of the context valuation. Alexandroff spaces act as parameters to the model, their choice
making it more or less precise. For instance if we use the trivial topological space (X ,O(X))
where X = {·} is a singleton and O(X) = {∅, X}, we obtain a model of classical logic, which is
the coarsest one.

Our model is still proof irrelevant, as it does not depend on the the proof term itself. As a
result, this model does validate some propositions that are not provable, in particular logical proof
irrelevance, hence it does not reach completeness. However this is sufficient to exclude many
classical propositions such as the principle of excluded middle P ∨¬P or the linearity axiom
(P → Q)∨ (Q → P).

Note that, in this paper, we choose a slightly restricted version of CCω , which omits sub-
sumption between universes Prop and Typei. Subsumption between the predicative universes
Typei poses no problem, but our model of propositions is too different to allow subsumption
between Prop and Typei. Werner (2008) omitted this same subsumption in his exploration of
proof irrelevance.

This model can also be extended to inductive types. To demonstrate it, we define a model of
lists, with principles for recursion (in Type0) and induction (in Prop), and extend our soundness
proof to those. This is one more step in the direction of a model for the full CIC.

In section 2, we define the language of the type system CCω . In section 3, we give our set-
theoretical interpretation of CCω , and prove its soundness. In section 4, we study some properties
of this model. For instance, we show that it satisfies proof irrelevance, and that the excluded middle
cannot be derived from the linearity axiom in CCω . In section 5, we extend our interpretation to
inductive types. Finally, we conclude and discuss some future directions.

2. Typing of CCω

2.1 Definition of CCω

We define the type system CCω as follows. The only deviation from the standard presentation is
that our version has no subsumption between Prop and Typei.

Definition 1 (Term). Let V be an infinite set of variables.

• For all x ∈V , x is a term with free variables fv(x) = {x}.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 3

• If t1 and t2 are terms, then t1 t2 is a term with free variables fv(t1)∪ fv(t2).
• If t and T are terms, and x ∈V then, λx : T.t is a term with free variables fv(T)∪ (fv(t) \
{x}).

• If T1 and T2 are terms, and x ∈V then ∀x : T1.T2 is a term with free variables fv(T1)∪
(fv(T2) \ {x}).

• The symbols Prop and Typei (for i = 0, 1, 2, ...) are terms with free variables ∅.

Prop and Typei are called sorts. Prop is called the impredicative sort and it represents the type
of all propositions.

Definition 2 (Context).

• [] is a context with domain dom([]) =∅.
• If Γ is a context, and T is a term and x ∈V \ dom(Γ), then Γ; (x : T) is a context with domain

dom(Γ)∪ {x}.

Figure 1 contains the typing rules of CCω . The metavariables s, s1, s2 denote sorts. In rule (PI-
Type), either s1 = s2 or one of them is Prop. The equality =β denotes beta equality and B[x\v]
denotes substitution. Here are their definitions. We assume that α-conversion occurs when needed.

Definition 3 (Substitution). Let t and v be terms and x be a variable. The substitution t[x\v],
which means v replaces x in t, is defined inductively as follows:

(i) If y is a variable, then y[x\v] =

{
v (y = x)
y (otherwise),

(ii) (t1t2)[x\v] = (t1[x\v])(t2[x\v]),
(iii) (λx′ : T.t ′)[x\v] = λx′ : (T [x\v]).t ′[x\v]

when x′ /∈ fv(v)∪ {x},
(iv) (∀x′ : T1.T2)[x\v] = ∀x′ : (T1[x\v]).(T2[x\v])

when x′ /∈ fv(v)∪ {x},
(v) s[x\v] = s where s is a sort.

Definition 4 (Beta Equality). Let =β be the smallest equivalence relation such that the following
conditions hold.

(i) (λx : A.t) a =β t[x\a].
(ii) If t1 =β t ′1 and t2 =β t ′2, then t1t2 =β t ′1t ′2.

(iii) If t =β t ′ and A =β A′, then λx : A.t =β λx : A′t ′.
(iv) If A =β A′ and B =β B′, then ∀x : A.B =β ∀x : A′B′.

Now that we have defined CCω ’s terms and typing rules, we show the following three lemmas
that will be used in proofs. They can be proved by induction over the typing rules above.

Lemma 5 (Uniqueness of Typing). If Γ ⊢ t : A and Γ ⊢ t : B are derivable, then either A =β B, or
A =β ∀x1 : A1, . . . , ∀xn : An, Typei and B =β ∀x1 : A1, . . . , ∀xn : An, Type j.

Lemma 6 (Substitution). If Γ ⊢ u : U and Γ; (x : U); ∆ ⊢ t : T are derivable then Γ; ∆[x\u] ⊢
t[x\u] : T [x\u] is also derivable.

4 M. Sato, J. Garrigue

[] ⊢ Prop : Type0 (Axiom-Prop)

[] ⊢ Typei : Typei+1 (Axiom-Type)

Γ ⊢ t : T Γ ⊢ A : s x /∈ dom(Γ)

Γ; (x : A) ⊢ t : T
(Weakening)

Γ ⊢ A : s1 Γ; (x : A) ⊢ B : s2 (s1, s2)∈ {Prop, Typei} × {Prop, Typei}
Γ ⊢ ∀x : A.B : s2

(PI-Type)

Γ; (x : A) ⊢ t : B Γ ⊢ ∀x : A.B : s
Γ ⊢ λx : A.t : ∀x : A.B

(Abstraction)

Γ ⊢ u : ∀x : A.B Γ ⊢ v : A
Γ ⊢ u v : B[x\v]

(Apply)

Γ ⊢ A : s x /∈ dom(Γ)

Γ; (x : A) ⊢ x : A
(Variable)

Γ ⊢ t : A Γ ⊢ B : s A =β B
Γ ⊢ t : B

(Beta Equality)

Γ ⊢ t : ∀x1 : A1, . . . , ∀xn : An, Typei i < j
Γ ⊢ t : ∀x1 : A1, . . . , ∀xn : An, Type j

(Subsumption)

Figure 1. Typing rules of CCω

Lemma 7 (Extended Weakening). If Γ1; Γ2 ⊢ t : T is derivable, then Γ1; ∆; Γ2 ⊢ t : T is also
derivable when Γ1; ∆; Γ2 is well-formed, i.e. when Γ1; ∆; Γ2 ⊢ Typei : Typei+1 is derivable.

Lemma 8 (Condensing Lemma). If Γ; (x : A); ∆ ⊢ t : T is derivable and x does not occurs in ∆, t
and T , then Γ; ∆ ⊢ t : T is derivable.

Proof. See Jiménez (1999). □

2.2 Propositional terms and proof terms
In CCω , propositions are types that belong to the impredicative sort Prop, and proofs are terms
of types that represent propositions. Next, we give a definition of propositions and proofs through
syntactic derivability. Rather than introducing an explicitly sorted type system like in Miquel and

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 5

Werner (2003), we will prove that these definitions are stable under substitution, weakening, and
reduction, so that we can safely use them when defining our interpretation.

Definition 9.

(1) Propositional Term
A term P is called a propositional term for Γ iff Γ ⊢ P : Prop is derivable.

(2) Proof Term
A term p is called a proof term for Γ iff Γ ⊢ p : P is derivable for some P that is a
propositional term for Γ. P is then called a provable propositional term for Γ.

Lemma 10 (Proof and propositional terms).

(i) We assume that P1 and P2 are well typed under the same context Γ. If P1 is a propositional
term for Γ and P1 =β P2, then P2 is also a propositional term for Γ.

(ii) We assume that p1 and p2 are well typed under the same context Γ. If p1 is a proof term for
Γ and p1 =β p2, then p2 is also a proof term for Γ.

(iii) We assume that Γ ⊢ u : ∀x : A.B and Γ ⊢ v : A are derivable. If u is a proof term for Γ, then u v
is also a proof term for Γ.

(iv) If t is a proof term for Γ; (x : A) and λx : A.t is well typed under Γ, then λx : A.t is also a
proof term for Γ.

(v) If t is a proof term for Γ, then there does not exist a term T such that Γ ⊢ t : T and Γ ⊢ T :
Typei are both derivable.

Proof terms and propositional terms are preserved under substitution. The following lemmas
express this fact.

Lemma 11. If Γ ⊢ t : T is derivable, then Γ ⊢ T : s for some sort s.

Lemma 12. We assume that Γ ⊢ u : U is derivable and p is well typed under Γ; (x : U); ∆.

(i) If p is a proof (resp. propositional) term for the context Γ; (x : U); ∆, then p[x\u] is a proof
(resp. propositional) term for the context Γ; ∆[x\u].

(ii) If p is not a proof term for the context Γ; (x : U); ∆, then p[x\u] is not a proof term for the
context Γ; ∆[x\u].

Proof. (i) is clear by Lemma 6. We will show (ii). Since p is well typed, there exists a type T such
that

Γ; (x : U); ∆ ⊢ p : T

and by Lemma 11 there exists a sort s such that

Γ; (x : U); ∆ ⊢ T : s

Since p is not a proof term for the context Γ; (x : U); ∆, we have that s ̸= Prop, and as a result
there exists an index i such that s = Typei. Hence by Lemma 6,

Γ; ∆[x\u] ⊢ p[x\u] : T [x\u]
Γ; ∆[x\u] ⊢ T [x\u] : Typei

6 M. Sato, J. Garrigue

hold. If there exists a term P such that

Γ; ∆[x\u] ⊢ p[x\u] : P
Γ; ∆[x\u] ⊢ P : Prop,

it implies a contradiction by Lemma 10 (v). □

Note that the fact that P is not a propositional term for Γ; (x : U); ∆ does not imply that P[x\u]
is not a propositional term for Γ; ∆[x\u] in general. Here is a counterexample.

Γ; (U : Typei); (P : U) ⊢ P : U
Γ ⊢ Prop : Typei

In this case, P is not a propositional term. However P[U\Prop] = P is a propositional term under
Γ; (P : Prop).

Lemma 13. We assume that p is well typed under Γ1; Γ2 and Γ1; ∆; Γ2. p is a proof (resp. propo-
sitional) term for the context Γ1; Γ2 if and only if p is a proof (resp. propositional) term for the
context Γ1; ∆; Γ2.

The function PTΓ,x(A, B) maps two types A and B into the string symbols {PP,TP, PT,TT}
according to their sorts. Its goal is to give different interpretations to ∀x : A.B .

Definition 14 (Product Type). We assume that Γ ⊢ A : s1 and Γ; (x : A) ⊢ B : s2 are derivable where
s1, s2 are sorts. We define:

PTΓ,x(A, B) :=


PP (s1, s2) = (Prop, Prop)

TP (s1, s2) = (Typei, Prop)

PT (s1, s2) = (Prop, Typei)

TT (s1, s2) = (Typei, Type j)

Again, PTΓ,x(A, B) is stable under substitution and weakening.

Lemma 15.

(i) If A and B are typable under Γ; (x : U); ∆ and Γ ⊢ u : U is derivable, then
PT(Γ;(x:U);∆),a(A, B) = PT(Γ;∆[x\u]),a(A[x\u], B[x\u]) holds.

(ii) If A and B are typable under Γ1; Γ2 and Γ1; ∆; Γ2, then PT(Γ1;∆;Γ2),a(A, B) =
PT(Γ1;Γ2),a(A, B) holds.

Proof. (i) When PTΓ;(x:U);∆,a(A, B) = PP, A is a proposition for (Γ; (x : U); ∆) and B is a propo-
sition for (Γ; (x : U); ∆; (a : A)). By Lemma 12, A[x\u] is a proposition for (Γ; ∆[x\u]) and
B[x\u] is also a proposition for (Γ; ∆[x\u]; (a : A[x\u])). Hence the statement holds in this
case. When PTΓ;(x:U);∆,a(A, B) =TP, Γ; ∆[x\u] ⊢ A[x\u] : Typei is derivable. The remaining
case is similar.

(ii) It is clearly proved by applying the result of (i) in this lemma, since variables in ∆ do not
appear in Γ2 and terms A and B.

□

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 7

2.3 Logical symbols
Lastly, here are some notations allowing to use other logical symbols (Barendregt, 1992). We shall
use them to prove the adequacy of our model with respect to intuitionistic logic.

Definition 16.

A → B := ∀x : A.B (when x /∈ f v(B)),
⊥ := ∀P : Prop.P,
¬A := A →⊥,

A ∧ B := ∀P : Prop.(A → B → P)→ P,
A ∨ B := ∀P : Prop.(A → P)→ (B → P)→ P,

∃x : A.Q := ∀P : Prop.(∀x : A.(Q → P))→ P,
A ↔ B := (A → B)∧ (B → A),
x =A y := ∀Q : (A → Prop).Q x → Q y.

3. Interpretation
3.1 Preparation of the interpretation
3.1.1 Heyting algebras
Several interpretations of type theory have been proposed such as using ω-sets (Luo, 1991) or
coherent spaces (Girard, 1989). In this paper, we use Heyting algebras (MacLane and Moerdijk,
1992; van Dalen, 1984) for propositions. Heyting algebras provide models of intuitionistic logic.
The open sets of a topological space can be given the structure of a Heyting algebra (see
Lemma 18), and as such provide models of intuitionistic logic too (van Dalen, 1984). We give
a definition of lattice and Heyting algebra as follows.

Definition 17 (Lattices and Heyting algebras). Let (A,≤) be a partially ordered set (i.e. reflexive,
antisymmetric, and transitive). (A,≤) is called a Lattice when any two elements a and b of A have
a supremum ‘a ⊔ b’ and an infimum ‘a ⊓ b’, which are called join and meeta. A lattice is also called
a complete lattice if every subset S of A has a supremum ‘

⊔
S’ and an infimun ‘ ⊔S’. A complete

lattice has a minimum element O :=
⊔
∅ and a maximum element I := ⊔∅. If a (complete) lattice

has an exponential operator ab such that

x ≤ zy ⇔ x ⊓ y ≤ z

holds, then we call it a (complete) Heyting Algebra.

The following lemma shows that topological spaces are both Heyting algebras and complete
lattices.

Lemma 18. Any topological space (X ,O(X)) is a complete Heyting algebra.

aWe use the lattice operation symbols join ‘⊔’ and meet ‘⊓’ instead of ‘∨’ and ‘∧’, since we use the latter as logical
symbols.

8 M. Sato, J. Garrigue

Proof. Let a ≤ b be a ⊂ b, and define each operation as follows:

I := X ,

O := ∅,⊔
S :=

⋃
S,

⊔S :=
⊔
{t | ∀s ∈ S, t ≤ s}=

(⋂
S
)◦

(where A◦ is the interior o f A),

ba :=
⊔
{t | t ⊓ a ≤ b}.

□

The following lemma states well known properties of complete Heyting algebras.

Lemma 19. Let (A,≤) be a complete Heyting algebra. Then the following conditions hold.

(xb)a = xa⊓b, (1)

⊔{t | t ∈ A} = ∅, (2)

⊔{tta | t ∈ A} = a, (3)

xa ⊓ xb = xa⊔b, (4)

⊔{at | t ∈ S} = a
⊔

S, (5)

x1 = x, (6)
x ≤ y ⇒ yx = 1 (7)

x ⊓ yx ≤ y, (8)
x ̸=∅ ⇒ ∅x =∅ (9)

xy ⊓ yx = 1 ⇒ x = y, (10)

3.1.2 Alexandroff spaces
Following in the steps of our previous work (Sato and Garrigue, 2016), our interpretation avoids
the Reynolds’ Paradox by not looking inside proof terms. In that previous work, this was done
by interpreting all proof terms as a single point, the reference point. Soundness then required this
reference point to be included in the interpretation of all propositions in the context, which forced
us to restrict the type system.

In this paper, a proof term is again interpreted into an element of an open set. However, we make
the interpretation of proofs a function of the context, which allows us to overcome this restriction.
For soundness to stand, we must then assume that the proof we interprete uses all proofs in the
context, which means that its interpretation should be smaller, in some “dependency order”, than
their interpretations. For this we need to introduce an order on the elements of our topological
space, and ensure that there is always an infimum. Alexandroff spaces (Arenas, 1999) allow us to
define such an order on points, so that we just need to require the existence of the infimum.

Definition 20 (Alexandroff Space). A topological space (X ,O(X)) is an Alexandroff space iff the
intersection of any tribe of open set is also an open set, i.e.⋂

S ∈O(X) for any S ⊂O(X)

The definition of Alexandroff space can also be given by the following equivalent statement.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 9

Lemma 21 (Minimal Neighborhood). A topological space (X ,O(X)) is an Alexandroff space iff
any point has a minimal neighborhood. The minimal neighborhood of the point x is denoted by
↓ x.

These are the basic definitions for Alexandroff spaces. However, to prove our soundness
theorem later, we need more conditions. We state those as well behaved Alexandroff spaces.

Definition 22 (Well Behaved Alexandroff Space). An Alexandroff space (X ,O(X)) is well
behaved if the following conditions hold.

• For any finite subset {t1, t2, · · · , tn} of X, we can choose a point t ∈ X such that

↓ t1 ∩ ↓ t2 ∩ · · · ∩ ↓ tn = ↓ t

holds. We write such a point t as inf{t1, t2, · · · , tn}.
• There exists an element ⊥X ∈ X such that any inhabited open set contains it, i.e.

∀O ∈O(X), O is inhabited ⇒⊥X ∈ O.

To clarify the use of the notation of the minimal neighborhood ↓ x and ⊥X , let us discuss a
preordered (i.e. reflexivity and transitivity hold) set generated from an Alexandroff space. Let ≤
be the relation on X defined as follows.

a ≤ b def
= ∀O ∈O(X), b ∈ O ⇒ a ∈ O

The relation ≤ is a preorder. Moreover, if this Alexandroff space is a T0 space (i.e. it fulfills the
T0 separation axiom), then the generated preorder (X ,≤) becomes an order (the antisymmetry
condition holds). If the relation (X ,≤) generated from an Alexandroff space forms an ordered set
then the followings hold.

↓ x = {t ∈ X | t ≤ x}
⊥X = min X

Using an ordered Alexandroff space for X allows us to give multiple interpretations of proofs
in the typing context, whereas in our previous work (Sato and Garrigue, 2016) we used a fixed
point p ∈ X . This fixed point was required to satisfy a point condition, which was no other than
the existence of a minimal neighborhood, satisfied by every point in an Alexandroff space.

3.1.3 Dependent function and Universes
Definition 23 (Dependent Function). Let A be a set, and B(a) be a set with parameter a ∈ A. We
define the set of dependent functions as follows

∏
a∈A

B(a) := { f ⊂
∐
a∈A

B(a) | ∀a ∈ A, ∃!b ∈ B(a), (a, b)∈ f}

that is the set of functions whose graphs are included in∐
a∈A

B(a) := {(x, y)∈ A ×
⋃
a∈A

B(a) | y ∈ B(x)}.

Next, we introduce Grothendieck universes, which are closed under dependent-function
construction, and which we will use to interprete the sort Typei.

10 M. Sato, J. Garrigue

Definition 24 (Grothendieck Universe). We define a i-th Grothendieck Universe Ui (for i any
natural number) as

Ui :=Vλi ,

where a set Vα , with an ordinal number α , is recursively defined as follows

V0 = ∅,

Vα+1 = P(Vα),

Vα =
⋃

β<α

Vβ (when α is a limit ordinal),

and λi is the i-th inaccessible cardinal.

The class of all universes is well founded for the relation ∈. We write Ui as the i-th universe.
Note that Ui is so large that it cannot be constructed in ZFC without assuming an inaccessible
cardinal. Our interpretation uses Ui for all i ∈ N. The following lemma is necessary when proving
soundness.

Lemma 25. The followings hold for any i.

(i) A ∈Ui implies A ⊂Ui.
(ii) A ∈Ui and Bα ∈Ui for all α ∈ A imply ∏

α∈A
Bα ∈Ui.

(iii) x ∈Ui and y ⊂ x imply y ∈Ui
(iv) Ui ⊂Ui+1.

3.2 Interpretation of the judgments
In this model, a type T is interpreted into a set [[T]], and a context x1 : T1; x2 : T2; · · · ; xn : Tn is
interpreted into a dependent tuple; in particular, when there are no dependent types in the context,
it is a tuple in [[T1]]× [[T2]]× · · · × [[Tn]].

First, we define the interpretation of application and product types. The interpretation of appli-
cation depends on whether the argument is a proof term or not, and may be undefined. We shall
later prove that every time we use it, we actually have appΓ,v(f , a) = f (a).

Definition 26.

appΓ,v(f , a) :=



f (⊥X)

(v is a proof term for Γ

and f is a function whose domain contains a and ⊥X)

f (a)
(v is not a proof term for Γ

and f is a function whose domain contains a)

undefined

(otherwise)

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 11

prodX(A , {B(α)}α∈A) :=



(⊔{B(α) | α ∈A }
)A

(when X= PP)

⊔{B(α) | α ∈A }
(when X=TP)

{ f ∈ ∏α∈A B(α) | f is a constant function}
(when X= PT)

∏α∈A B(α)

(when X=TT)

Now, we define the (partial) interpretations of contexts [[−]] and judgments [[−⊢−]]. The former
is by induction on the length of the context, and the latter by induction on the structure of terms.
Note that the interpretation of judgments does not rely on the interpretation of contexts.

Definition 27 (interpretation). Let (X ,O(X))∈U0 be a well behaved Alexandroff space.

(i) Definition of the interpretation of a context [[Γ]]

[[[]]] := {()}
[[Γ; (x : A)]] := {(γ, α) | γ ∈ [[Γ]] and α ∈ [[Γ ⊢ A]](γ)}

=
∐

γ∈[[Γ]]

[[Γ ⊢ A]](γ)

where () represents the empty sequence.
(ii) Definition of the interpretation of a judgment [[Γ ⊢ t]]

If t is a proof term for Γ = (x1 : T1); · · · ; (xn : Tn), then

[[Γ ⊢ t]](γ) := ⌊γ⌋

where

⌊γ1, γ2, · · · , γn⌋ := inf{γi | xi is a proof under Γ}.

Otherwise, if Γ ⊢ t : T is derivable and T is not a proposition for Γ, then

[[Γ ⊢ Typei]](γ) := Ui

[[Γ ⊢ Prop]](γ) := O(X)

[[(x1 : T1); · · · ; (xn : Tn) ⊢ xi]](γ1, · · · , γn) := γi

[[Γ ⊢ ∀x : A.B]](γ) := prodX (A , {B(α)}α∈A)

where
X := PTΓ,x(A, B)
A := [[Γ ⊢ A]](γ)
B(α) := [[Γ; (x : A) ⊢ B]](γ, α)

[[Γ ⊢ λx : A.t]](γ) :=
{(

α, [[Γ; (x : A) ⊢ t]](γ, α)
)
| α ∈ [[Γ ⊢ A]](γ)

}
[[Γ ⊢ u v]](γ) := appΓ,v([[Γ ⊢ u]](γ), [[Γ ⊢ v]](γ))

12 M. Sato, J. Garrigue

For simplicity, we write [[T]] for [[[] ⊢ T]](), when the context is empty.

When defined, the interpretation of a context [[Γ]] is a set of sequences γ whose length is the
length of Γ, and [[Γ ⊢ t]] is a function whose domain is [[Γ]], and which returns some set [[Γ ⊢ t]](γ)
— soundness will tell us that if Γ ⊢ t : T , then [[Γ ⊢ t]](γ)∈ [[Γ ⊢ T]](γ).

Concerning Definitions 26 and 27, most cases are similar to Werner’s interpretation, and we
explained appΓ,v above, so we only explain the interpretations of proof terms and PI-Types ∀x :
A.B.

The interpretation of a proof term [[Γ ⊢ p]](γ) is the minimum element of the set of proof values
in γ . Since each of these values belong to the interpretations of propositions in the context, which
are open sets in our Alexandroff space, this minimum element belongs to all of them. This will
allow us to prove that any proof variable belongs to the interpretation of its type, which is key to
the soundness theorem.

prodX has four cases, according to X= PTΓ,x(A, B). When X= PP, we use the Heyting algebra
representation of this implication. If x does not appear in B, the interpretation of [[Γ ⊢ ∀x : A.B]] is
BA , which represents the logical implication A ⇒ B, as will be proved in Corollary 28. If x
appears in B, we still have the same meaning, since B(α) does not depend on α , as will be proved
in Lemma 31. This definition also works if A is empty, as the empty meet is X , and X /0 is X again
(the top element of the lattice). In our previous work, α was required to be the (fixed) interpretation
of a proof term, meaning that we could not interprete the case where A was not empty, but did
not contain the reference point used for proof terms. Here we do not have such a problem, as the
interpretation of proof terms is a function of the context; thanks to the interpretation with well
behaved Alexandroff spaces, there is always a value small enough to serve as proof term.

When X=TP, the interpretation of [[Γ ⊢ ∀x : A.B]] represents universal quantification, and again
we use the infinite meet operator of the complete Heyting algebra to express it.

When X= PT, the interpretation of [[Γ ⊢ ∀x : A.B]] becomes a set theoretical constant function.
Functions whose argument are proofs should be constant functions since our model is proof-
irrelevant. Note that here again, it follows from Lemma 31 that B(α) shall not depend on α .

In the last case, when X=TT, the representation becomes a set theoretical dependent function.
As soon as one component is undefined the whole interpretation is undefined. Thanks to

Corollary 28 which is a consequence of the Soundness Theorem 33, undefined never appears,
and implication and application can be defined in a straightforward way.

Corollary 28.

• If Γ ⊢ t is well typed, then [[Γ ⊢ t]] is a total function whose domain is [[Γ]].
• If PTΓ,x(A, B) = PP and [[Γ ⊢ A]](γ) ̸=∅, then

[[Γ ⊢ ∀x : A.B]](γ) =
(
[[Γ; (x : A) ⊢ B]](γ, α)

)[[Γ⊢A]](γ)

holds for any α ∈ [[Γ ⊢ A]](γ).
• If PTΓ,x(A, B) = PP and [[Γ ⊢ A]](γ) =∅, then

[[Γ ⊢ ∀x : A.B]](γ) = X

holds.
• If Γ ⊢ t1 t2 is well typed and t1 is not a proof term for Γ, then [[Γ ⊢ t1]](γ) is a function whose

domain contains [[Γ ⊢ t2]](γ) and

[[Γ ⊢ t1 t2]](γ) = [[Γ ⊢ t1]](γ)
(
[[Γ ⊢ t2]](γ)

)
holds.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 13

3.3 Soundness
We can now start our soundness proof with the weakening and substitution lemmas. They show
that our interpretation is well behaved.

Lemma 29 (interpretation of weakening). If t is not a proof term, then the following equation
holds

[[Γ1; Γ2 ⊢ t]](γ1, γ2) = [[Γ1; (x′ : A′); Γ2 ⊢ t]](γ1, α
′, γ2)

when both sides are well defined.

Proof. See Appendix A. □

Our substitution lemma is similar to those in Werner (1997) and Miquel and Werner (2003).

Lemma 30 (interpretation of substitution). We assume Γ ⊢ u : U is derivable. If Γ; (x : U); ∆ is
well formed and

(γ, [[Γ ⊢ u]](γ), δ)∈ [[Γ; (x : U); ∆]]

holds (with all interpretations defined), then

(γ, δ)∈ [[Γ; ∆[x\u]]]

holds. Moreover, in

[[Γ; (x : U); ∆ ⊢ t]](γ, [[Γ ⊢ u]](γ), δ) = [[Γ; ∆[x\u] ⊢ t[x\u]]](γ, δ)

the right hand side is defined whenever the left hand side is, and the equation holds for all t and
T such that Γ; (x : U); ∆ ⊢ t : T is derivable.

Proof. See Appendix B. □

While propositions can be interpreted by sets with multiple values, our interpretation is still
proof-irrelevant, as the interpretation of terms of sort Type does not depend on parameters of sort
Prop. This simplifies the proof of the next lemma.

Lemma 31 (semantic proof irrelevance). We assume that A′ is a propositional term for Γ and t is
not a proof term under Γ; (x′ : A′); ∆. If

(γ, p1, δ) ∈ [[Γ; (x′ : A′); ∆]]

(γ, p2, δ) ∈ [[Γ; (x′ : A′); ∆]]

hold, then

[[Γ; (x′ : A′); ∆ ⊢ t : T]](γ, p1, δ) = [[Γ; (x′ : A′); ∆ ⊢ t : T]](γ, p2, δ)

holds.

Proof. See Appendix C. □

Theorem 32 (soundness of beta equality). If t1 =β t2, and Γ ⊢ t1 : T, Γ ⊢ t2 : T are derivable, then
[[Γ ⊢ t1]](γ) = [[Γ ⊢ t2]](γ) when both sides are well defined.

Proof. If t1 is a proof term, then t2 is also a proof term by Lemma 10, hence the statement holds.
If not, it is sufficient to only prove that [[Γ ⊢ (λx : U.t) u]](γ) = [[Γ ⊢ t[x\u]]](γ) holds. If (λx : U.t)u

14 M. Sato, J. Garrigue

is well typed under Γ, then Γ ⊢ u : U is derivable. If u is not a proof term, then

[[Γ ⊢ (λx : U.t) u]](γ)
= [[Γ ⊢ λx : U.t]](γ)

(
[[Γ ⊢ u]](γ)

)
= [[Γ; (x : U) ⊢ t]](γ, [[Γ ⊢ u]](γ))
= [[Γ ⊢ t[x\u]]](γ)

holds by Lemma 30. If u is a proof term, then [[Γ ⊢ λx : U.t]](γ) is a function whose domain con-
tains [[Γ ⊢ u]](γ) by definition of the interpretation. Therefore [[Γ; (x : U) ⊢ t]](γ, [[Γ ⊢ u]](γ)) is also
well defined. Hence

[[Γ ⊢ (λx : U.t) u]](γ)
= [[Γ ⊢ λx : U.t]](γ)(⊥X)

= [[Γ; (x : U) ⊢ t]](γ,⊥X)

= [[Γ; (x : U) ⊢ t]](γ, [[Γ ⊢ u]](γ))
= [[Γ ⊢ t[x\u]]](γ)

holds by Lemma 30 and 31. Hence, the statement holds. □

We are now ready to prove the soundness of this type system.

Theorem 33 (soundness). We assume γ ∈ [[Γ]]. If Γ ⊢ t : T is derivable, then [[Γ ⊢ t]](γ)∈ [[Γ ⊢
T]](γ).

Proof. See Appendix D. □

4. Properties of the model
4.1 Interpretation of logical symbols
The following theorem explicits the interpretation of logical symbols from definition 16. It
demonstrates the logical adequacy of the interpretation.

Theorem 34 (interpretation of logical symbols). Here, let A and B be propositional terms and T
be any (propositional or non propositional) term.

(i) [[Γ ⊢ A → B]](γ) = [[Γ ⊢ B]](γ)[[Γ⊢A]](γ)

(ii) [[Γ ⊢⊥]](γ) =∅
(iii) [[Γ ⊢ A ∧ B]](γ) = ([[Γ ⊢ A]](γ))⊓ ([[Γ ⊢ B]](γ))
(iv) [[Γ ⊢ A ∨ B]](γ) = ([[Γ ⊢ A]](γ))⊔ ([[Γ ⊢ B]](γ))

(v) [[Γ ⊢ ∃x : A.B]](γ) =

{
[[Γ ⊢ A]](γ)⊓ [[Γ; x : A ⊢ B]](γ, α) (α ∈ [[Γ ⊢ A]](γ))
∅ ([[Γ ⊢ A]](γ) =∅)

(vi) When T is not a propositional term:
[[Γ ⊢ ∃x : T.B]](γ) =

⊔
α∈[[Γ⊢T]](γ)[[Γ; (x : T) ⊢ B]](γ, α)

(vii) a. [[Γ ⊢ x =T y]](γ) = X iff [[Γ ⊢ x]](γ) = [[Γ ⊢ y]](γ)
b. [[Γ ⊢ x =T y]](γ) =∅ iff [[Γ ⊢ x]](γ) ̸= [[Γ ⊢ y]](γ)

(viii) a. [[Γ ⊢ A =Prop B]](γ)⊂ [[Γ ⊢ A ↔ B]](γ)
b. [[Γ ⊢ A ↔ B]](γ) = X implies [[Γ ⊢ A =Prop B]](γ) = X

Proof. See Appendix E □

Here some consequences of Theorem 34.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 15

Corollary 35.

(1) [[Γ ⊢ x =T y ∨ x ̸=T y]](γ) = X
(2) [[Γ ⊢ A ↔ B]](γ) = X iff [[Γ ⊢ A =Prop B]](γ) = X.
(3) [[Γ ⊢ A ↔ B]](γ) =∅ implies [[Γ ⊢ A =Prop B]](γ) =∅

Note that the reverse of (3) in Corollary 35 is not true in general, i.e. there are cases such
that [[Γ ⊢ A ↔ B]](γ) ̸=∅ holds while [[Γ ⊢ A =Prop B]](γ) =∅ holds. This fact means that the
propositional extensionality axiom does not always hold in this model, as detailed later.

4.2 Interpretation of excluded middle and linearity
Our original goal was to provide intuitionistic models of CCω . We will see here that by changing
the topological space used by the interpretation, one can change the validity of axioms.

4.2.1 Classical model
We start with the simplest case. Let us consider the trivial topological space, whose base set is the
singleton {∅}.

X := {∅}
O(X) := {∅, {∅}}= {0, 1}

This topological space is a well behaved Alexandroff space, and coincides with Werner’s
model (Werner, 1997). However this model is so coarse that it represents classical logic, since
the principle of excluded middle holds.

∅∈ [[∀P : Prop.P ∨¬P]] = ⊔
o∈O(X)

o ∨¬o = 1.

If we want to be more discriminating, we need more open sets in O(X).

4.2.2 Models disproving excluded middle
Now, let us consider the next simplest topological space, which contains another element.

X := {∅, {∅}}
O(X) := {∅, {∅}, {∅, {∅}}}= {0, 1, 2}

Although this model stays simple, its topological space is fine enough to avoid the principle of
excluded middle, since the following statement holds.

2 /∈ [[∀P : Prop.P ∨¬P]] = 1.

This statement is derived by using the following equations.

¬0 = 2 ¬1 = 0 ¬2 = 0

By our soundness theorem, this proves that the principle of excluded middle cannot be deduced
in CCω .

Yet this model is not fully intutionistic as the linearity axiom (P → Q)∨ (Q → P) holds, since
we have the following fact by Table 1.

16 M. Sato, J. Garrigue

Table 1. Value of yx for X = {∅, {∅}}

yx 0 1 2

0 2 0 0

1 2 2 1

2 2 2 2

Table 2. Value of yx for X = {b, l, r, t}

yx ∅ α β γ δ X

∅ X ∅ ∅ ∅ ∅ ∅
α X X α α α α

β X X X α β β

γ X X α X γ γ

δ X X X X X δ

X X X X X X X

[[∀P : Prop.∀Q : Prop.(P → Q)∨ (Q → P)]]

= ⊔
o1,o2∈O(X)

oo2
1 ∨ oo1

2

= 2.

The above remark is actually interesting because it shows that we can use this model to prove
non trivial facts, for instance that the excluded middle cannot be deduced from the linearity axiom
in CCω . Indeed,

[[(∀P : Prop.∀Q : Prop.(P → Q)∨ (Q → P))→ (∀P : Prop.P ∨¬P)]] = 1.

By our soundness theorem, this equation means that there is no term proving the above
implication in CCω .

4.2.3 Models disproving linearity
By adding more elements we can refine the model further. Let (X ,O(X)) be the Alexandroff space

X := {b, l, r, t}
O(X) = {∅, {b}, {b, l}, {b, r}, {b, l, r}, X}

≡ {∅, α, β , γ, δ , X}

In this model, (P → Q)∨ (Q → P) does not hold, since we have the following fact by Table 2.

t /∈ [[∀P : Prop.∀Q : Prop.(P → Q)∨ (Q → P)]] = α

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 17

4.3 Interpretation of logical proof irrelevance
A general form of proof irrelevance, that does not depend on the type of the result, can be
expressed as a logical formula, using the propositional encoding for equality:

⊢ ∀P : Prop.∀p1, p2 : P. p1 =P p2.

Proposition 36 (interpretation of proof irrelevance). The logical formula for proof irrelevance is
valid for any Alexandroff space.

Proof. We shall prove that for any topological space (X ,O(X)), the interpretation of this formula
is X . First note that, for any valuation γ ,

[[P : Prop; p1 : P; p2 : P ⊢ p1]](γ) = ⌊γ⌋= [[P : Prop; p1 : P; p2 : P ⊢ p2]](γ).

By using (vii) from Theorem 34, we have

[[P : Prop; p1 : P; p2 : P ⊢ p1 =P p2]](γ) = X .

As a result,

[[∀P : Prop.∀p1, p2 : P.p1 =P p2]]

= ⊔

o∈O(X)

⊔

x1,x2∈o
[[P : Prop; p1 : P; p2 : P ⊢ p1 =P p2]](o, x1, x2)

= ⊔

o∈O(X)

⊔

x1,x2∈o
X

= X .

□

Note that semantic proof irrelevance (Lemma 31) and logical proof irrelevance (Proposition 36)
are quite different. The former is about equality of interpretations of non-proof terms under differ-
ent valuations, while the latter uses the equality of interpretations of proof terms under the same
valuation. As a result, their proofs are independent.

4.4 Interpretation of propositional extensionality
As a notable property, propositional extensionality does not hold in general in our model.

The classical model, which was presented in section 4.2.1, validates propositional extensional-
ity, but any model disproving the excluded middle invalidates it.

Let us recall the model of section 4.2.2. We assume that Γ ⊢ A : Prop and Γ ⊢ B : Prop are
derivable and

[[Γ ⊢ A]](γ) = 1
[[Γ ⊢ B]](γ) = 2

hold. In this case,

[[Γ ⊢ A ↔ B]](γ) = [[Γ ⊢ B]](γ)[[Γ⊢A]](γ) ⊓ [[Γ ⊢ A]](γ)[[Γ⊢B]](γ)

= 1

holds. Since [[Γ ⊢ A]](γ) ̸= [[Γ ⊢ B]](γ), then we have [[Γ ⊢ A =Prop B]](γ) = 0. Therefore

[[Γ ⊢ (A ↔ B)→ A =Prop B]](γ) = 01

= 0

holds by (9) in Lemma 19. Hence propositional extensionality does not hold in this model.

18 M. Sato, J. Garrigue

More generally, the followings holds.

Proposition 37. In any non-classical model, i.e. any model which has more than 2 open sets, the
following holds.

[[⊢ ∀P1P2 : Prop.(P1 ↔ P2)→ P1 =Prop P2]] =∅

Proof.

[[⊢ ∀P1P2 : Prop.(P1 ↔ P2)→ P1 =Prop P2]]

= ⊔

S1,S2∈O(X)

[[P1 : Prop, P2 : Prop ⊢ (P1 ↔ P2)→ P1 =Prop P2]](S1, S2)

= ⊔

S1,S2∈O(X)

(
[[P1 : Prop; P2 : Prop ⊢ P1 =Prop P2]](S1, S2)

)S2
S1⊓S1

S2

= ⊔

S1,S2∈O(X)
S1 ̸=S2

(
[[P1 : Prop; P2 : Prop ⊢ P1 =Prop P2]](S1, S2)

)S2
S1⊓S1

S2

= ⊔

S1,S2∈O(X)
S1 ̸=S2

∅S2
S1⊓S1

S2

Here, we can choose S1 = ↓ ⊥ and S2 = X . Since S1 is then the smallest non-empty open set, and
S2 the biggest, they cannot be equal as it would contradict the existence of at least 3 open sets.
Since X (↓⊥) ⊓ (↓ ⊥)X ̸=∅, the interpretation equals to ∅. □

4.5 Interpretation of the axiom of choice
If we choose ZFC as ambient logic for our interpretation, then it validates the Axiom of Choice
for any topological space (X ,O(X)). That is, if Γ ⊢ A : Typei, Γ ⊢ B : Type j, and Γ ⊢ R : A → B →
Prop are derivable, then

[[Γ ⊢ ∀x : A.∃y : B.R x y →∃ f : A → B.∀x : A.R x (f x)]](γ) = X

holds. Now, let us consider the interpretation of the Axiom of Choice. We pose:

S := [[Γ ⊢ A]](γ)
T := [[Γ ⊢ B]](γ)
Θ := [[Γ ⊢ R]](γ).

Then we have:

[[Γ ⊢ ∀x : A.∃y : B.R x y]] = ⊔

s∈S

⊔
t∈T

Θ(s, t)

[[Γ ⊢ ∃ f : A → B.∀x : A.R x (f x)]] =
⊔

ψ∈S→T

⊔

s∈S

Θ(s, ψ(s)).

Under ZFC set theory,

⊔

s∈S

⊔
t∈T

Θ(s, t)⊂
⊔

ψ∈S→T

⊔

s∈S

Θ(s, ψ(s))

is true. Therefore the Axiom of Choice is valid by Lemma 19 (7).
This may look surprising as Diaconescu’s Theorem states that, in set theory, the Axiom of

Choice implies the excluded middle.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 19

[] ⊢ list : Type0 → Type0 (list-intro)

[] ⊢ nil : ∀A : Type0.list A (nil-intro)

[] ⊢ cons : ∀A : Type0.A → list A → list A (cons-intro)

[] ⊢ list rec : ∀A : Type0.∀F : list A → Type0. (list rec-intro)

F (nil A)→ (∀a : A.∀l : list A.F l → F (cons A a l))→∀l : list A.F l

[] ⊢ list ind : ∀A : Type0.∀P : list A → Prop. (list ind-intro)

P (nil A)→ (∀a : A.∀l : list A.P l → P (cons A a l))→∀l : list A.P l

Figure 2. New typing rules of CCω

list

However, it has been observed that to prove the excluded middle, one needs in general more
properties: propositional extensionality and functional extentionality (Forster, 2021; van den Berg,
2007). In our model, functional extensionality is still valid, but propositional extensionality is not
valid, as mentioned in section 4.4. Hence we obtain a model in which the Axiom of Choice is
valid without necessarily implying the excluded middle.

5. Interpretation of inductive types
Until now, we have discussed the interpretation of CCω . However, Coq’s type system is not CCω

but CIC, which is CCω extended with (co)inductive types. In this paper, we do not give a general
definition of inductive types, but we present some examples of inductive definitions. Here, we
introduce a new type system CCω

list, which is CCω with the list type.

5.1 Typing Rule of CCω
list

To construct the new type system CCω

list, we add new terms and typing rules to CCω . Here, we
give five new terms, list, nil, cons, list rec, and list ind, and also give new typing rules for the list
type in Figure 2.

Now, we define the beta equality for CCω

list.

Definition 38 (Beta Equality for CCω

list). Let =β ′ be the smallest equivalence relation such that
the following conditions hold.

(i) (λx : A.t) a =β ′ t[x\a].
(ii) If t1 =β ′ t ′1 and t2 =β ′ t ′2, then t1t2 =β ′ t ′1t ′2.

(iii) If t =β ′ t ′ and A =β ′ A′, then λx : A.t =β ′ λx : A′t ′.
(iv) If A =β ′ A′ and B =β ′ B′, then ∀x : A.B =β ′ ∀x : A′B′.
(v) list rec A F t1 t2 (nil A) =β ′ t1

(vi) list rec A F t1 t2 (cons A a l) =β ′ t2 a l (list rec A F t1 t2 l)

20 M. Sato, J. Garrigue

(vii) list ind A F t1 t2 (nil A) =β ′ t1
(viii) list ind A F t1 t2 (cons A a l) =β ′ t2 a l (list ind A F t1 t2 l)

Now that we defined CCω

list’s terms and typing rules, we can define some familiar operators
over list type, such as membership operator ‘in’ for instance.

in : ∀A : Type0.A → list A → Prop :=
λA : Type0. λa : A. λ l : listA.
(list rec A (λ : list A. Prop)

False
(λx : A. λ : list A. λ ind : Prop. x = a ∨ ind)

l)

We can then derive the following equalities from definition 38.

• in A a (nil A) =β ′ False
• in A a (cons A x l) =β ′ x = a ∨ in A a l

5.2 Interpretation
Here, we define an interpretation of CCω

list. The interpretation of lists is obtained through an initial
algebra construction. We fix an arbitrary element denoted by the dot symbol ‘·’ to interpret the
unit type. We can then define the interpretations of list, nil, cons, list rec and list ind as follows.

(I) Interpretation of list.
First, we define the Kleene closure S∗ of a set S as follows.

S∗ :=
⋃

n∈ω

Sn

where Sn is an n-tuple of S, i.e.

S0 := {(0, ·)}
Sn+1 := {(1, (a, l)) | a ∈ S and l ∈ Sn}.

Then list is interpreted as a function building the Kleene closure of a set.

[[Γ ⊢ list]](γ) := {(S, S∗) | S ∈U0}
We can easily check that

[[Γ ⊢ list]](γ)∈ [[Γ ⊢ Type0 → Type0]](γ)

holds for any γ ∈ [[Γ]].
(II) Interpretation of nil.

nil is interpreted by the constant function returning ‘(0, ·)’.
[[Γ ⊢ nil]](γ) := {(S, (0, ·)) | S ∈U0},

We can again easily check that

[[Γ ⊢ nil]](γ)∈ [[Γ ⊢ ∀A : Type0, listA]](γ)

holds since (0, ·)∈ S∗ for any set S.
(III) Interpretation of cons.

First, we define consS as follows

consS := {(s, (l, (1, s, l))) | s ∈ S and l ∈ S∗}

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 21

for any set S. We can easily check that

consS ∈ S → S∗ → S∗

holds. Now, we can define the interpretation of cons as follows.

[[Γ ⊢ cons]](γ) := {(S, consS) | S ∈U0}
We can again easily check that

[[Γ ⊢ cons]](γ)∈ [[Γ ⊢ ∀A : Type0, A → list A → list A]](γ)

holds.
(IV) Interpretation of list rec.

Given a function T : S∗ →U0, we define the dependent function rec(n)t, f ∈ ∏l∈Sn T (l) by
recursion on natural numbers.

rec(0)t, f := {((0, ·), t)}

rec(n+1)
t, f := {((1, (a, l)), f (a)(l)(rec(n)t, f (l))) | a ∈ S and l ∈ Sn}

where t is an element of T ((0, ·)) and f is a dependent function

f ∈ ∏
a∈S

∏
l∈S∗

(
T (l)→ T ((1, (a, l)))

)
.

Next, we define rect, f ∈ ∏l∈S∗ T (l) as follows.

rect, f :=
⋃

n∈ω

rec(n)t, f

Finally, we define list rec as follows.

[[Γ ⊢ list rec]](γ) := {(S, (T, (t, (f , rect, f)))) |
S ∈U0

T ∈ S∗ →U0

t ∈ T ((0, ·))

f ∈ ∏
a∈S

∏
l∈S∗

(
T (l)→ T ((1, (a, l)))

)
}

We can again easily check that

[[Γ ⊢ list rec]](γ)∈ [[Γ ⊢
∀A : Type0.∀F : listA → Type0.

F(nil A)→ (∀a : A.∀l : listA.F l → F (cons A a l))→∀l : list A.F l
]](γ)

holds.
(V) Interpretation of list ind.

The interpretation of list ind is much simpler. Since list ind is a proof term, its interpretation
must be

[[Γ ⊢ list ind]](γ) := ⌊γ⌋.
For the soundness theorem, we shall prove that

[[Γ ⊢ list ind]](γ)∈ [[Γ ⊢
∀A : Type0.∀P : listA → Prop.

P(nil A)→ (∀a : A.∀l : listA.P l → P (cons A a l))→∀l : list A.P l
]](γ)

22 M. Sato, J. Garrigue

holds. This is a corollary of Lemma 40.

It remains to prove the soundness of CCω

list.

Theorem 39 (soundness for CCω

list). (1) If t1 =β ′ t2 holds and Γ ⊢ t1 : T and Γ ⊢ t2 : T are
derivable, then [[Γ ⊢ t1]](γ) = [[Γ ⊢ t2]](γ) holds.

(2) If Γ ⊢ t : T is derivable in CCω

list, then [[Γ ⊢ t]](γ)∈ [[Γ ⊢ T]](γ) holds.

To prove (1), we need a CCω

listversion of Lemma 10 and Lemma 30. They can be proved
similary as for CCω . To prove (2), we need the following lemma that states the soundness of
induction on lists.

Lemma 40.
[[Γ ⊢ ∀A : Type0.∀P : list A → Prop.

P(nil A)→ (∀a : A.∀l : list A.P l → P (cons A a l))→∀l : list A.P l
]](γ) = X

where X is the whole topological space (X ,O(X)).

Proof. Let S be a set and ψ ∈ S∗ →O(X) be a function. We define the set of open sets T ψ
n as

T ψ

0 := {ψ(0, ·)}
T ψ

n+1 := T ψ
n ∪ {ψ(1, (a, l))ψ(l) | a ∈ S and l ∈ Sn}.

For any n ∈ ω and l ∈ Sn, ⊔T ψ
n ≤ ψ(l) holds by induction on natural numbers. Let T ψ be their

union

T ψ :=
⋃

n∈ω

T ψ
n .

Since T ψ
n ⊂ T ψ , therefore ⊔T ψ ≤ ⊔T ψ

n holds, hence we have ⊔T ψ ≤ ψ(l) for any l ∈ S∗.
Therefore, we also have ⊔T ψ ≤ ⊔{ψ(l) | l ∈ S∗}.

Now, let us calculate the first equation:

[[∀A : Type0.∀P : list A → Prop.

P(nil A)→ (∀a : A.∀l : list A.P l → P (cons A a l))→∀l : list A.P l
]](γ)

= ⊔

S∈U0

(

⊔

ψ∈S∗→O(X)

(⊔

l∈S∗
ψ(l)

)(⊔T ψ)
)

= ⊔

S∈U0

(

⊔

ψ∈S∗→O(X)

X
)

= X

To calculate it, we use (1) and (7) from lemma 19.
□

6. Conclusion and Future Work
We could construct an intuitionistic set-theoretical model of CCω , which allowed us to prove that
PEM and the linearity axiom do not hold in CCω . This model is not complete with respect to plain
CCω , since it is proof-irrelevant.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 23

This model combines an impredicative interpretation of propositional terms and a predicative
interpretation of non-propositional terms as in Miquel and Werner (2003).

Since one of our goals is to provide a model for Coq, we need to extend our model to all of
CIC. This requires working on several extensions:

• CIC adds subsumption between Prop and Typei.

Γ ⊢ A : Prop
Γ ⊢ A : Typei

In fact, this rule breaks Lemma 12 and 15. As a result, Theorem 32, soundness of beta
equality, does not hold, as we show here.
Let I be λT : Typei.T → T . In a set-theoretical interpretation, [[I]] must be a function A 7→
{ f | f : A → A}. However, for any propositional term P, the term I P is a tautology, and its
interpretation is X , which leads to conflicting interpretations as [[I]]([[P]]) = [[P]]→ [[P]] ̸= X .
Using an idea from Aczel (1998), Lee and Werner (2011) and Timany and Sozeau (2017)
avoided this problem in an elegant way, by giving a uniform interpretation of propositional
and non-propositional terms. They define the encoding functions app and lam as follows.

app(u, x) := {z | (x, z)∈ u}
lam(f) :=

⋃
(x,y)∈ f

{(x, z) | z ∈ y}

These satisfy the expected property app(lam(f), x) = f (x). Using the classical interpretation
[[Prop]] = {∅, {∅}}, the interpretation of the product type ∀x : A.B becomes {lam(f) | f ∈
∏x∈A B(x)} ∈ [[Prop]]. It evaluates to {∅} iff B(x) = {∅} for all x ∈ A.
Unfortunately, this solution does not apply to intuitionistic settings, since [[Prop]] should con-
tain more elements, making such a simple encoding impossible. We believe that searching
for a non uniform encoding is a more resonable direction.

• Finally, CIC adds inductive and co-inductive type definitions, and they both can live in the
impredicative universe Prop. The model in Lee and Werner (2011) supports generic induc-
tive definitions through their set theoretical interpretation in a predicative universe as it
was defined by Dybjer (2000), using Aczel’s Φ-closed set approach (Aczel and Rathjen,
2010). However, they do not extend this interpretation to the impredicative case. We have
not yet investigated how to handle generic inductive definitions, co-inductive defintions, and
impredicative inductive definitions in our model.

References
Aczel, P. 1998. On relating type theories and set theories. In Proceedings of Types, volume 1657 of Springer LNCS, pp. 1–18.
Aczel, P. and Rathjen, M. 2010. CST Book draft. https://www1.maths.leeds.ac.uk/~rathjen/book.pdf.
Arenas, F. G. 1999. Alexandroff spaces. Acta Math. Univ. Comenianae, 68(1):17–25.
Barendregt, H. 1991. Introduction to generalized type systems. Journal of Functional Programming, 1(2):125–154.
Barendregt, H. 1992. Handbook of Logic in Computer Science, volume 2, chapter 2: Lambda calculus with types. Oxford

University Press.
Barras, B. 2010. Sets in coq, coq in sets. Journal of Formalized Reasoning, 3(1):29–48.
Coquand, T. and Huet, G. 1988. The calculus of constructions. Information and computation, 76(2):95–120.
Dybjer, P. 2000. A general formulation of simultaneous inductive-recursive definitions in type theory. Journal of Symbolic

Logic, 65(2):525–549.
Forster, Y. 2021. Church’s thesis and related axioms in Coq’s type theory. In 29th EACSL Annual Conference on Computer

Science Logic (CSL 2021), volume 183 of LIPIcs, pp. 21:1–21:19.
Geuvers, H. 2001. Induction is not derivable in second order dependent type theory. In Types for Proofs and Programs.
Girard, J.-Y. 1989. Proofs and types. Cambridge University Press.
Jacobs, B. 2001. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the Foundations of Mathematics.

Elsevier.

https://www1.maths.leeds.ac.uk/~rathjen/book.pdf

24 M. Sato, J. Garrigue

Jiménez, B. C. R. 1999. Condensing lemmas for pure type systems with universes. In Algebraic Methodology and Software
Technology, volume 1548 of Springer LNCS, pp. 422–437.

Lee, G. and Werner, B. 2011. Proof-irrelevant model of CC with predicative induction and judgemental equality. Logical
Methods in Computer Science, 7(4:5). https://doi.org/10.2168/LMCS-7(4:5)2011.

Luo, Z. 1991. A higher-order calculus and theory abstraction. Information and Computation, 90(1):107–137.
MacLane, S. and Moerdijk, I. 1992. Sheaves in geometry and logic: A first introduction to topos theory. Springer, New

York.
Miquel, A. and Werner, B. 2003. The not so simple proof-irrelevant model of CC. In Types for Proof and Programs, volume

2426 of Springer LNCS, pp. 240–258.
Reynolds, J. 1984. Polymorphism is not set-theoretic. In Semantics of Data Types, volume 173 of Springer LNCS, pp.

145–156.
Sato, M. and Garrigue, J. 2016. An intuitionistic set-theoretical model of CCω̄ . Journal of Information Processing,

24(4):711–720.
Stefanova, M. and Geuvers, H. 1995. A simple model construction for the calculus of constructions. In International

Workshop on Types for Proofs and Programs.
Streicher, T. 1991. Semantics of Type Theory: Correctness, Completeness and Independence Results. Birkäuser, Boston,

MA.
Timany, A. and Sozeau, M. 2017. Consistency of the predicative calculus of cumulative inductive constructions (pCuIC).

coRR. arXiv preprint arXiv:1710.03912.
Univalent Foundations Program 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. http://

homotopytypetheory.org/book, Institute for Advanced Study.
van Dalen, D. 1984. Intuitionistic logic. In Handbook of Philosophical Logic, volume III, pp. 225–339. Springer.
van den Berg, B. 2007. Diaconescu’s theorem and the principle of propositional extensionality. Unpublished.
Werner, B. 1997. Sets in types, types in sets. In Theoretical aspects of computer software, volume 1281 of Springer LNCS,

pp. 530–546.
Werner, B. 2008. On the strength of proof-irrelevant type theories. Logical Methods in Computer Science, 4(3:13):1–20.

Appendix A. Proof of Weakening
Lemma 29. The proof is by induction on t, using Lemma 13.

• t = x (case of variable)
It is clear since t is not a proof term.

• t = λx : A.t ′

By Lemma 10, t ′ is also not a proof term for Γ1; (x′ : A′); Γ2; (x : A). Therefore

[[Γ1; Γ2 ⊢ λx : A.t ′]](γ1, γ2)

= {(α, [[Γ1; Γ2; (x : A) ⊢ t ′]](γ1, γ2, α) |
α ∈ [[Γ1; Γ2 ⊢ A]](γ1, γ2)}

= {(α, [[Γ1; (x′ : A′); Γ2; (x : A) ⊢ t ′]](γ1, α
′, γ2, α) |

α ∈ [[Γ1; (x′ : A′); Γ2 ⊢ A]](γ1, α
′, γ2)}

= [[Γ1; (x′ : A′); Γ2 ⊢ λx : A.t ′]](γ1, α
′, γ2)

holds.
• t = t1 t2

By Lemma 10, t1 is also not a proof term for Γ1; (x′ : A′); Γ2. If t2 is a proof term for Γ1; (x′ :
A′); Γ2, then

[[Γ1; Γ2 ⊢ t1 t2]](γ1, γ2)

= [[Γ1; Γ2 ⊢ t1]](γ1, γ2) (⊥X)

= [[Γ1; (x′ : A′); Γ2 ⊢ t1]](γ1, α
′, γ2) (⊥X)

= [[Γ1; (x′ : A′); Γ2 ⊢ t1 t2]](γ1, α
′, γ2)

https://doi.org/10.2168/LMCS-7(4:5)2011
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 25

holds. If t2 is not a proof term, then it is proved similarly.
• t = ∀x : A.B

By Lemma 15

PTΓ1;Γ2,x(A, B) = PTΓ1;(x′:A′);Γ2,x(A, B)

holds. Hence we can only prove in the case of PTΓ1:Γ2,x(A, B).
• t = Prop or Typei

Clear.

□

Appendix B. Proof of Substitution
Lemma 30. We define the predicates P(∆) and Q(∆, t) as follows.

P(∆) ≡ ∀δ , (γ, [[Γ ⊢ u]](γ), δ)∈ [[Γ; (x : u); ∆)]]

⇒ (γ, δ)∈ [[Γ; ∆[x\u]]],
Q(∆, t) ≡ ∀δ , [[Γ; (x : U); ∆ ⊢ t]](γ, [[Γ ⊢ u]](γ), δ) is well defined

⇒
(
[[Γ; ∆[x\u] ⊢ t[x\u]]](γ, δ) is well-defined

and [[Γ; x : U ; ∆ ⊢ t]](γ, [[Γ ⊢ u]](γ), δ)

= [[Γ; ∆[x\u] ⊢ t[x\u]]](γ, δ)

)
.

We prove this lemma in three steps (i)P([]), (ii)P(∆)⇒∀t, Q(∆, t), (iii)(∀t, Q(∆, t))⇒
∀T, P(∆; y : T).

(i) P([])
Clear

(ii) P(∆)⇒∀t, Q(∆, t)
If t is a proof term for Γ; (x : U); ∆, then t[x\u] is also a proof term for Γ; ∆[x\u] by
Lemma 12. Therefore

[[Γ; (x : U); ∆ ⊢ t]](γ, [[Γ ⊢ u]](γ), δ) = ⌊γ, [[Γ ⊢ u]](γ), δ⌋
[[Γ; ∆ ⊢ t[x\u]]](γ, δ) = ⌊γ, δ⌋

hold. Hence we must prove that

⌊γ, [[Γ ⊢ u]](γ), δ⌋= ⌊γ, δ⌋.

If u is not a proof term for Γ, it is clear. If u is a proof term then [[Γ ⊢ u]](γ) = ⌊γ⌋ holds,
therefore it also hold.
Next, if t is not a proof term for Γ; (x : U); ∆, then t[x\u] is also not a proof term for Γ; ∆[x\u]
by Lemma 12. We prove by induction on the term t.
– t = Prop or Typei

It is clear.
– t = ∀a : A.B

We assume that

[[Γ; (x : U); ∆ ⊢ ∀a : A.B]](γ, [[Γ ⊢ u]](γ), δ)

26 M. Sato, J. Garrigue

is well defined, therefore

[[Γ; (x : U); ∆ ⊢ A]](γ, [[Γ ⊢ u]](γ), δ),

[[Γ; (x : U); ∆; (a : A) ⊢ B]](γ, [[Γ ⊢ u]](γ), δ , α)

are also well defined. By induction hypothesis, Q(∆, A) and Q(∆; (a : A), B) are assumed.
By Lemma 15, the value of PT is invariant. Hence the statement holds in this case.

– t = λa : A.t
We assume that

[[Γ; (x : U); ∆ ⊢ λa : A.t]](γ, [[Γ ⊢ u]](γ), δ)

is well defined, therefore

[[Γ; (x : U); ∆; (a : A) ⊢ t]](γ, [[Γ ⊢ t]](γ), δ , α)

[[Γ; (x : U); ∆ ⊢ A]](γ, [[Γ ⊢ u]](γ), δ)

are also well defined. By induction hypothesis, Q(∆; (a : A), t) and Q(∆, A) are assumed.
Hence the statement holds in this case.

– t = a b
We assume that

[[Γ; (x : U); ∆ ⊢ a b]](γ, [[Γ ⊢ u]](γ), δ)

is well defined, therefore

[[Γ; (x : U); ∆ ⊢ a]](γ, [[Γ ⊢ u]](γ), δ)

is well defined and a function whose domain contains

[[Γ; (x : U); ∆ ⊢ b]](γ, [[Γ ⊢ u]](γ), δ).

By induction hypothesis, Q(∆, a) and Q(∆, b) are assumed. By Lemma 12, if b is a (resp.
not) proof term for Γ; (x : U); ∆, then b[x\u] is also a (resp. not) proof term for Γ; ∆[x\u].
Hence the statement holds in this case.

– t = y (case of variable)
We prove in three cases as follows.
– The variable y occur in Γ.

In this case, we have

[[Γ; (x : U); ∆ ⊢ y]](γ, [[Γ ⊢ u]](γ), δ) = γi,

[[Γ; ∆[x\u] ⊢ y[x\u]]](γ, δ) = γi.

for some i. Hence the statement holds in this case.
– The case y = x.

We have

[[Γ; (x : U); ∆ ⊢ x]](γ, [[Γ ⊢ u]](γ), δ) = [[Γ ⊢ u]](γ),
[[Γ; ∆[x\u] ⊢ x[x\u]]](γ, δ) = [[Γ; ∆[x\u] ⊢ u]](γ).

By Lemma 29, the statement holds in this case.
– The variable y occur in ∆.

In this case, we have

[[Γ; (x : U); ∆ ⊢ y]](γ, [[Γ ⊢ u]](γ), δ) = δi

for some i. Since (γ, δ)∈ [[Γ; ∆[x\u]]] by hypothesis P(∆), hence following equation is
well defined.

[[Γ; ∆[x\u] ⊢ y]](γ, δ) = δi

Hence the statement holds in this case.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 27

(iii) (∀t, Q(∆, t))⇒∀T, P(∆; y : T)
We assume that

(γ, [[Γ ⊢ u]](γ), δ , ε)∈ [[Γ; (x : U); ∆; (y : T)]].

By definition of the interpretation of contexts, we have

(γ, [[Γ ⊢ u]](γ), δ) ∈ [[Γ; (x : U); ∆]]

ε ∈ [[Γ; (x : U); ∆ ⊢ T]](γ, [[Γ ⊢ u]](γ), δ)

Since Q(∆, T) holds, hence following equations hold.

(γ, δ) ∈ [[Γ; ∆[x\u]]],
ε ∈ [[Γ; ∆[x\u] ⊢ T [x\u]]](γ, δ).

Therefore we have

(γ, δ , ε)∈ [[Γ; ∆[x\u] ⊢ T [x\u]]](γ, δ).

□

Appendix C. Proof of semantic proof irrelevance
Lemma 31. The proof is by induction on t.

• t = x (case of variable)
Since t is not a proof term for Γ; (x′ : A′); ∆, therefore we have t ̸= x′, hence the statement
holds in this case.

• t = λx : A.t ′

By Lemma 10, t is also not a proof term for Γ; (x′ : A′); ∆; (x : A). Therefore

[[Γ; (x′ : A′); ∆ ⊢ λx : A.t ′]](γ, p1, δ)

= {(α, [[Γ; (x′ : A′); ∆; (x : A) ⊢ t ′]](γ, p1, δ , α)) |
α ∈ [[Γ; (x′ : A′); ∆ ⊢ A]](γ, p1, δ)}

= {(α, [[Γ; (x′ : A′); ∆; (x : A) ⊢ t ′]](γ, p2, δ , α)) |
α ∈ [[Γ; (x′ : A′); ∆ ⊢ A]](γ, p2, δ)}

= [[Γ; (x′ : A′); ∆ ⊢ λx : A.t ′]](γ, p2, δ)

holds.
• t = t1 t2

By Lemma 10, t1 is also not a proof term for Γ; (x′ : A′); ∆. If t2 is a proof term for Γ; (x′ :
A′); ∆, then

[[Γ; (x′ : A′); ∆ ⊢ t1 t2]](γ, p1, δ)

= [[Γ; (x′ : A′); ∆ ⊢ t1]](γ, p1, δ)(⊥X)

= [[Γ; (x′ : A′); ∆ ⊢ t1]](γ, p2, δ)(⊥X)

= [[Γ; (x′ : A′); ∆ ⊢ t1 t2]](γ, p2, δ)

holds. If t2 is not a proof term for Γ; (x′ : A′); ∆, then similarly.
• t = ∀x : A.B

Similarly.

□

28 M. Sato, J. Garrigue

Appendix D. Proof of Soundness
Theorem 33. The proof is by induction on the typing derivation.

(1) Case of Axiom
[[Prop]]∈ [[Typei]] is holds by the condition of (X ,O(X)).

(2) Case of Weakening
It holds by Lemma 29.

(3) Case of Subsumption
It holds by (iv) of Lemma 25.

(4) Case of PI-Type
We will show the fact that(

∀γ, α, [[Γ ⊢ A]](γ)∈ [[Γ ⊢ s1]](γ)

∧ [[Γ; (x : A) ⊢ B]](γ, α)∈ [[Γ; (x : A) ⊢ s2]](γ, α)
)

⇒ (∀γ, [[Γ ⊢ ∀x : A.B]](γ)∈ [[Γ ⊢ s3]](γ)).

There are four cases as follows.
– PTΓ,x(A, B) =TT

By definition of the interpretation of judgment, the following equation

[[Γ ⊢ ∀x : A.B]](γ) = ∏
α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α)

holds. Since [[Γ ⊢ A]](γ)∈Ui , [[Γ; (x : A) ⊢ B]](γ, α)∈Ui for any γ, α and Lemma 25 (ii),
we have

∏
α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α)∈Ui.

– PTΓ,x(A, B) = PT
By definition of the interpretation of judgment, the following equation

[[Γ ⊢ ∀x : A.B]](γ) ={
f ∈ ∏

α∈[[Γ⊢A]](γ)
[[Γ; (x : A) ⊢ B]](γ, α) | f is a constant function

}
holds. Since [[Γ ⊢ A]](γ)∈Ui , [[Γ; (x : A) ⊢ B]](γ, α)∈Ui for any γ, α and Lemma 25 (ii),
the statement holds.

– PTΓ,x(A, B) =TP
It is clear since [[Γ ⊢ ∀x : A.B]](γ) is an open set by definition of the interpretation of
judgment.

– PTΓ,x(A, B) = PP
It is clear since [[Γ ⊢ ∀x : A.B]](γ) is an open set by definition of the interpretation of
judgment.

(5) Case of Abstraction
We will show the fact that(

∀γ, α, [[Γ; (x : A) ⊢ t]](γ, α)∈ [[Γ; (x : A) ⊢ B]](γ, α)
)

⇒
(
∀γ, [[Γ ⊢ λx : A.t]](γ)∈ [[Γ ⊢ ∀x : A.B]](γ)

)
.

There are four cases as follows.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 29

– PTΓ,x(A, B) =TT
By definition of the interpretation, we have the following equations:

[[Γ ⊢ λx : A.t]](γ) ={(
α, [[Γ; (x : A) ⊢ t]](γ, α)

)
| α ∈ [[Γ ⊢ A]](γ)

}
,

[[Γ ⊢ ∀x : A.B]](γ) =

∏
α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α).

Then, we must prove the following equation:{(
α, [[Γ; (x : A) ⊢ t]](γ, α)

)
| α ∈ [[Γ ⊢ A]](γ)

}
∈ ∏

α∈[[Γ⊢A]](γ)
[[Γ; (x : A) ⊢ B]](γ, α).

But it is clearb by induction hypothesis.
– PTΓ,x(A, B) = PT

It is similar the case of PTΓ,x(A, B) =TT. We must prove that

[[Γ ⊢ λx : A.t]](γ) ={(
α, [[Γ; (x : A) ⊢ t]](γ, α)

)
| α ∈ [[Γ ⊢ A]](γ)

}
is a constant function. Since A is a propositional term for Γ, this is a consequence of
Lemma 31.

– PTΓ,x(A, B) =TP
Since λx : A.t is a proof term, we have following equations

[[Γ ⊢ λx : A.t]](γ) = ⌊γ⌋.

Hence, the fact we must prove that

⌊γ⌋ ∈ [[Γ ⊢ ∀x : A.B]](γ).

By definition we have the following equation.

[[Γ ⊢ ∀x : A.B]](γ) =

⊔{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}.

If [[Γ ⊢ A]](γ) is the empty set, then the statement holds since [[Γ ⊢ ∀x : A.B]](γ) = X . We
assume that [[Γ ⊢ A]](γ) is a non-empty set. We have

∀α ∈ [[Γ ⊢ A]](γ), ⌊γ⌋ ∈ [[Γ; (x : A) ⊢ B]](γ, α)

by induction hypothesis and [[Γ; (x : A) ⊢ t]](γ, α) = ⌊γ, α⌋= ⌊γ⌋. Therefore, we have the
following equation

⌊γ⌋ ∈ ⊔{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}.

Hence the statement holds in this case.
– PTΓ,x(A, B) = PP

Since λx : A.B is a proof term, we have the following equation

[[Γ ⊢ λx : A.t]](γ) = ⌊γ⌋.

bIf [[Γ ⊢ A]](γ) is the empty set, then [[Γ ⊢ ∀x : A.B]](γ) = {∅} and [[Γ ⊢ λx : A.t]](γ) =∅ hold.

30 M. Sato, J. Garrigue

Hence, the fact we must prove that

⌊γ⌋ ∈ [[Γ ⊢ ∀x : A.B]](γ).

To prove it, we show that

↓ ⌊γ⌋ ⊂ [[Γ ⊢ ∀x : A.B]](γ).

This fact is equivalent to the following equation

↓ ⌊γ⌋ ∩ [[Γ ⊢ A]](γ) ⊂ ⊔

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α)

since definition of interpretation and Heyting Algebra. We assume ε ∈↓ ⌊γ⌋ ∩ [[Γ ⊢ A]](γ).
By Lemma 31, we have

⊔

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α) = [[Γ; (x : A) ⊢ B]](γ, ε)

holds; since ε ∈ [[Γ ⊢ A]](γ) holds, right side of this equation is well defined. Here, we also
have

⌊γ, ε⌋ ∈ [[Γ; (x : A) ⊢ B]](γ, ε)

by induction hypothesis. Now, we prove that ⌊γ, ε⌋= ε holds. Since ε ∈↓ ⌊γ⌋ holds,
therefore we have ε ≤ ⌊γ⌋. Hence we have ε = ⌊γ, ε⌋, and the statement holds in this
case.

(6) Case of Apply
We will show the fact that(

∀γ, [[Γ ⊢ u]](γ)∈ [[Γ ⊢ ∀x : A.B]](γ)

∧ [[Γ ⊢ v]](γ)∈ [[Γ ⊢ A]](γ)
)

⇒
(
∀γ, [[Γ ⊢ u v]](γ)∈ [[Γ ⊢ B[x\v]]](γ)

)
.

There are four cases as follows.
– PTΓ,x(A, B) =TT

By definition of the interpretation of judgment and induction hypothesis, the following
equation

[[Γ ⊢ u v]](γ) = [[Γ ⊢ u]](γ)
(
[[Γ ⊢ v]](γ)

)
[[Γ ⊢ u]](γ) ∈ ∏

α∈[[Γ⊢A]](γ)
[[Γ; (x : A) ⊢ B]](γ, α)

[[Γ ⊢ v]](γ) ∈ [[Γ ⊢ A]](γ)

hold. Therefore, we have

[[Γ ⊢ u v]](γ)∈ [[Γ; (x : A) ⊢ B]](γ, [[Γ ⊢ v]](γ)).

By Lemma 30, we have

[[Γ; (x : A) ⊢ B]](γ, [[Γ ⊢ v]](γ)) = [[Γ ⊢ B[x\v]]](γ).

Hence, the statement holds in this case.
– PTΓ,x(A, B) = PT

By definition of the interpretation of judgment and indcution hypothesis, the following

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 31

equation

[[Γ ⊢ u v]](γ) = [[Γ ⊢ u]](γ)
(
⊥X

)
[[Γ ⊢ u]](γ) ∈

{
f ∈ ∏

α∈[[Γ⊢A]](γ)
[[Γ; (x : A) ⊢ B]](γ, α) |

f is a constant function
}

[[Γ ⊢ v]](γ) ∈ [[Γ ⊢ A]](γ)

hold. Therefore, we have

[[Γ ⊢ u v]](γ) ∈ [[Γ; (x : A) ⊢ B]](γ,⊥X)

= [[Γ; (x : A) ⊢ B]](γ, [[Γ ⊢ v]](γ))

by Lemma 31. Moreover, the following equation

[[Γ; (x : A) ⊢ B]](γ, [[Γ ⊢ v]](γ)) = [[Γ ⊢ B[x\v]]](γ).

holds by Lemma 30 Hence, the statement holds in this case.
– PTΓ,x(A, B) =TP

It suffices to show that ⌊γ⌋ ∈ [[Γ ⊢ B[x\v]]](γ), since [[Γ ⊢ u]](γ) = [[Γ ⊢ u v]](γ) = ⌊γ⌋ holds.
By induction hypothesis, we have the following equation

⌊γ⌋ ∈ ⊔{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}.

This equation implies the fact that

∀α ∈ [[Γ ⊢ A]](γ), ⌊γ⌋ ∈ [[Γ; (x : A) ⊢ B]](γ, α).

By Lemma 30 and the fact [[Γ ⊢ v]](γ)∈ [[Γ ⊢ A]](γ), we have

⌊γ⌋ ∈ [[Γ ⊢ B[x\v]]](γ).

Hence, the statement holds in this case.
– PTΓ,x(A, B) = PP

By induction hypothesis, we have

⌊γ⌋ ∈ [[Γ ⊢ ∀x : A.B]](γ),
⌊γ⌋ ∈ [[Γ ⊢ A]](γ)

since [[Γ ⊢ u]](γ) = [[Γ ⊢ v]](γ) holds. The following equation holds.

[[Γ ⊢ ∀x : A.B]](γ) =
(

⊔

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α)

)[[Γ⊢A]](γ)

By (8) in Lemma 19, we have

[[Γ ⊢ ∀x : A.B]](γ) ∩ [[Γ ⊢ A]](γ)

⊂ ⊔

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α).

Then we also have

⌊γ⌋ ∈ ⊔

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α).

Hence

⌊γ⌋ ∈ [[Γ; (x : A) ⊢ B]](γ, [[Γ ⊢ v]](γ))

holds. By Lemma 30 and [[Γ ⊢ u v]](γ) = ⌊γ⌋, the statement holds in this case.

32 M. Sato, J. Garrigue

(7) Case of Variable
We show that

∀α ∈ [[Γ ⊢ A]](γ), [[Γ; (x : A) ⊢ x]](γ, α)∈ [[Γ; (x : A) ⊢ A]](γ, α).

By Lemma 29, we must prove that

∀α ∈ [[Γ ⊢ A]](γ), [[Γ; (x : A) ⊢ x]](γ, α)∈ [[Γ ⊢ A]](γ).

If A is not a propositional term for Γ, the statement holds since [[Γ; (x : A) ⊢ x]](γ, α) = α . If
A is a propositional term for Γ, then

[[Γ; (x : A) ⊢ x]](γ, α) = ⌊γ, α⌋
holds. Since ⌊γ, α⌋ ∈ ↓ α ⊂ [[Γ ⊢ A]](γ),

[[Γ; (x : A) ⊢ x]](γ, α)∈ [[Γ ⊢ A]](γ)

holds. Hence the statement holds in this case.
(8) Case of Beta Equality

We must show that

∀γ, [[Γ ⊢ t]](γ)∈ [[Γ ⊢ A]](γ), [[Γ ⊢ B]](γ)∈ [[Γ ⊢ s]](γ)
∧ A =β B
⇒ ∀γ, [[Γ ⊢ t]](γ)∈ [[Γ ⊢ B]](γ).

It is clear by Theorem 33 (1).

□

Appendix E. Proof of interpretation of logical symbols
Theorem 34.

(i) Use Lemma 8 and 29.
(ii) Use (2) in Lemma 19.

(iii) Use (1) and (3) in Lemma 19.
(iv) Use (1), (3) and (4) in Lemma 19.
(v) Use (i) in Theorem 34 and (1), (2), (3) and (6) in Lemma 19.

(vi) Use (i) in Theorem 34 and (3) and (5) in Lemma 19.
(vii) What we prove is the followingc.

[[Γ ⊢ x =A y]](γ) =

{
X

(
[[Γ ⊢ x]](γ) = [[Γ ⊢ y]](γ)

)
∅

(
[[Γ ⊢ x]](γ) ̸= [[Γ ⊢ y]](γ)

)
By using (i) in Theorem 34, we have

[[Γ ⊢ x =A y]](γ) = ⊔{π([[Γ ⊢ y]](γ))π([[Γ⊢x]](γ)) | π ∈ [[Γ ⊢ A → Prop]](γ)}.

If [[Γ ⊢ x]](γ) ̸= [[Γ ⊢ y]](γ), we can choose π as the followings

π([[Γ ⊢ x]](γ)) ̸= ∅
π([[Γ ⊢ y]](γ)) = ∅

hold. By (9) in Lemma 19, we have [[Γ ⊢ x =A y]](γ) =∅. Hence the statement holds in this
case.

cThe remaining propositions yield by contrapositions of this fact.

An Intuitionistic Set-theoretical Model of Fully Dependent CCω 33

Next, we assume [[Γ ⊢ x]](γ) = [[Γ ⊢ y]](γ). In this case,

π([[Γ ⊢ y]](γ))π([[Γ⊢x]](γ)) = X

holds for any π by (7) in Lemma 19. Hence the statement also holds in this case.
(viii) a. The following equation

[[Γ ⊢ A ↔ B]](γ) = [[Γ ⊢ B]](γ)[[Γ⊢A]](γ) ⊓ [[Γ ⊢ A]](γ)[[Γ⊢B]](γ)

holds. If [[Γ ⊢ A]](γ) = [[Γ ⊢ B]](γ) holds, then

[[Γ ⊢ A ↔ B]](γ) = X
[[Γ ⊢ A =Prop B]](γ) = X (by (vii) in Theorem 34)

holds. Hence the statement holds in this case. If [[Γ ⊢ A]](γ) ̸= [[Γ ⊢ B]](γ), then [[Γ ⊢
A =Prop B]](γ) =∅ holds by. Hence, the statement also holds in this case.

b. Use (10) in Lemma 19 and (vii) in Theorem 34.

□

	Introduction
	Typing of CC
	Interpretation
	Properties of the model
	Interpretation of inductive types
	Conclusion and Future Work
	Proof of Weakening
	Proof of Substitution
	Proof of semantic proof irrelevance
	Proof of Soundness
	Proof of interpretation of logical symbols

