
Type-level module aliases:

independent and equal

Jacques Garrigue Leo P. White

Nagoya University Cambridge University



Garrigue & White — Type-level module aliases 1

Type-level module alias

– A very simple feature,

– which naturally complements applicative functors,

– and reconciles the module-as-namespace approach

with separate compilation.

– Available in OCaml 4.02 (released last week).



Garrigue & White — Type-level module aliases 2

The definition

Allow aliases in signatures:

module S = String

in a signature means that S is an alias for String,

i.e. it will be expanded to String when used.

This can be understood as a singleton type:

module S : (module String)



Garrigue & White — Type-level module aliases 3

The typing rules

– Infer type-level module aliases

# module M = P ;;

module M = P

Γ ` P well formed

Γ ` P : (module P )
(∗)

– Extend the subtyping relation

Γ(P ) = S

Γ ` (module P ) <: S

Here P is a module path.

(∗) Only if P appears as rhs of a binding.



Garrigue & White — Type-level module aliases 4

The origin

– The concept of type-level module alias appeared first

in Traviatta [Nakata&G, ICFP 2006].

– Used to allow type inference of recursive modules.
module rec Tree = struct

module F = Forest

...

end

and Forest = struct ... Tree ... end

Here we do not know yet the type of Forest when we

typecheck the binding of F, so we handle it as an alias.



Garrigue & White — Type-level module aliases 5

The discovery

Later, we discovered that type-level module aliases were

a good match for OCaml-style applicative functors.

module S = String

module SSet = Set.Make(S)

module StringSet = Set.Make(String)

let f (x : StringSet.t) = (x : SSet.t)

The last statement fails in OCaml before 4.01, but

succeeds with type-level module aliases.



Garrigue & White — Type-level module aliases 6

The application

– Helping applicative functors was probably not enough

to justify a new feature.

– However, remember that the original goal was to

simplify program analysis.

– By simplifying the typechecking of aliases, type-level

module aliases allow to remove dependencies,

– which in turns allows to use them to construct

flexible hierarchical namespaces.



Garrigue & White — Type-level module aliases 7

Modules as namespaces

– The ML module system is very powerful.

– Through nested structures, it allows for hierarchical

design of libraries.

– Sharing of types allows grafting a module somewhere

else in the hierarchy.

– ML modules: the ultimate namespace design?



Garrigue & White — Type-level module aliases 8

The broken hierarchy: OCaml

This ideal view only applies in theory.

– For separate compilation, root modules, aka

compilation units, are mapped to files.

– Libraries are just forests of modules, and using several

libraries simultaneously mixes their modules.

→Risk of name conflicts (breaks linking).

– The -pack command allows to turn a library into a

module with submodules, but it is monolithic.

→Using modules as namespaces creates large interfaces

and binaries. (e.g. Jane Street’s Core library)



Garrigue & White — Type-level module aliases 9

The re-built hierarchy: SML/NJ

– SML/NJ avoids many of these problems,

– but this is thanks to an external mechanism:

the Compilation Manager.

– Namespaces are declared in special files, using a

dedicated syntax.

– An essential part of the language falls out of the

specification.



Garrigue & White — Type-level module aliases 10

A packed library

This library contains two units: mylibA.ml and mylibB.ml,

and a wrapper mylib.ml.

Mylib

module A = MylibA

module B = MylibB
:

Interface

module A : sig ... end

module B : sig ... end

Can be used comfortably with open.

open Mylib

let x = A.f 3

However, as separate compilation only allows to see the

interface, this program links Mylib, MylibA and MylibB.



Garrigue & White — Type-level module aliases 11

Using type-level module aliases

Thanks to type-level module aliases, the typing changes:

Mylib

module A = MylibA

module B = MylibB
:

Interface

module A = MylibA

module B = MylibB

As a result, references to Mylib.A can be expanded to
MylibA, on the client side.

open Mylib

let x = A.f 3

This program now just requires MylibA, like if we had

written MylibA.f in place of A.f.



Garrigue & White — Type-level module aliases 12

Induced dependencies

For backward compatibility reasons, a new compilation

flag -no-alias-deps enables refined dependencies.

Here are the dependencies for the previous example:

Link/Compile-time deps Mylib MylibA MylibB

Mylib (default) − √ √

Mylib (-no-alias-deps) − − −
Client (default)

√ √ √
/−∗

Client (-no-alias-deps) ct
√ −

(*) depends on whether Mylib was compiled with -no-alias-deps.
(ct) only required at compile time.



Garrigue & White — Type-level module aliases 13

Application to build libraries

One can avoid monolithic packing by using the following

recipe:

1. Create a mapping unit whose role is only to map

short names to prefixed names, for all member units.

2. Open this unit in all members, so that one can use

short names inside them.

3. Create an export unit, which again maps short names

to prefixed names, but may choose to omit some

internal modules.

Using this approach, MylibB can refer to MylibA just as A.



Garrigue & White — Type-level module aliases 14

Library example

Mylib

module A = MylibA (* does not require MylibA *)

module B = MylibB (* does not require MylibB *)

MylibA

open Mylib (* compile-time dependency *)

let f x = x+1

MylibB

open Mylib (* compile-time dependency *)

let g x = (A.f x) * 2 (* requires MylibA *)

Mylib needs to be compiled first, but this is fine as it has

no dependency at all on MylibA and MylibB.



Garrigue & White — Type-level module aliases 15

Ease of use

Compared to the -pack command, which completely

hides the original files, this approach requires to

– rename the source files to add a unique prefix

– add an open statement at the top of each file

In order to smooth transition, this can be done through

command-line options:

ocamlopt -no-alias-deps -open Mylib -o mylibA.cmx a.ml



Garrigue & White — Type-level module aliases 16

Performance

We have no complete benchmark, but empirical evidence

on the Core/Async libraries shows that

– just using the new compiler divides the size of

compiled interfaces by 3, which speeds up compilation

too,

– using -no-alias-deps reduces the size of executables

by 2 (up to 10 in some cases).



Garrigue & White — Type-level module aliases 17

Limitations and future work

Currently, type-level module aliases can be created only

for a limited subset of module paths.

The following are excluded:

– Functor applications

– Opaque coercions

– Functor arguments

– Recursive modules

While this is sufficient for the application to namespaces,

in the future we would like to support these cases to

improve the use of applicative functors.



Garrigue & White — Type-level module aliases 18

PR#4049

Aside of performance, some “design” bugs of applicative

functors are solved.

module A = struct

module B = struct type t let compare x y = 0 end

module S = Set.Make(B)

let empty = S.empty

end

module A1 = A;;

A1.empty = A.empty;;

In this program, the last line was causing a type error,

but is now fixed by type-level module aliases.



Garrigue & White — Type-level module aliases 19

PR#3476

module FF(X : sig end) = struct type t end

module M = struct

module X = struct end

module Y = FF (X) (* XXX *)

type t = Y.t

end

module F (Y : sig type t end)

(M : sig type t = Y.t end) = struct end

module N = F (M.Y) (M);;

In this program the last line fails, but the required

equality involves paths containing functor applications.


