
Interpreting OCaml GADTs into Coq
Jacques Garrigue
Nagoya University

Graduate School of Mathematics
Japan

Takafumi Saikawa
Nagoya University

Graduate School of Mathematics
Japan

Abstract
GADTs [1, 9] have become a common feature of strongly
typed functional programming languages. They are often
presented as a weaker form of the inductive types seen in
Coq or Agda. In both cases, constraints generated by pattern-
matching allow one to generate equations that can be applied
to types. However, there is an important difference: in OCaml
or Haskell, unification can be used to refine syntactic equa-
tions on types, while this is not the case in Coq or Agda,
where one cannot observe that type constructors are syn-
tactically injective. This is a problem when one wants to
translate code from a functional programming language to
a type-theory based proof assistant, as a literal translation
would not allow one to infer the necessary equations. This
may be one of the reasons why existing automatic translators
provide little or no support for GADTs [2, 7].
In this presentation we show how to avoid this problem

by using a two-pronged translation, where OCaml types are
mapped to an intensional representation, that preserves the
deductive properties, which is itself interpreted into concrete
Coq types, that allow computation. We also discuss what is
further needed for an automatic translator.

1 Naive translation
Let us consider the standard example for GADTs: a well-
typed interpreter, in OCaml syntax.
type _ expr =
| Int : int -> int expr
| Add : (int -> int -> int) expr
| App : ('a -> 'b) expr * 'a expr -> 'b expr

let rec eval : type a. a expr -> a = function
| Int n -> n
| Add -> (+)
| App (f, x) -> eval f (eval x)

One can see the expressive power of using types as indices
in this trivial example, where one constructs a concrete value
matching a type index.
let add = eval Add
val add : int -> int -> int = <fun>

One can easily translate this GADT into a Coq inductive
type, and even eval types fine.
Require Import Int63.
Inductive expr : Type -> Type :=
| Int : int -> expr int

| Add : expr (int -> int -> int)
| App a b : expr (a -> b) -> expr a -> expr b.

Fixpoint eval (a : Type) (e : expr a) : a :=
match e in expr a return a with
| Int n => n
| Add => Int63.add
| App b c f x => eval (b -> c) f (eval b x)
end.

One can also translate equality witnesses and the associ-
ated cast function.
type (_,_) eq = Refl : ('a,'a) eq
let cast : type a b. (a, b) eq -> a -> b =
function Refl -> fun x -> x

Inductive eqw (A : Type) : A -> A -> Type :=
| Refl x : eqw A x x.

Definition cast A B (w : eqw Type A B) :=
match w in eqw _ A B return A -> B
with Refl _ _ => fun a => a end.

However, problems start when one wants to extract an
equality through unification.
let cast_fst : type a b.

(a * b, int * bool) eq -> a -> int =
function Refl -> fun x -> x

There is basically no way to do that in Coq, as there is no
proof of the injectivity of type parameters for the type of
pairs.
A similar problem occurs with the classical encoding of

fixed-length vectors.
type zero = Zero
type 'a succ = Succ of 'a
type (_,_) vec =

Nil : ('a, zero) vec
| Cons : 'a * ('a,'n) vec -> ('a, 'n succ) vec

let rec map : type a b n.
(a -> b) -> (a,n) vec -> (b,n) vec =

fun f -> function
| Nil -> Nil
| Cons (a, l) -> Cons (f a, map f l)

let head : type a n. (a,n succ) vec -> a =
function Cons (a, _) -> a

Note that here the concrete value constructors for zero and
succ do not matter, since we only use these types abstractly.

https://orcid.org/0000-0001-8056-5519
https://orcid.org/0000-0003-4492-745X


Jacques Garrigue and Takafumi Saikawa

The function map uses type-level unification to ensure that
the length is kept. In head, we again use unification to discard
the Nil case as unreachable.
We can translate vec and map without problem.

Inductive zero := Zero.
Inductive succ (n : Type) := Succ of n.
Inductive vec (A : Type) : Type -> Type :=

| Nil : vec A zero
| Cons n : A -> vec A n -> vec A (succ n).

Fixpoint map A B n (f : A -> B) (l : vec A n):=
match l in vec _ n return vec B n with
| Nil _ => Nil B
| Cons _ n a l =>
Cons B n (f a) (map A B n f l)

end.

However there is no way to translate head as long as zero
and succ are translated as types, since discarding Nil re-
quires a proof that zero cannot be equal to succ n, which
cannot be done in Coq. More precisely, a proof of semantic
inequality would require zero and succ n to have different
cardinality [8, Theorem 8.3.2], which is not the case here.

2 Intensional translation
The cause of our problems is that in OCaml datatypes are
injective in their type parameters, and can be structurally dis-
tinguished in most cases, for instance by value constructors
with different names, while in Coq this is not the case.

Our solution is to translate OCaml types to Coq data, and
recover Coq types through an interpretation function. This
approach is reminiscent of intensional type analysis [3, 6],
in the heterogeneous case where we are interpreting OCaml
types inside Coq.
Require Import ssreflect.
Inductive ml_type : Set :=

| ml_int
| ml_bool
| ml_arrow of ml_type & ml_type
| ml_pair of ml_type & ml_type
| ml_eqw of ml_type & ml_type
| ml_expr of ml_type
| ml_zero
| ml_succ of ml_type
| ml_vec of ml_type & ml_type.

Here we use the ssreflect syntax for inductive types, which
happens to be closer to ML.

Before defining the interpretation, we define our GADTs,
using explicit equations for clarity, and easier automation1.
Inductive eqw (T1 T2 : ml_type) :=

| Refl of T1 = T2.

1A style closer to the naive translation, leaving equations implicit, is also
possible, but arguably less predictable.

Inductive expr (T : ml_type) :=
| Int of T = ml_int & int
| Add of T = ml_arrow ml_int

(ml_arrow ml_int ml_int)
| App T2 of expr (ml_arrow T2 T) & expr T2.

Inductive zero := Zero.
Inductive succ (n : Type) := Succ of n.
Inductive vec (A : Type) (n : ml_type) :=
| Nil of n = ml_zero
| Cons m of n = ml_succ m & A & vec A m.

Fixpoint coq_type (T : ml_type) : Type :=
match T with
| ml_int => Int63.int
| ml_bool => bool
| ml_arrow T1 T2 => coq_type T1 -> coq_type T2
| ml_pair T1 T2 => coq_type T1 * coq_type T2
| ml_eqw T1 T2 => eqw T1 T2
| ml_expr T1 => expr T1
| ml_zero => zero
| ml_succ T1 => succ (coq_type T1)
| ml_vec T1 T2 => vec (coq_type T1) T2
end.

Note in vec how parameters of inductive types may either be
Coq types, when they represent concrete values, or ML types,
when they are used in equations. The same parameter might
even be duplicated if it is used in both ways, with coq_type
ensuring that the two version are synchronized. In functions,
we will uniformly use ml_type for polymorphism, as we can
now use coq_type to interpret it.
While this translation is more verbose, as we are now

using equations explictly, no expressive power is lost.
Fixpoint eval (T : ml_type) (e : expr T)

: coq_type T :=
match e with
| Int _ H n => eq_rect _ _ n _ (eq_sym H)
| Add _ H => eq_rect _ _ Int63.add _ (eq_sym H)
| App _ H f x => eval _ f (eval _ x)
end.

Definition eqw_eq [x y] (w : eqw x y) : x = y :=
match w with Refl _ _ H => H end.

Definition cast T1 T2 (w : eqw T1 T2)
(x : coq_type T1) : coq_type T2 :=
eq_rect T1 coq_type x T2 (eqw_eq w).

Moreover, it becomes possible to properly extract equations
through injectivity.
Definition proj_ml_pair_1 T0 T :=

match T with ml_pair T1 _ => T1 | _ => T0 end.

Definition cast_fst (A B : ml_type)
(w : eqw(ml_pair A B)(ml_pair ml_int ml_bool))



Interpreting OCaml GADTs into Coq

(x : coq_type A) : int :=
eq_rect A coq_type x ml_int
(f_equal (proj_ml_pair_1 A) (eqw_eq w)).

One can also discard impossible cases by proving contra-
dictions. In simple cases, an empty match statement suffices.
Definition head (T1 T2 : ml_type)
(l : vec (coq_type T1) (ml_succ T2))
: coq_type T1 :=
match l with
| Nil _ _ H => match H with end
| Cons _ _ _ _ a _ => a
end.

3 Bad recursion?
Some type definitions use type variables both intensionally
and as Coq types.

For type parameters themselves, this can be handled through
duplication, coq_type keeping the copies synchronized.
type 'a result = Res of 'a expr * 'a

Inductive result (T : ml_type) (A : Type) :=
| Result of expr T & A.

Fixpoint coq_type (T : ml_type) : Type := ...
| ml_result T1 => result T1 (coq_type T1)
...

However, this trick does not work with existential type
variables. Let us conside for instance the type hlist of het-
erogeneous lists.
type _ hlist =
| HNil : zero hlist
| HCons : 'a * 'b hlist -> ('a * 'b) hlist

The translation to Coq requires using coq_type inside the
definition itself, as T1 is used concretely, but can only be
obtained by using the injectivity of ml_pair.
Inductive hlist (ct : ml_type -> Type) T :=

| HNil of T = ml_zero
| HCons T1 T2 of
T = ml_pair T1 T2 & ct T1 & hlist ct T2.

We can still define coq_type, but we need to bypass the
termination check.
#[bypass_check(guard)]
Fixpoint coq_type (T : ml_type) : Type := ...
| ml_hlist T1 => hlist coq_type T1
...

Note that this recursion is rather special, as the recursive call
to coq_type is delayed until we actually access the contents
of the hlist.

4 Towards a translation of OCaml
While the translation of GADTs is still experimental, we
have already used this combination of intensional represen-
tation and its interpretation to build a working translator for

the core features of OCaml, including polymorphism, state,
exceptions, and polymorphic comparison [4]. In that case,
the translation of ml_arrow T1 T2 is not coq_type T1 →
coq_type T2, but rather coq_type T1 → M (coq_type
T2) for a carefully crafted monad M. This part of the work
was presented at TYPES [5].

We intend to use this type preserving translation to prove
emprirically the soundness of OCaml type inference, by rely-
ing on Coq’s subject reduction. Proving properties of trans-
lated programs is a secondary goal.
Many issues are still open. For instance, how should one

represent abstract types, which may be non-injective, inside
ml_type. The encoding of non-positive recursive types and
equi-recursive types is also challenging.

Aknowledgements. We thank the anonymous reviewers
for their insightful comments. This research is supported by
grants from the Tezos Foundation and the Japanese Society
for the Promotion of Science (KAKENHI number 22K11902).

References
[1] James Cheney and Ralf Hinze. First-class phantom types. Technical

Report TR2003-1901, Cornell University, January 2003.
[2] Guillaume Claret. Coq of OCaml. In OCaml Users and Developers

Meeting, August 2014.
[3] Karl Crary, StephanieWeirich, andGregMorrisett. Intensional polymor-

phism in type-erasure semantics. Journal of Functional Programming,
12(6):567–600, 2002.

[4] Jacques Garrigue. OCaml in Coq. GitHub PR, 2022. https://github.com/
COCTI/ocaml/pull/3.

[5] Jacques Garrigue and Takafumi Saikawa. Validating OCaml soundness
by translation into Coq. In Proc. 28th International Conference on Types
for Proofs and Programs, June 2022.

[6] Bratin Saha, Valery Trifonov, and Zhong Shao. Intensional analysis
of quantified types. ACM Trans. Program. Lang. Syst., 25(2):159–209,
March 2003.

[7] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. Total Haskell is reasonable Coq. In Proc. Inter-
national Conference on Functional Programming, pages 14—-27, New
York, NY, USA, 2018.

[8] Théo Winterhalter. Formalisation and meta-theory of type theory. PhD
thesis, Université de Nantes, 2020.

[9] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In Proc. 30th Symposium on Principles of Programming Lan-
guages, POPL ’03, page 224–235, New York, NY, USA, 2003. Association
for Computing Machinery.

https://github.com/COCTI/ocaml/pull/3
https://github.com/COCTI/ocaml/pull/3

	1 Naive translation
	2 Intensional translation
	3 Bad recursion?
	4 Towards a translation of OCaml
	References

