
GADTs and principality Formal definitions Status of the Coq development

Formalizing OCaml GADT typing in Coq

Jacques Garrigue Xuanrui Qi

Graduate School of Mathematics, Nagoya University

August 26, 2021

1 / 18

GADTs and principality Formal definitions Status of the Coq development

OCaml, GADTs and principality

• Principality of GADT inference is known to be difficult.

• OCaml proven to be principal thanks to ambivalent types,
which allow to detect ambiguity escaping from a branch
[Garrigue & Rémy, APLAS 2013].

type (_,_) eq = Refl : ('a,'a) eq;;

let f (type a) (w : (a,int) eq) (x : a) = (* coherent *)
let Refl = w in if x > 0 then x else x ;;

val f : ('a, int) eq -> 'a -> 'a
(* Principal for OCaml, rejected by GHC as ambiguous *)

let g (type a) (w : (a,int) eq) (x : a) = (* ambiguous *)
let Refl = w in if x > 0 then x else 0 ;;

Error: This instance of int is ambiguous:
it would escape the scope of its equation

2 / 18

GADTs and principality Formal definitions Status of the Coq development

Ambivalent types in a nutshell
• Types that rely on GADT equations are represented as

ambivalent types, which are a form of intersection types.

• Ambivalent types are only valid when equations are available,
but their reliance on equations is implicit.

let f (type a) (w : (a,int) eq) (x : a) =
let Refl = w in (* add the equation a = int *)
if x > 0 (* this x has ambivalent type a ∧ int *)
then x else x (* but these have only type a *)

(* Hence the result is of type a *)
val f : ('a, int) eq -> 'a -> 'a

let g (type a) (w : (a,int) eq) (x : a) =
let Refl = w in if x > 0
then x (* this x has type a *)
else 0 (* but 0 has type int *)

(* The result has type a ∧ int, which becomes ambiguous *)
Error: This instance of int is ambiguous

3 / 18

GADTs and principality Formal definitions Status of the Coq development

Soundness and principality of inference

OCaml and Haskell (GHC) differ in their handling of
Unification under GADT equations.

• In Haskell, unification under a GADT equation cannot involve
variables from outside (OutsideIn).

• In OCaml, this is allowed as long as the equation is not
required for the unification (ambivalence).

Relying on ambivalence

• is sound with respect to in-place unification
⇒ tracks whether local unifications are valid outside.

• ensures principality of inference
⇒ alternative types are rejected.

4 / 18

GADTs and principality Formal definitions Status of the Coq development

Disambiguation

• Type annotations hide the ambivalence, by separating inner
and outer types.

• This solves ambiguities. The following are valid:

let g (type a) (w : (a,int) eq) (x : a) =
let Refl = w in (if x > 0 then x else 0 : a) ;;

val g : ('a, int) eq -> 'a -> 'a

let g (type a) (w : (a,int) eq) (x : a) =
let Refl = w in (if x > 0 then x else 0 : int) ;;

val g : ('a, int) eq -> 'a -> int

OCaml lets you write the annotation outside if your prefer.

5 / 18

GADTs and principality Formal definitions Status of the Coq development

But is it really principal?

When looking for reduction rules validating subject reduction, we
came upon the following example:

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w1 in let Refl = w2 in g 3;;
val f : ('a, 'b -> 'b) eq -> ('a, int -> int) eq -> 'a -> 'b

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w2 in let Refl = w1 in g 3;;
val f : ('a, 'b -> 'b) eq -> ('a, int -> int) eq -> 'a -> int

• Changing the order of equations changes the resulting type.

• Bug in the theory: the ambivalence of g is not propagated to
the result of the application g 3, failing to detect ambiguity.

6 / 18

GADTs and principality Formal definitions Status of the Coq development

But is it really principal?

When looking for reduction rules validating subject reduction, we
came upon the following example:

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w1 in let Refl = w2 in g 3;;
val f : ('a, 'b -> 'b) eq -> ('a, int -> int) eq -> 'a -> 'b

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w2 in let Refl = w1 in g 3;;
val f : ('a, 'b -> 'b) eq -> ('a, int -> int) eq -> 'a -> int

• Changing the order of equations changes the resulting type.

• Bug in the theory: the ambivalence of g is not propagated to
the result of the application g 3, failing to detect ambiguity.

6 / 18

GADTs and principality Formal definitions Status of the Coq development

Proving a fix in Coq

• We already proved soundness and principality for another
fragment of OCaml, using a graph representation of types
[Garrigue 2014, Structural Polymorphism].

α :: κ; x : σ ` M : α

Here κ’s are kinds, which describe nodes.

• By enriching the information in kinds with rigid variable paths,
we can represent correct ambivalence.

• Principality is hard to prove, but subject reduction is already a
good benchmark for a well-behaved type system.

7 / 18

GADTs and principality Formal definitions Status of the Coq development

Kinds and environments
• Kinds are constraints on a node, representing the graph

structure: α = (β → γ) ∧ a translates to

α :: (→, {dom 7→ β, cod 7→ γ})a, β :: •a.dom, γ :: •a.cod . α

• Grammar

ψ ::= → | eq | . . . abstract constraint
C ::= • | (ψ, {l 7→ α, . . . }) graph constraint
κ ::= C r̄ kind
r ::= a | r .l rigid variable path
τ ::= r | τ → τ | eq(τ, τ) tree type
Q ::= ∅ | Q, τ = τ equations
K ::= ∅ | K , α :: κ kinding environment
σ ::= ∀ᾱ.K . α type scheme
Γ ::= ∅ | Γ, x : σ typing environment
θ ::= [α 7→ α′, . . .] substitution

8 / 18

GADTs and principality Formal definitions Status of the Coq development

Terms and Judgments
• Well-formedness

Q;K ` κ Q ` K Q;K ` σ Q;K ` Γ K ` θ : K ′

• Graph type instance of a tree type: K ` τ : α

• Terms

M ::= x | c | λx .M | M M | let x = M in M
| (M : τ) type annotation
| Refl witness introduction
| type a.M rigid variable introduction
| use M : eq(τ, τ) in M witness elimination

• Typing judgment
Q;K ; Γ ` M : α

Typing implies both Q ` K and Q;K ` Γ.
9 / 18

GADTs and principality Formal definitions Status of the Coq development

Example

let f (type a) (w : (a,int) eq) (x : a) =
let Refl = w in if x > 0 then x else x

can be encoded as

f = type a.λw .λx .
let x = (x : a) in
use w : eq(a, int) in ifpos x x x

where

ifpos : ∀α1 :: •int, β :: •,
α :: (→, {dom 7→ α1, cod 7→ α2}),
α2 :: (→, {dom 7→ β, cod 7→ α3}),
α3 :: (→, {dom 7→ β, cod 7→ β}) . α

' ∀β.int→ β → β → β

10 / 18

GADTs and principality Formal definitions Status of the Coq development

Selected typing rules

Use

Q;K ; Γ ` M1 : α1 K ` eq(τ1, τ2) : α1

Q, τ1 = τ2;K ; Γ ` M2 : α

Q;K ; Γ ` use M1 : eq(τ1, τ2) in M2 : α

GC
Q;K ,K ′; Γ ` M : α FVK (Γ, α) ∩ dom(K ′) = ∅

Q;K ; Γ ` M : α

Var
Q ` K Q;K ` Γ x : ∀ᾱ.K0 . α ∈ Γ K ,K0 ` θ : K

Q;K ; Γ ` x : θ(α)

App

Q;K ; Γ ` M1 : α Q;K ; Γ ` M2 : α2

α :: (→, {dom 7→ α2 , cod 7→ α1})r̄ ∈ K

Q;K ; Γ ` M1 M2 : α1

11 / 18

GADTs and principality Formal definitions Status of the Coq development

Detecting ambiguity

• Using Var, App, and GC, we can show that

a = int; K , β :: •a; Γ , x : ∀α :: •a . α ` ifpos x x x : β

so that we can apply Use.

• On the other hand, a minimal derivation for g 3 in

let g = (g : a) in use w : eq(a, int → int) in g 3

would be

a = int → int;K , β :: •int,a.cod ; Γ, g : ∀α :: •a . α ` g 3 : β

which becomes ambiguous when Use removes a = int → int.

12 / 18

GADTs and principality Formal definitions Status of the Coq development

Coq development
• Based on “A certified implementation of ML with structural

polymorphism and recursive types” [Garrigue 2014].

• Itself based on Arthur Charguéraud’s development, using
locally nameless cofinite quantification (“Engineering
Metatheory” [Aydemir et al. 2008]).

• Avoided unification in the type system by interpreting Q as
the set of its (rigid) unifiers.

• Finished proofs of subject reduction for following rules:

(λx .M) V −→ M[V /x]
let x = V in M −→ M[V /x]

c V1 . . .Vn −→ δc(V1, . . . ,Vn)
(M1 : τ2 → τ1) M2 −→ (M1 (M2 : τ2) : τ1)

(M1 : r) M2 −→ (M1 (M2 : r .dom) : r .cod)
use Refl : eq(τ1, τ2) in M −→ M

13 / 18

GADTs and principality Formal definitions Status of the Coq development

Relation to principality

• Subject reduction and principality are independent properties.

• For ML-like type systems, principality is usually the
combination of:

Monotonicity A type derivation is still valid using a stronger Γ
(where types are more polymorphic).1

Most General Unifier Unification of types admits a most
general solution.

• Existence of MGU relies on the ability to decompose types,
which is also exactly what we needed to prove subject
reduction for annotated applications.

(M1 : r) M2 −→ (M1 (M2 : r .dom) : r .cod)

1OutsideIn does not satisfy monotonicity, and is not strictly principal
14 / 18

GADTs and principality Formal definitions Status of the Coq development

Remaining work

• Prove type soundness
Simpler to use translation into an explicit type system.
Some formalization of soundness of GADTs already exists
[Ostermann & Jabs, ESOP 2018]

• Prove principality
This is hard, but a first step is existence of MGU.

• Soundness of type inference
Another role of ambivalence is to ensure the soundness of
inference. It would be interesting to prove it for weaker
(non-principal) versions of the type system.

15 / 18

GADTs and principality Formal definitions Status of the Coq development

Further applications

• Graph types are also used inside OCaml to enforce the
principality of first-class polymorphism and first-class modules.

module type Id = sig val id : 'a -> 'a end;;
fun (m : (module Id)) ->

let module M = (val m) in M.id m;;
- : (module Id) -> (module Id) = <fun>

fun m -> ignore (m : (module Id));
let module M = (val m) in M.id m;;

Warning: this module unpacking is not principal.

• Basic idea: a type is known if it is not shared with Γ.

• Extension should be straightforward.

16 / 18

GADTs and principality Formal definitions Status of the Coq development

Other approaches to soundness

We are also investigating other ways to make OCaml type
inference more robust.

Directly by making internal data-structures abstract, and
having unification follow precise laws. Ultimately, the
type inference algorithm should look like its formal
definition. (with Takafumi Saikawa)

Indirectly by translating the type annotated source tree into
Gallina programs, and relying on Coq’s type
soundness.

https://www.math.nagoya-u.ac.jp/∼garrigue/cocti/

17 / 18

https://www.math.nagoya-u.ac.jp/~garrigue/cocti/

GADTs and principality Formal definitions Status of the Coq development

Soundness by translation

P

x

OCaml Coq

[[x]]

[[P]]

P(x) [[P]]([[x]])

Input

Program

Output

If for all P : τ → τ ′ and x : τ

• P translates to [[P]], and
` [[P]] : [[τ → τ ′]]

• x translates to [[x]], and
` [[x]] : [[τ]]

• [[P]] applied to [[x]] evaluates
to [[P(x)]]

then the soundness of Coq’s type
system implies the soundness of
OCaml’s evaluation

18 / 18

	GADTs and principality
	Formal definitions
	Status of the Coq development

