
Tracing Ambiguity in
GADT Type Inference

ML Workshop 2012, Copenhagen

Jacques Garrigue & Didier Rémy

Nagoya University / INRIA

Garrigue & Rémy — Tracing ambiguity 1

Generalized Algebraic Datatypes

– Algebraic datatypes allowing different type parameters for

different cases.

– Similar to inductive types of Coq et al.

type _ expr =

| Int : int -> int expr

| Add : (int -> int -> int) expr

| App : (’a -> ’b) expr * ’a expr -> ’b expr

App (Add, Int 3) : (int -> int) expr

– Able to express invariants and proofs

– Also provide existential types: ∃’a.(’a -> ’b) expr * ’a expr

– Now available in OCaml 4.00

Garrigue & Rémy — Tracing ambiguity 2

GADTs and pattern-matching

– Matching on a constructor introduces local equations.

– These equations can be used in the body of the case.

– The parameter must be a rigid type variable.

– Existentials introduce fresh rigid type variables.

let rec eval : type a. a expr -> a = function

| Int n -> n (* a = int *)

| Add -> (+) (* a = int -> int -> int *)

| App (f, x) -> eval f (eval x) (* polymorphic recursion *)

(* ∃b, f : b -> a ∧ x : b *)

val eval : ’a expr -> ’a = <fun>

eval (App (App (Add, Int 3), Int 4));;

- : int = 7

Garrigue & Rémy — Tracing ambiguity 3

Rigid type variables and recursion

OCaml has two ways of requesting polymorphism:

– Use locally abstract types that behave as rigid type variables.

– Use universal type variables, for polymorphic recursion.

The syntax type a. a expr -> a combines them:

let rec eval : type a. a expr -> a = ...

is syntactic sugar for

let rec eval : ’a. ’a expr -> ’a =

fun (type a) -> (... : a expr -> a)

In this talk we do not deal with recursion, so we will not use this

syntactic sugar much.

Garrigue & Rémy — Tracing ambiguity 4

This talk

– Difficulty of GADT type inference

– Traditional approach using explicit types

– Our approach: refined ambiguity detection

– How it compares with GHC’s OutsideIn

Garrigue & Rémy — Tracing ambiguity 5

GADTs and type inference

– Providing sound type inference for GADTs is not difficult.

– However, principal type inference for the unrestricted type

system is not possible.

type _ t = Int : int t

let f (type a) (x : a t) =

match x with Int -> 1 (* a = int *)

– What should be the return type ?

– Both int and a are valid choices, and they are not compatible.

– Such a situation is called ambiguous.

Garrigue & Rémy — Tracing ambiguity 6

Known solution : explicit types

A simple solution is to require that all GADT pattern-matchings be
annotated with rigid type annotations (containing only rigid type
variables).

let f (type a) x =

match (x : a t) return a with Int -> 1

If we allow some propagation of annotations this doesn’t sound too
painful:

let f : type a. a t -> a = function Int -> 1

Garrigue & Rémy — Tracing ambiguity 7

Weaknesses of explicit types

– Is it really sufficient?

let g (type a) x y =

match (x : a t) return a with

Int -> if y > 0 then y else 0

Here the type of y is ambiguous too.
Not only the input and result of pattern-matching must be
annotated, but also all free variables.

– Simple syntactic propagation is too weak

let f : type a. a t -> a = fun x ->

let r = match x with Int -> 1

in r

If we want to propagate backward the type of r, we need a
stronger approach, like GHC’s OutsideIn.

Garrigue & Rémy — Tracing ambiguity 8

Rethinking ambiguity

Compare these two programs:

let f (type a) (x : a t) =

match x with Int -> 1 (* a = int *)

let f’ (type a) (x : a t) =

match x with Int -> true (* a = int *)

According to the standard definition of ambiguity, f is ambiguous,

but f’ is not, since there is no equation involving bool.

This seems strange, as they are very similar.

Is there another definition of ambiguity, such that f : ’a t -> int

would not be rejected, but f : ’a t -> ’a would ?

Garrigue & Rémy — Tracing ambiguity 9

Another definition of ambiguity

We redefine ambiguity as leakage of an ambivalent type.

– A type is ambivalent if we need to use an equation inside the
typing derivation.

let g (type a) (x : a t) (y : a) =

match x with Int -> if true then y else 0

The typing rule for if mixes a and int into an ambivalent type.

– Ambivalence is propagated to all connected occurences.

– Type annotations stop its propagation.

– An ambivalent type is leaked if it occurs outside the scope of its

equation. It becomes ambiguous. Here, the typing rule for match

leaks the result of if outside of the scope of a = int.

Garrigue & Rémy — Tracing ambiguity 10

Consequences of refined ambiguity

– If we can type a case without using the equation, there is no
ambivalence, so there is no ambiguity.

let f (type a) (x : a t) = match x with Int -> 1

val f : ’a t -> int

– Leaks can be fixed by inner or outer annotations.

let g (type a) (x : a t) y =

match x with Int -> if true then y else (0 : a)

val g : ’a t -> ’a -> ’a

– If a variable is used with ambivalent types, we can annotate its
binding occurrence to prevent leaks.

let g (type a) (x : a t) (y : a) =

match x with Int -> if y > 0 then y else (0 : a)

val g : ’a t -> ’a -> ’a

Garrigue & Rémy — Tracing ambiguity 11

Ambiguity and principality

– Ambiguity is now a decidable property of typing derivations.

– Principality is a property of programs, not directly verifiable.

– Our approach is to reject ambiguous derivations.

– The remaining derivations admit a principal one (conjecture).

– Our type inference builds the most general and least ambivalent

derivation, and fails if it becomes ambiguous.

Garrigue & Rémy — Tracing ambiguity 12

Advantages of refined ambiguity

– Compared to explicit types.

◦ Non-ambiguous types don’t need annotations.

◦ More programs are accepted outright.

◦ Less pressure for a clever propagation algorithm.

◦ Particularly useful if there are many local definitions.

– Compared to using type normalization [ML2011].

◦ Inferred types are more predictable.

◦ Leakage of ambivalent types precisely captures incompatible

sharing, which was the cause of unsoundness combining

GADTs and objects/polymorphic variants.

Garrigue & Rémy — Tracing ambiguity 13

Comparison with OutsideIn

OutsideIn is a powerful constraint-based type inference algorithm

where information is not allowed to leak from GADT cases.

Comparison is difficult:

– GHC 7 implements a relaxed version of OutsideIn.

– OutsideIn is essentially a constraint propagation strategy, which

is somehow orthogonal to ambiguity detection.

– OCaml has some form of propagation, which relies on

polymorphism, and is close to syntactic propagation.

– We compare OCaml 4.00 to GHC 7.

Garrigue & Rémy — Tracing ambiguity 14

Comparison with GHC 7

– OCaml fails (while GHC 7 succeeds)

let f : type a. a t -> a = fun x ->

let r = match x with Int -> 1 in r

Error: This expression has type int but expected a

Insufficient propagation.

– GHC fails (while Ocaml succeeds)

data T a where Int :: T Int

f :: T a -> ()

f x =

let z = case x of {Int -> True} in ()

Couldn’t match expected type ‘t0’ with actual type ‘Bool’

‘t0’ is untouchable inside the constraints (a ~ Int)

No external constraint on z.

Garrigue & Rémy — Tracing ambiguity 15

Strength and weakness of OutsideIn

– Constraint propagation is so strong that sometimes no
annotation at all is needed.

data R a where

R1 :: R Int

R2 :: a -> R a

test25 R1 = 1

test25 (R2 x) = x

-- test25 :: R t -> t

– To allow upward propagation, let is not implicitly generalized.

test26 =

let id x = x in (id "a", id True)

-- Fails

Garrigue & Rémy — Tracing ambiguity 16

Comparison

OCaml GHC

GADTs since 4.00 since 2005

Type discipline ambiguity det. OutsideIn + norm. ?

Polymorphic let
√

−

Inference unification-based constraint-based

Principality maybe − (1)

Exhaustiveness check
√

−

Type-level functions −
√

(1) OutsideIn itself only accepts derivations that are principal in the

unrestricted type system.

Garrigue & Rémy — Tracing ambiguity 17

GHC 7 not principal ?

This non-principal example for OutsideIn [JFP’11] is accepted:

data V a where

V1 :: Int -> V Bool

V2 :: V a

test7 (V1 n) _ = n > 0

test7 V2 r = r

-- test7 :: V t -> Bool -> Bool

Here is an even stranger case:

data T a where Int :: T Int

test14 (x::T a) (y::a) =

case x of Int -> y

-- test14 :: T a -> a -> Int

Some kind of type normalization seems to be going on...

Garrigue & Rémy — Tracing ambiguity 18

Combining ambiguity with OustsideIn

– Ambiguity detection could help GHC ?!

– In a final phase GHC allows constraints to leak from cases.

– One could restrict this final resolution to non-ambiguous types.

◦ test7 would be accepted as is.

◦ test14 would have the more natural type

test14 (x::T a) (y::a) =

case x of Int -> y

-- test14 :: T a -> a -> a

◦ Inferred types would probably be principal with the restriction

to non-ambiguous derivations.

Garrigue & Rémy — Tracing ambiguity 19

Concluding remarks

Still working on the formalization.

– Graph-based approach vs. set-based approach.

Available in OCaml 4.00.

– See the Language extensions section of the reference manual.

– Examples: http://caml.inria.fr/cgi-bin/viewvc.cgi/ocaml/

trunk/testsuite/tests/typing-gadts/

– Ambiguity detection is always active (required for soundness),

but use ocaml -principal for “principal” propagation (this may

slow down typing).

Garrigue & Rémy — Tracing ambiguity 20

Formalizing ambivalence

– The basic idea is simple: replace types by sets of types.

– Formalization is easy for monotypes alone.

◦ We just use the same rules for most cases.

◦ We can still use a substitutive Let rule for polymorphism.

– Using polymorphic types introduces a difficulty.

◦ We must track (and copy) sharing inside them.

◦ Needed for polymorphic recursion, etc. . .

◦ Can be done simply by seeing types as graphs.

Garrigue & Rémy — Tracing ambiguity 21

Set-based formalization

τ ::= α flexible variable
| ϕ rigid variable
| τ → τ | (τ)t | . . . other types

T ::= set of types τ
P ::= set of rigid variables ϕ
Γ ::= ∅ | Γ, x : T | Γ, ϕ | Γ, ϕ ' τ contexts

For T to be coherent under a context Γ,

– It must be structurally decomposable:

T = {α} or T = P or T = T1 → T2 ∪ P or T = (T1)t ∪ P or . . .

– Its types must be compatible with each other under Γ.

Γ ` τ1 ' τ2 is the congruence closure of the equations of Γ.

Garrigue & Rémy — Tracing ambiguity 22

Basic inference rules

Var
x : T ∈ Γ

Γ ` x : T

App

Γ ` a1 : T2 → T1 ∪ P Γ ` a2 : T2

Γ ` a1 a2 : T1

Let
Γ ` a1 : T1 Γ ` [a1/x]a2 : T

Γ ` let x = a1 in a2 : T

Fun
Γ, x : T0 ` a1 : T1

Γ ` fun x → a1 : T0 → T1 ∪ P

Ann
Γ ` a : T1 τ ∈ T1 ∩ T2

Γ ` (a : τ) : T2

Match
Γ ` a1 : T1 (ϕ)t ∈ T1 C : (τ)t

Γ, ϕ ' τ ` a2 : T

Γ ` match a1 : (ϕ)t with C → a2 : T

All types must be coherent.

Garrigue & Rémy — Tracing ambiguity 23

Type inference

– Move to a graph-based approach, to track sharing.

– Nodes are the pair of a normal type node and a set of rigid

variables.

– Infer polymorphic types as graphs, where each node may be

polymorphic (i.e. allow the addition of rigid variables).

– In OCaml’s type inference algorithm, the extra types are actually

held in a separate data structure, so that the modifications to

the algorithm were minimal.

