
Adding GADTs to OCaml: the direct approach

Jacques Garrigue∗ Jacques Le Normand†

1 Abstract

Generalized Algebraic Datatypes, or GADTs, extend alge-
braic datatypes by allowing an explicit relation between type
parameters and case analysis. They have useful applications,
among others for encoding invariants of data structures, or
providing tagless data representations.

We have implemented them in OCaml, by directly mod-
ifying the type inference engine. We discuss the technical
choices involved, and the properties expected to hold. In par-
ticular, we have worked on two aspects of inference: prin-
cipality, which holds only by requiring some derivations to
be minimal, and exhaustiveness of pattern-matching, which
requires a new notion of incompatibility.

2 Introduction

GADTs, which can be seen as a limited version of the in-
ductive types available in some dependent type theories, are a
useful addition to programming language type systems. Their
applications are two-fold: they allow to write proofs inside
programs, and to use these proofs to reduce dynamic checks,
allowing for instance tagless data representations.

Haskell has been the first mainstream functional program-
ming language to integrate GADTs. Their implementation
has already gone through two iterations, first using wobbly
types [3], and now in GHC 7 as part of the OutsideIn infer-
ence framework [5]. Programming languages of the ML fam-
ily have been slower to adopt these new friends. For OCaml,
Pottier and Régis-Gianas [4] have proposed a stratified ap-
proach, where type inference for GADTs is separated from
the bulk of the language. We have chosen to go for a more
direct approach, directly integrating GADT type inference in-
side the core engine, closer in spirit to the original wobbly
types. While the interaction with other parts of the language
may be subtle, this avoids duplicating an already complex in-
ference system.

Documentation for this extension is available at the follow-
ing URL: https://sites.google.com/site/ocamlgadt/.
It shall be included in the main OCaml version before the
workshop.

3 Examples

We first present some basic examples demonstrating GADTs
in OCaml.

∗Nagoya University, Graduate School of Mathematics
†Lexifi, Paris

Type definitions reuse the original syntax for algebraic
datatypes, extending it with inductive cases, including a dis-
tinct return type for each constructor, in the style of Coq or
Haskell. Since type parameters are not used for inductive
cases, we allow to replace them with underscores.

type _ expr =

| Int : int -> int expr

| Add : (int -> int -> int) expr

| App : (’a -> ’b) expr * ’a expr -> ’b expr

Return types must be instances of the defined type. Here Int
forces its parameter to be int, Add to be int -> int ->
int. Type variables which do not appear in the return type
are handled as existential types in pattern matching.

Functions using GADTs require some amount of type an-
notations. The easiest approach is to give the function’s sig-
nature, using a new syntax where type variables are replaced
by abstract type parameters. This annotation also supports
polymorphic recursion.

let rec eval : type t. t expr -> t = function

| Int n -> n (* t = int *)

| Add -> (+) (* t = int -> int -> int *)

| App (f, x) -> eval f (eval x)

(* ∃u. f : (u -> t) expr ∧ x : u expr *)

val eval : ’a expr -> ’a

Pattern matching allows to exploit GADT equations, which
we have indicated in comments. Thanks to them we are able
to give the type t to each case.

An interesting application of GADTs is the ability to work
with tagless data structures. Here is an example where we
define a singleton type, and use it to analyze arbitrary data-
structures as long as we can represent their type.

type _ ty =

| Tint : int ty

| Tbool : bool ty

| Tpair : ’a ty * ’b ty -> (’a * ’b) ty

let rec print : type a. a ty -> a -> string =

fun t d ->

match t, d with

| Tint, n -> string_of_int n

| Tbool, true -> "true"

| Tbool, false -> "false"

| Tpair (ta, tb), (a, b) ->

"(" ^ print ta a ^ ", " ^ print tb b ^ ")"

val print : ’a ty -> ’a -> string

Inside pattern matching, type inference progresses from left
to right, allowing subsequent patterns to benefit from type
equations generated in the previous ones. Here this means
that d has type int on the first line, bool on the 2nd and 3rd

1



line, and t * u on the 4th line, with t and u fresh abstract
types such that ta : t ty and tb : u ty, and we can pattern-
match on it accordingly.

4 Basic type inference
Sound type inference for GADTs is actually easy. We just
need to extend the typing of pattern matching, so that GADT
constructor matching adds type equations to the typing en-
vironment. In order to make this task easier, the type vari-
ables introduced in type annotations in the above examples
are actually abstract type parameters, which were introduced
in OCaml 3.12 [1]. One can later associate an equation to
such abstract type parameters by adding a manifest type to
their definition, turning them into type abbreviations. Cor-
rect scoping of existential types also comes for free from the
implementation of local modules.

After exiting a branch, one must forget those equations.
Again this is done trivially by going back to the original type
environment. The only remaining difficulty is that we need
to check the return type for each case before forgetting these
local equations. This is done by propagating the type infor-
mation provided by type annotations backward. This kind of
backward propagation of expected type information was al-
ready done to some extent by OCaml’s type checker.

5 Variables and type system issues
While type inference is conceptually easy, there were still a
number of issues proper to OCaml.

A first one is the handling of type variables. OCaml al-
ready has two kinds of type variables used in type annota-
tions. Contrary to Standard ML or Haskell, usual type vari-
ables in OCaml are just unification variables, and they scope
over the whole function. Explicitly scoped universal type
variables were introduced for first-class polymorphism, but
they are limited to single type annotations. Neither of them
fit well with GADTs. Rather than create a third category of
type variables, we have chosen to use abstract type parame-
ters, with the advantages described above. Interestingly, the
type annotations in examples above are just syntactic sugar.
Namely, the definition for print translates to:

let rec print : ’a. ’a ty -> ’a -> string =

fun (type a) -> (* introduce a fresh abstract type *)

((fun t d -> ...) : a ty -> a -> string)

Another technical issue was that OCaml’s unification
chooses to share not only variables but internal type nodes
too. This is clearly incompatible with the presence of local
type annotations, since this sharing could be invalidated when
we leave a branch. Fortunately, the algorithm could easily
be modified to disable this structure sharing when the type
environment contains local equations. Unfortunately, at this
point objects and polymorphic variants require this sharing,
and some combinations of them and GADTs are not allowed.

A more subtle point concerns variance annotations. A sim-
ple answer is to disallow variance for instantiated type param-
eters.

6 Exhaustiveness and incompatibility

GADTs do also have an impact on the exhaustiveness check
for pattern matching. Namely, type information often makes
some cases impossible, and we would expect the checker to
take this into account. We have implemented such a refine-
ment by extending OCaml’s original exhaustiveness checker.
Rather than returning only the first counter example found,
we go on collecting them for all cases, and then check
whether some of these counter examples can be eliminated.
While this strategy is safe (we never forget a missing case), it
is not complete, as we may sometimes fail to detect some im-
possibility. A more exact check would cause a combinatorial
explosion, which we have carefully avoided.

Another subtle issue concerns what we should see as im-
possible. Due to ML’s abstract types, some types that are
not unifiable during pattern matching may have been unifi-
able in some other module, meaning that it would be unsound
to prune all untypable branches. We solve this by defining an
incompatibility relation, which only relates provably distinct
types. Some case may be neither incompatible nor typable,
but we choose to just ignore those non-unifiable types, going
on typing the case without adding extra equations. This en-
sures that we can always write a complete pattern matching
without using wild cards.

7 Completeness and principality

Type inference for GADTs is known to be incomplete with
respect to a naive type system. Building on our experience
with first-class polymorphism [2], we choose to distinguish
between safe type information, which comes to some pro-
gram point straight from a type annotation, and unsafe in-
formation, which would reach it through unification in some
sibling expression. We can track this by observing whether a
type’s structure is shared with the context or not. While pat-
tern matching inference is algorithmic, we only give to it as
input the unshared part of the type of its scrutinee. Similarly,
for the return type and external type variables, we only com-
municate unshared parts from outside the pattern matching.
Reciprocally, all information from inside the pattern match-
ing needs to be canonicalized (by expanding all local type
abbreviations) before being allowed to escape.

Practically this approach combined with the above exhaus-
tiveness check seems to be expressive enough, as we are able
to type all examples from [6] annotating only type signatures
on functions, and omitting all unreachable cases.

The resulting algorithm is expected to be complete with
respect to a specification in the style of [2], and the type in-
ferred be principal when we restrict some type derivations
to be minimal. We are still investigating some ways to im-
proves the properties of type inference, by avoiding the need
for canonicalization, and restoring the environment weaken-
ing lemma, which appears to fail currently for all GADT in-
ference systems.

2



References
[1] A. Frisch and J. Garrigue. First-class modules and com-

posable signatures in Objective Caml 3.12. In Workshop
on ML, Baltimore, MD, Sept. 2010.

[2] J. Garrigue and D. Rémy. Extending ML with semi-
explicit higher order polymorphism. Information and
Computation, 155:134–171, Dec. 1999.

[3] S. Peyton Jones, G. Washburn, and S. Weirich. Wob-
bly types: type inference for generalised algebraic data
types,. Tech. Report MS-CIS-05-26, University of Penn-
sylvania, July 2004.

[4] F. Pottier and Y. Régis-Gianas. Stratified type inference
for generalized algebraic data types. In Proc. ACM Sym-
posium on Principles of Programming Languages, pages
232–244, Charleston, South Carolina, Jan. 2006.

[5] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vy-
tiniotis. Complete and decidable type inference for
GADTs. In Proc. International Conference on Func-
tional Programming, 2009.

[6] T. Sheard and N. Linger. Programming in Omega. In
2nd Central European Functional Programming School,
volume 5161 of Springer LNCS, pages 158–227, 2007.

3


