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Generalized Algebraic Datatypes

– Algebraic datatypes allowing different type parameters for

different cases

– Similar to inductive types of Coq et al.

type _ expr =
| Int : int -> int expr
| Add : (int -> int -> int) expr
| App : (’a -> ’b) expr * ’a expr -> ’b expr

App (Add, Int 3) : (int -> int) expr

– Able to express invariants and proofs

– Also provide existential types
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Previous work (in OCaml)

Work by Pottier and Régis-Gianas on type inference for GADTs.

Stratified type inference for generalized algebraic data types

[POPL06].

– Separate type inference for GADTs from the core of the

language

– Uses propagation and constraint resolution for GADTs

– Preliminary implementation of propagation, never merged

We choose a more direct approach.



Garrigue & Le Normand — Adding GADTs to OCaml 3

GADT support

– Many examples require polymorphic recursion

→ available since OCaml 3.12, originally for GADTs

– Pattern matching allows refining types

→ use local abstract types

– Combining the two in a new syntax

let rec eval : type t. t expr -> t = function
| Int n -> n (* t = int *)
| Add -> (+) (* t = int -> int -> int *)
| App (f, x) -> eval f (eval x) (* polymorphic recursion *)

val eval : ’a expr -> ’a = <fun>

eval (App (App (Add, Int 3), Int 4));;
- : int = 7
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Why use local abstract types?

OCaml has two kinds of type variables:

– Unification variables, with scope the whole function

let f x (y : ’a) = (x : ’a) + 1
val f : int -> int -> int

– Explicitly quantified universal variables, with scope limited to the
annotation. Their goal is to allow unification of type schemes.

let f : ’a. ’a -> _ = fun x -> (1 : ’a)
val f : ’a -> int

Neither of them can be used as universal expression-scoped variable,
such as available in Standard ML.

Rather than introduce a 3rd kind of type variables, we choose to
reuse local abstract types.
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Type annotations creating new types

The syntax

let rec f : type t1 . . . tn.τ = body

is actually a short-hand for

let rec f : α1 . . . αn.[α1...αn/t1...tn]τ =

fun (type t1) . . . (type tn) → (body : τ)

It defines a recursively polymorphic function, whose type variables

are visible as locally abstract types.
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Application to polytypic functions

Intuitively, the following is type sound:

let rec neg : ’a. ’a -> ’a = function
| (n : int) -> -n
| (b : bool) -> not b
| (a, b) -> (neg a, neg b)
| x -> x

val neg : ’a -> ’a

For languages showing an early commitment to types, two problems:
(but this is ok for FLP languages)

– Requires runtime type information

– Requires a default case to be exhaustive

GADTs can express both
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Tagged encoding

Traditional sum types, but the parameter provides information

about the contents.

type _ data =
| Int : int -> int data
| Bool : bool -> bool data
| Pair : ’a data * ’b data -> (’a * ’b) data

let rec neg : type a. a data -> a data = function
| Int n -> Int (-n)
| Bool b -> Bool (not b)
| Pair (a, b) -> Pair (neg a, neg b)

Guarantee that the result is of the same kind as the input.
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Tagless encoding

Tags do not need to be inside the data itself.

type _ ty =
| Tint : int ty
| Tbool : bool ty
| Tpair : ’a ty * ’b ty -> (’a * ’b) ty

let rec print : type a. a ty -> a -> string = fun t d ->
match t, d with
| Tint, n -> string_of_int n
| Tbool, b -> if b then "true" else "false"
| Tpair (ta, tb), (a, b) ->

Printf.sprintf "(%s, %s)" (print ta a) (print tb b)

Need to allow left-to-right dependencies in pattern-matching.
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Other applications

There is already a large literature of algorithms using GADTs.

– Data structures enforcing invariants

E.g. balanced trees (c.f. Tim Sheard et al.)

– Typed syntax

E.g. encodings of lambda-terms and evaluators (ibidem)

– Parsing

Menhir is supposed to be “GADT ready”.

I.e., one can generate efficient type parsers using GADTs

– DSLs for any kind of application: GUI, database...
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Type inference

– Obtaining sound type inference for GADTs is not difficult.

– Intuitively, one just needs to use a special kind of unification,

able to refine universal type variables, when pattern-matching

GADT constructors.

– However, making it complete for some definite specification is

more difficult.
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Unification for GADTs

– Distinguish normal variables and refinable variables.

– The former are traditional unification variables, the latter can be

represented as local abstract types.

– Pattern-matching may instantiate refinable variables.

– Need to proceed left to right, to handle dependencies.

– Outside of pattern-matching, they behave as abstract types.

– Forget this instantiation when moving to the next case.
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The difficulties

– Cannot use OCaml type variables
Luckily, local abstract types were added in 3.12, and adding an
equation to an abstract type is easy

– Unification should not share internal nodes
Sharing might be invalidated when we forget equations

– Cannot handle objects and polymorphic variants
They both require structural sharing
We keep compatibility when there are no equations

– Principality/completeness are lost
Recovered partially by controlling propagation

– Must restrict co-variance and contra-variance

– Exhaustiveness of pattern-matching is harder to check
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Variance

– Instantiated parameters are not allowed to have a variance

– If this were allowed, we could have this code

type -’a t = C : < m : int > -> < m : int > t

let eval : type a . a t -> a = fun (C x) -> x
val eval : ’a t -> ’a

let a = C (object method m = 5 end)
val a : < m : int > t = <object>

let b = (a :> < m : int ; n : bool > t)
val b : < m : int ; n : bool > t = <object>

let c = eval b
val c : < m : int ; n : bool > = <object>
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Exhaustiveness

One should be able to omit “impossible” cases.

let rec equal : type a. a data -> a data -> bool = fun a b ->
match a, b with
| Int m, Int n ->

m - n = 0
| Bool b, Bool c ->

if b then c else not c
| Pair(a1,a2), Pair(b1,b2) ->

equal a1 b1 && equal a2 b2

Typing guarantees that a and b are of the same kind, so there is no

need to handle other cases.

Done by generating the other cases, and checking whether they may

happen. The algorithm is sound but not complete.
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Subtleties of exhaustiveness

– Usual type inference checks which types are unifiable

– We need to know which types are incompatible

Unfortunately, some types are neither:

type (_,_) eq = Eq : (’a,’a) eq

module M : sig
type t and u
val eq : (t,u) eq

end = struct
type t = int and u = int
let eq = Eq

end

match M.eq with Eq -> "here t = u !"
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Incompatibility

Unrelated to unification, we define an incompatibility relation.

Two types are incompatible if:

– they are structurally different (e.g. function vs. tuple)

– for datatype definitions, their representations are incompatible
(private types are also in this category)

– for abstract types, both declarations must be either in the initial
environment (i.e. Pervasives) or in the current module

Without the clause about the initial environment, we wouldn’t even
be able to distinguish int and bool!

In patterns, unification does not fail when we cannot prove
incompatibility, but equations are only added for refinable variables.
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Completeness

As it is well-known, type inference for GADTs is not complete.

In the absence of type annotations, pattern-matching branches have
incompatible types.

let eval = function
| Int n -> n
| Add -> (+)

Error: This pattern matches values of type
(int -> int -> int) expr but a pattern was expected
which matches values of type int expr

However, we do not want to put type annotations directly on the

pattern-matching construct.
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Propagation of type information

Our idea is to track the validity of type information through sharing,
like we did for first-class polymorphism.

A type node is safe if it is not shared with the environment. Thanks
to instantiation, safety is propagated through polymorphic functions.

C[match e0 with p1 → e1 | ... | pn → en]

Type information is propagated bidirectionally:

↓ we infer the type for e0, and keep the safe part to type patterns

For each case pi → ei

↓ we type ei using the equations generated by typing pi

↓ we canonicalize the resulting type (and other types shared with
the environment), expanding all equations

↑ we unify with the safe part of the type inferred for C’s hole
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Subtle points about canonicalization

type _ t = I : int t

let f1 (type a) (x : a t) y =
let y = (y : a) in (* safe type annotation *)
match x with I -> (y : a) (* a canonicalized to int *)

val f : ’a t -> ’a -> int

let f2 (type a) (x : a t) y =
let r = match x with I -> (y : a) in
ignore (y : a); (* y has type int *)
r

let f3 (type a) (x : a t) y =
ignore (y : a); (* unsafe type annotation *)
match x with I -> (y : a)

f1 succeeds, but f2 fails.

Since there is no propagation in f3, it must fail too.
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How to canonicalize properly

– Canonicalization of types depends on where they were defined

◦ a canonicalizes to int only if we had the equation a = int at
the annotation point

◦ but canonicalization may occur in another context

– Implementation using OCaml’s type level mechanism

◦ levels grow when we enter binding constructs

◦ for every equation in the environment, remember its level

◦ only use an equation if the level of the type is at least the
level of the equation

◦ generalized types get duplicated at use sites

◦ canonicalize a type when we lower its level (already done for
local modules)
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How principal?

– Due to our use of canonicalization, we cannot hope for real

principality

– If we require some derivations to be minimal (i.e. infer the most

general type), then we can recover principality.

(Similar to first-class polymorphism with value restriction)

– Good symmetry properties: changing the order of subexpressions

should not change the outcome of type inference.

– Small drawback: due to canonicalization, type annotations inside

a branch of pattern-matching do not help typing its result.
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Inference power

– Up to now, all examples could be typed without adding

annotations inside functions.

– Could type almost all examples in the Omega Tutorial [1],

adding only function types, and omitting all impossible cases.

(Since we do not have Omega’s type level functions,

some examples cannot be expressed)

[1] Tim Sheard and Nathan Linger: Programming In Omega. Notes

from the 2nd Central European Functional Programming

School, 2007.
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Comparison to Wobbly Types (i.e. GHC 6)

Glasgow Haskell had already GADTs for 7 years. Wobbly types are

the original approach.

Come in two versions.

– the original version is very close to what we do, but described in

terms of unification and substitution rather than sharing.

Propagation is weaker in the basic system, but gets stronger

with “smart application”, so the power seems close

– [POPL 06] version is simpler, wobbliness being a property of

terms rather than types, but this makes propagation weaker

Using sharing makes possible a somehow cleaner specification.
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Comparison to OutsideIn (i.e. GHC 7)

GHC 7 uses a constraint-based approach to inference, which allows

good properties.

– Proceeds by first typing the function ignoring all match cases,

then propagating external information to type them.

– The types they infer are always principal in the naive type

system (but not complete).

This is not our case, since canonicalization may choose between

two different types (in a deterministic way).

– Like us, complete with respect to a specification.

– In some cases, able to infer types without any type annotation.

This seems very powerful, but requires a reimplementation of type

inference.
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Non-principal example

The following example is taken from OutsideIn.
type _ t =

| T1 : int -> bool t
| T2 : ’a t

let test (type a) (x : a t) r =
match x with
| T1 n -> n > 0
| T2 -> r

val test : ’a t -> bool -> bool

The type we infer here is not principal since the following type,
which is not comparable, would also be valid:

val test : ’a t -> ’a -> ’a

Note that while OutsideIn rightly rejects this example,
GHC 7 accepts it for practical reasons :-)
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What is principality about

Principality has two roles.

– When a solution is principal, this guarantees that there is no

ambiguity about its choice.

Important for Haskell, but OCaml has untyped semantics.

– When we also have weakening with respect to hypotheses, this

allows modular type inference.

Γ ` e : τ and Γ′ ≤ Γ implies Γ′ ` e : τ

– However, inference systems for GADTs lack weakening.

– If we don’t care about ambiguity, principality modulo some

minimal derivations is not really worse than full principality.
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Future improvements

– Allow giving names to freshly introduced existential types

Currently there is no way to give names locally.

– Make the typing more principal

An idea (with Didier Rémy) is to keep track of which equations

have been used for a type.

◦ See inferred types as sets of related types.

◦ Do not allow an inferred type to escape to an environment

where it would be incoherent.

This recovers principality with respect to the naive type system,

and could permit sharing for objects and variants.
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Enjoy

– About the implementation:

https://sites.google.com/site/ocamlgadt/

– Code is already in the trunk, for the next release of OCaml:

svn checkout http://caml.inria.fr/svn/ocaml/trunk

– Examples: testsuite/tests/typing-gadts

◦ test.ml : basic cases

◦ omega07.ml : examples translated from Omega

– Do not forget to use ocaml -principal for predictable behavior!


