
First-class modules and composable signatures in Objective Caml 3.12

Alain Frisch∗ Jacques Garrigue†

1 Introduction
Notwithstanding its name, Objective Caml [3] has a full-
fledged SML-style module system. Its applicative functors
allow for flexible parameterization of components, and many
libraries, including the preprocessor Camlp4, use them for
their structure. More recent extensions include the addition
of recursive modules [2], and private row types [1], which
allow even more involved structuring.

While this module language is overall successful, as
demonstrated by its active use, it has also some well-known
weaknesses. Among them, one can mention its mostly static
nature —despite the availability of local module definitions
inside expressions, modules remained second class citizens—
and the absence of compositionality of its signature language.
In this presentation we show how these two weaknesses were
alleviated in Objective Caml 3.12, and what are the concrete
applications of these features.

2 First-class modules
Traditionnaly, modules systems in the ML family of lan-
guages are stratified in two well-separated sub languages: a
base language which enjoys automatic type inference in the
spirit of the Hindley-Milner type system (with extensions),
and an explicitly typed module language built on top of the
base language. While base types and values can of course
appear in the module system, module values (structures and
functors) cannot appear in base values and module types (sig-
natures and functor types) cannot appear in base types.

Nevertheless, modules are not as static as one might think.
First, the compilation scheme followed by Objective Caml
represents modules values as regular runtime blocks: a struc-
ture is compiled in the same way as a record (by keeping only
its dynamic components: values, sub-modules, exceptions),
and functors are compiled into functions. Second, Objective
Caml already allowed a module expression to be evaluated
within a base expression, using the syntax let M = module-
expr in expr.

What was missing was the ability to turn module values
into base values, in order to put them in larger data struc-
tures, pass them to functions or return them, manipulate them
with usual base language constructions (conditionals, pattern
matching), and so on. We implemented a variant of Russo’s
proposal[5].

Typical uses of first-class modules are such as the choice of
a concrete implementation for a module at runtime (depend-
ing for instance on command-line argument), or the encoding

∗LexiFi
†Nagoya University Graduate School of Mathematics

of existential types (packing together a type and some values
and operations on this type into a value). Combining these,
one can also use first-class modules for providing well-typed
plug-ins.

The changes to the syntax are as follows:

expr ::= . . .
| (module module-expr : package-type)

module-expr ::= . . . | (val expr : package-type)
type ::= . . . | (module package-type)
package-type ::= modtype-path

| modtype-path with type t = type
{and type t = type}*

The new kind of expression packs a module into a value of
the base language (a packed module). Dually, the new kind
of module expression opens a packed module into a real mod-
ule. The type system allows to use this construction only in
top-level structures and in local module expression, but not
in the body of functors. Otherwise, the construction would
be type-unsafe because of a bad interaction with applicative
functors: a type path such as F(M).t could refer to several dif-
ferent types at runtime if first-class modules could be opened
within the body of the functor F.

Package types are used to give a type to packed mod-
ules. They form a sub-category of module types, where only
named module types (with constraints on ground types) are
allowed. This restriction, compared to Russo’s proposal, al-
lowed for a minimal implementation on top of the existing
Objective Caml type-checker. Two package types are deemed
equal if their module types path are equal (path equality)
and if they have the same constrainted types types (mod-
ulo permutation of constraints) with equal right-hand sides.
Concerning unification and other type-related algorithms, a
package type behaves similarly to an n-ary type constructor
(where n is the number of type constraints). Type checking
for the new forms of expressions and module expressions is
easy because the package type is given explicitly. In many
cases, the package type could be inferred, but care is needed
in order not to break principality of type-checking. We leave
this to future work.

Objective Caml assumes that type variables are local to the
current expression or type declaration. For some uses of first-
class modules, it is useful to refer to a surrounding type vari-
able within a local structure. To support this situation (and
others which are not related to first-class modules), we fur-
ther extended the base language with an extra construction,
abstract type parameters:

expr ::= . . . | fun (type t) -> expr

The behavior of this construction is to make the type name t
available within the body of expr as an abstract type which

1



cannot escape to the context. The type for the expression is
obtained from the type of expr by replacing t with a fresh type
variable. In effect, this new construction allows to name a
type variable within the body of an expression and to ensure
that it is kept generic locally. Contrary to what the syntax
may suggest, it does not suspend the evaluation of the expr
and no type is actually passed at runtime, but the ability to
mix type parameters with other arguments allows for a natural
formulation of first-class polymorphic functors.

Combining first-class modules, locally abstract types, and
polymorphic recursion (also freshly available in Objective
Caml 3.12), it is also possible to encode GADTs, by passing
arround a dynamic representation of type equations. Such an
encoding was already possible using objects with polymor-
phic methods, but the encoding based on first-class modules
is both more powerful (one may quantify on type construc-
tors) and more intuitive (thanks to existential types).

3 Composing signatures
A recurrent gripe with Objective Caml signatures has been
their lack of compositionality. Namely, suppose that we have
the following signatures Printable and Comparable:

module type Printable =

sig type t val print : t -> unit end

module type Comparable =

sig type t val compare : t -> t -> int end

How can we compose them in a signature PrintableCompa-
rable, with a single type and two functions? While there is an
include construct for signatures, it will not merge identical
types, resulting in the following error:

module type PrintableComparable = sig

include Printable

include Comparable with type t = t

end

Error: Multiple definition of the type name t.

Names must be unique in a given

structure or signature.

Eventhough we told explicitly that the two t’s are identical
(here the right hand t refers to the t imported from Print-
able), we have an error about repeated definitions.

Ramsey et al. [4] already gave concrete examples of fea-
tures lacking when writing signatures, and proposed a full-
fledged signature language to replace the existing one. Their
language offers some solutions to the merging problem, but it
seemed too large for inclusion in Objective Caml. Instead, we
chose to identify the most important missing patterns (includ-
ing the above one), and support them with a minimal number
of constructs.

Along with the above merging of signatures, other com-
monly missed features were the ability to rename components
in a signature, or to remove them form the signature. Since all
these behaviours are linked with the concepts of substitution
and removal, we finally came up with a new construct, de-
structive substitution, which extends the with constraints of
module types, by additionally removing the definitions from
the signature after substituting them. The syntax for the new
constraints is:

mod-constraint ::= . . .
| type [type-parameters] typeconstr := typexpr
| module module-name := extended-module-path

We can see its effect in the following example:

module type ComparableInt =

Comparable with type t := int

module type ComparableInt =

sig val compare : int -> int -> int end

As a result, our merging problem can be solved by using the
constraint with type t := t. One can also rename type
or module components by adding the same definition and de-
structively substituting it, or remove them by destructively
substituting with an existing definition.

The current implementation restricts the substituted type
or module to be at the toplevel of the target signature, and the
substitute to be a path. The first restriction seems difficult to
avoid, since internal references to a module enclosing a re-
moved component could cause problems. The second one is
just due to our choice of using path substitution for simplic-
ity; in general, it seems all right to substitute with an arbitrary
type expression, and we might do so in the future.

While this new construction combines several features in
one, its real intuition is that it provides a functional view of
signatures. Namely, it allows to see a signature as a function
from some of its type and module components to its other
components. Comparable with type t := ... can be
seen as equivalent to the following functor.

module Comparable(X:sig type t end) = struct

module type S =

sig val comparable : X.t -> X.t -> int end

end

Thanks to destructive substitution we can convert from the
signature form to the functor form. This is useful, as the sig-
nature form is more compact and intuitive, but the functor
form is more flexible.

References
[1] J. Garrigue. Private rows: abstracting the unnamed. In

Proc. Asian Symposium on Programming Languages and
Systems, volume 4279 of Springer LNCS, Sydney, Nov.
2006.

[2] X. Leroy. A proposal for recursive modules in Ob-
jective Caml. Available from http://caml.inria.fr
/about/papers.en.html, May 2003.

[3] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouil-
lon. The Objective Caml system release 3.11, Documen-
tation and user’s manual. Projet Gallium, INRIA, Nov.
2008.

[4] N. Ramsey, K. Fisher, and P. Govereau. An expressive
language of signatures. In Proc. International Confer-
ence on Functional Programming, 2005.

[5] C. V. Russo. First-class structures for Standard ML. In
Proc. European Symposium on Programming, volume
1782 of Springer LNCS, pages 336–350, Mar. 2000.

2


