GADTs and exhaustiveness: looking for the impossible

Jacques Garrigue and Jacques Le Normand

1 Synopsys

Sound exhaustiveness checking of pattern-matching is an
essential feature of GADTs, and OCaml has supported it
from day one, by showing that the remaining cases could
never be typed [1]. Not only does it allow the programmer
to be confident in the soundness of his code, but it also
permits optimizations which make GADTs more efficient.
However, while this approach is sound and can prune some
simple uses of GADTSs, some other uses caused superfluous
warnings. In this talk we describe the original approach
and how we ensure its soundness, and show that one can
do better by turning the type-checking of extra cases into
a backtracking proof search algorithm. We also show that
the exhaustiveness problem is undecidable for GADTSs, so
that this proof search must be kept partial.

2 GADTs and exhaustiveness

Checking the exhaustiveness of pattern-matching is a dif-
ficult problem. Technically, it is about checking whether
there are values of the matched type that are not cov-
ered by the cases of the pattern-matching. There are
well-known techniques to handle this problem for alge-
braic datatypes [3], but they do not attempt to tackle
semantical questions, such as whether such a value can be
built or not. For instance consider the following example:

type empty = {e : ’a. ’a}

let f : empty option -> unit = function None -> ()

Since there is no way to build a value of type empty, this
match is actually exhaustive, but the checker will still
report a missing Some case.

For normal types, this limitation does not matter: why
would one intentionally introduce an empty type? How-
ever, in the case of GADTSs, the problem becomes acute.

type _ t =
| Int : int t
| Bool : bool t
let £ : type a. a t -> a = function

| Int > 1
| Bool -> true

let g : int t -> int = function
| Int > 1
let h : type a. at -> a t -> bool =

fun x y -> match x, y with
| Int, Int -> true
| Bool, Bool -> true

Function f is a classical GADT function, where different

branches instantiate the type parameter differently. It is
clearly exhaustive. If we only look at the constructors,
the function g is not exhaustive. However, its input type
is restricted to int t, which is incompatible with the con-
structor Bool, so that the only valid input is Int, making
it exhaustive. Function h, is also exaustive, because re-
quired x and y to have the same type. These functions
have useful instances, and we want them to be recognized
as exhaustive.

3 First implementation

We were in a conundrum: a complete exhaustiveness
check seemed very difficult!, yet we wanted to add GADTs
to the OCaml compiler and we needed a simple way to
check the exhaustiveness. Our initial algorithm simply
took all the missing patterns from the exhaustiveness
checker, and type checked them one by one in order to see
if they were actually possible patterns. Unfortunately the
original exhaustiveness algorithm did not return a com-
plete enough set of patterns. For example, in the previous
example h, the exhaustiveness checker would only return
Int, Bool as a missing pattern, while we also needed to
check that Bool, Int is an invalid pattern to remove
any possible doubt that h is actually exhaustive. Conse-
quently, we modified the exhaustiveness checker so that it
would return a complete set of missing patterns. However,
as we will see, enthusiastic GADT users were more clever
than the checker, and they got exhaustiveness warnings
where none should be [5].

4 Abstract types

To make matters worse, in OCaml it is impossible to know
if two abstract types exported from other modules are
equal or not. Take, for example:

type (L,) cmp =
| Eq : (’a, ’a) cmp
| Any: (’a, ’b) cmp

module A : sig type a type b val eq : (a, b) cmp end
= struct type a type b = a let eq = Eq end

let £ : (A.a, A.b) cmp -> unit = function Any -> ()

This program properly signals that the function f is non
exhaustive. Indeed, even though the types A.a and A.Db
appear to be different outside of module A, they are in fact
the same. To handle these kinds of cases, a new compat-
ibility relation is introduced, and when the type checkers

11t turned out to be undecidable.

tries to unify indices of GADTSs during pattern typing,
it refers to this relation for non-unifiable type construc-
tors, rather than immediately raising a unification error.
In particular this compatibility relation assumes that ab-
stract types are compatible with all other types. In this
particular case, when typing the missing case Eq, it sim-
ply assumes A.a and A.b are compatible. In other words,
the type checker is far more permissive with GADT in-
dices inside patterns than inside expressions. In doubt,
it is better to permit possibly impossible patterns and to
reject potentially unsafe expressions. Note that since we
use exactly the same function to type-check patterns and
to check exhaustiveness, if the exhaustiveness check re-
ports a missing pattern, then type checking will always
allow it?.

5 Exploding and backtracking

While our original approach seemed mostly satisfactory,
there are cases where it fails. For instance, consider the
following function:

let deep : char t option -> char =
function None -> ’c’

Since t is only defined for int and bool, char t is actu-
ally the empty type, i.e. there are no values of the form
Some _ at type char t option. However, to see that one
needs to explode _ into its different cases, and check them
separately. This gives us the following two patterns:

Some Int
Some Bool

Then we can call the type checker as before, to verify that
they are incompatible with the given type.

Note that as soon as we start to do deeper case anal-
ysis, the approach switches from just checking whether a
pattern is type to checking whether a particular type is
inhabited by terms of a certain form. Here are a few more
examples of the same kind, by order of difficulty.

type zero = Zero
type _ succ = Succ
type (_,_,_) plus =
| PlusO : (zero, ’a, ’a) plus
| PlusS : (’a, ’b, ’c) plus ->
(’a succ, ’b, ’c succ) plus

let trivial :
(zero succ, zero, zero) plus option -> bool
= function None -> false
let easy :
(zero, zero succ, zero) plus option -> bool
= function None -> false
let harder :
(zero succ, zero succ, zero succ) plus option
-> bool
= function None -> false

zero and succ encode type level natural numbers. plus is
the Peano version of addition, in relational form; namely

2For a long time this was not the case with GHC. But there is
some progress in the Haskell world too [2].

there is a term (a,b,c¢) plus if and only if a + b = c.
trivial can be easily checked, as (zero succ, zero,
zero) does not match either of P1lus0 and P1lusS. easy is a
bit more difficult, as it seems to match P1lus0, but unifica-
tion between zero succ and zero fails later. For harder,
unification with PlusS succeeds, however the argument
becomes (zero, zero succ, zero) plus, which was in-
ferred empty in easy.

In deep, trivial and easy it is sufficient to explode
the first _ according to its inferred type. However, harder
requires to infer the type of the argument of the GADT
constructor PlusS in order to explode it once more.

Another interesting case is when there is a dependency
between components of a tuple.

let inv_zero : type a b c d.
(a,b,c) plus -> (c,d,zero) plus -> bool
= fun pl p2 ->
match pl, p2 with
| PlusO, PlusO -> true

Here the extra patterns coming from the basic exhaustive-
ness algorithm are:

PlusO, PlusS _
PlusS _, _

While the first pattern is clearly empty, the second one is
typable if one does not explode the second _. However, to
do that we would need to first infer the type of the sec-
ond component of the pair, which depends on the freshly
generated first component. In this case again, typing pat-
terns (for checking emptyness) and exploding wildcards
must be interleaved.

The solution to this conundrum is to actually do all of
these simultaneously. Namely, we modified the recursive
type_pat?, which is the main function for typechecking
patterns, in order to turn it into a proof-searching func-
tion. The basic idea is to make it non-deterministic. How-
ever, since this function uses side-effecting unification, re-
turning a list of results would not be easy. Rather we
converted to continuation passing style, using backtrack-
ing to cancel unification where needed. In particular, it is
sufficient to explode wild cards into or-patterns, as they
are then interpreted in a non-deterministic way, allowing
to check all combinations.

(* mode is Check or Type, k is the continuation *)
let rec type_pat mode env spat expected_ty k =
match spat.ppat_desc with
| Ppat_any -> (* wild card *)
if mode = Check && is_gadt expected_ty then
type_pat mode env
(explode_pat !env expected_ty)
expected_ty k
else k (mkpat Tpat_any expected_ty)
| Ppat_or (spl, sp2) -> (* or pattern *)
if mode = Check then
let state = save_state env in
try type_pat spl expected_ty k
with exn ->
set_state state env;
type_pat sp2 expected_ty k

3The code is available through OCaml’s Subversion server: svn
co http://caml.inria.fr/svn/ocaml/branches/gadt-warnings.

else
(* old code *)
| Ppat_pair (spl, sp2) -> (* pair pattern *)
let tyl, ty2 = filter_pair env expected_ty in
type_pat mode env spl tyl (fun pl ->
type_pat mode env sp2 ty2 (fun p2 ->
k (mkpat (Tpat_pair (pl,p2) expected_ty))))
| ... (* other cases in CPS *)

6 Undecidability and heuristics

The above definition of type_pat, in all its expressive-
ness power, gives also a strong hint at why exhaustiveness
checking of GADTSs in undecidable. A simple way to see
it is that GADTs can encode Horn clauses in a very di-
rect way, each type definition being a predicate, and each
constructor a clause, with its arguments the premises.
Then the type_pat functions precisely implements Pro-
log’s SLD resolution, for which counter-example genera-
tion (i.e. construction of a witness term) is known to be
only semi-decidable. Another way to see it is that one can
encode execution traces of some arbitrary Turing machine
in a GADT definition, so that exhaustiveness checking is
equivalent to the halting problem.

This undecidability means that we have to find a good
heuristics as to where to abandon the search. Note that
the complexity is exponential in the number of wildcard
patterns exploded. A simple heuristics, that seems suffi-
cient in most cases, is to only explode wildcard patterns
which have only GADT constructors and do not explode
any of the generated subpatterns. This means that the
harder example above would be flagged non-exhaustive
while all the other examples would be correctly identified
as exhaustive. Here is another example which would be
incorrectly flagged:

let deeper : (char t * bool) option -> char =
function None -> ’c’

Warning 8: this pattern-matching is mnot exhaustive.

Here is an example of a value that is nmot matched:

Some _

Here the wild card corresponds to a tuple type, so that the
case-analysis would stop there. Even in this very limited
approach, one can still exhibit an exponential behavior:

type _ t =
A :int t | B: boolt | C: char t | D : float t
type (_,_,_,_) uw=1"U: (int, int, int, int) u
let £ : typeabcdef gh.
at*bt*ct*dt*et*ft*gt*ht

* (a,b,c,d) u * (e,f,g,h) u -> unit =
function A, A, A, A, A, A, A, A, U, U -> QO

The above check takes about 10 seconds to exhaust all
65536 cases. As in Prolog, one can dramatically improve
performance by changing the pattern order.
Independently of the heuristics chosen, there will always
be cases where one would like the algorithm to try harder.
We can think of at least two ways to handle those. One is
to introduce an absurd pattern a la Agda [4]. This pattern
would tell the checker to try hard to prove emptyness
at this particular position. However, this also requires

introducing cases without right-hand side at the syntactic
level. Another approach would be to use attributes on the
match and function constructs to indicate how hard we
want the checker to try: function [@exhaust 10] None
-> (). In this case we would need a precise definition of
the strength of the search.

7 Unused cases

The dual of exhaustiveness checks is the detection of un-
used cases. Take, for example:

let deep’ : char t option -> char = function
| None -> ¢’
| Some _ -> ’d’

Since we added a pattern at the end of an already exhaus-
tive match, it is clearly redundant.

The approach is similar: after refining the pattern to
keep only subcases that are not covered by previous cases,
one must check whether they are inhabited or not. Cur-
rently this second check is not done; doing it would require
making the redundancy algorithm return an explicit list
of cases. While detecting usused cases is technically less
important —there is no direct impact on soundness for
instance—, having accurate warnings would help the pro-
grammer reason about his program. Note however that
we cannot hope to detect all unused cases, in the same
way that we cannot guarantee that all counter-examples
of exhaustiveness are really inhabited.

References

[1] Jacques Garrigue and Jacques Le Normand. Adding
GADTSs to OCaml: the direct approach. In OCaml
Meeting, September 2011.

[2] Georgios Karachalias, Tom Schrijvers, Dimitrios Vy-
tiniotis, and Simon Peyton Jones. GADTSs meet their
match. In ICFP, 2015.

[3] Luc Maranget. Les avertissements du filtrage.
In Journées Francophones des Langages Applicatifs,
2003.

[4] Ulf Norell. Dependently typed programming in Agda.
In AFP 2008, volume 5832 of Springer LNCS, pages
230-266, 20009.

[5) GADT exhaustiveness check incompleteness.
OCaml problem report #6437, May 2014.
http://caml.inria.fr/mantis/view.php?id=6437.

