
Coqgen Monae Typed-store monad Examples Related work

Environment-friendly monadic equational reasoning for OCaml

Reynald Affeldt, Jacques Garrigue, Takafumi Saikawa

Graduate School of Mathematics, Nagoya University

TPP, October 30, 2023

1 / 23

Coqgen Monae Typed-store monad Examples Related work

Starting point : the Coqgen project

• Proving the correctness of the full OCaml type inference is hard

• We can prove it theoretically for subparts, but combining them is complex

• Writing a type checker for the typed syntax tree might help, but still suffers the
same difficulties

• Alternative approach: ensure that the generated typed syntax trees enjoys type
soundness by translating them into another type system, here Coq

2 / 23

Coqgen Monae Typed-store monad Examples Related work

Soundness by translation

P

x

OCaml Coq

[[x]]

[[P]]

P(x) [[P]]([[x]])

Input

Program

Output

If for all P : τ → τ ′ and x : τ

• P translates to [[P]], and ⊢ [[P]] : [[τ → τ ′]]

• x translates to [[x]], and ⊢ [[x]] : [[τ]]

• [[P]] applied to [[x]] evaluates to [[P(x)]]

• [[·]] is injective (on types)

then the soundness of Coq’s type system implies the
soundness of OCaml’s evaluation

3 / 23

Coqgen Monae Typed-store monad Examples Related work

Requirements for soundness

• Need to evaluate programs, so no axioms in translated programs

• Need to preserve Coq’s soundness, so avoid other axioms too

• Must implement OCaml’s features, such as references, or polymorphic comparison
inside Coq

• In turn this requires an intensional representation of OCaml’s types, to be able to
use them in computations

4 / 23

Coqgen Monae Typed-store monad Examples Related work

Overview of translation

• Define a type representing OCaml types: ml_type

• And a translation function coq_type : ml_type -> Type

This function must be computable.

• Wrap mutability and failure/non-termination into a monad

Definition M T := Env -> Env * (T + Exn).

• Env contains the state of reference cells.
It is a mapping from keys (which contain some T : ml_type) to values of type
coq_type T.

• Exn contains both ML exceptions and non-termination.

• Since Env and Exn may contain values of type M T, these definitions are mutually
recursive, and need to bypass the positivity check.

• No other axiom or bypassing is used (at this point).

5 / 23

Coqgen Monae Typed-store monad Examples Related work

Type translation

The translation of types depends on the monad.

Variable M : Type -> Type. (* The monad is not yet defined *)
Fixpoint coq_type (T : ml_type) : Type :=

match T with
| ml_int => Int63.int
| ml_arrow T1 T2 => coq_type T1 -> M (coq_type T2)
| ml_ref T1 => loc T1
| ml_list T1 => list (coq_type T1)
| ...
end.

6 / 23

Coqgen Monae Typed-store monad Examples Related work

Tying the Knot

M T

coq type

Env Exn

7 / 23

Coqgen Monae Typed-store monad Examples Related work

Status of Coqgen

Coqgen has been implemented as a backend to OCaml.
It is already able to translate many features

• Core ML : λ-calculus with polymorphism and recursion

• algebraic data types

• references and exceptions

• while and for loops

• lazy values

• etc...

It can be used as

• a soundness witness for type checking (as intended)

• a way to prove properties of programs, by translation ⇒ this presentation

8 / 23

Coqgen Monae Typed-store monad Examples Related work

Monae

• Monae is a library for proving properties of programs using
Monadic Equational Reasoning

• It already supports equational theories for many monads such as state, failure,
probabilities and nondeterminism, and combinations of them.

• Soundness of reasoning is ensured by providing a model for the desired
combination.

• Some of these models are provided as monad transformers, making it easy to
build combinations.

9 / 23

Coqgen Monae Typed-store monad Examples Related work

Example: the array monad
The array monad describes an homogeneous store, with a default initial value.

HB.mixin Record isMonadArray (S : Type) (I : eqType) M of Monad M := {
aget : I -> M S ;
aput : I -> S -> M unit ;
aputget : forall i s (A : Type) (k : S -> M A),

aput i s >> aget i >>= k = aput i s >> k s ;
aputC : forall i j u v, (i != j) \/ (u = v) ->

aput i u >> aput j v = aput j v >> aput i u ; ... }.

Model, inheriting from the state monad.

Definition M := StateMonad.M (I -> S). (* the state is a function *)
Definition aget i : M S := fun a => (a i, a).
Definition insert i s (a : I -> S) j := if i == j then s else a j.
Definition aput i s : M unit := fun a => (tt, insert i s a). ...
HB.instance Definition _ := isMonadArray.Build

S I M aputput aputget agetputskip agetget agetC aputC aputgetC.

10 / 23

Coqgen Monae Typed-store monad Examples Related work

The typed store monad

• A new monadic interface for Coqgen, allowing a heterogeneously typed store.

• Supports just references, but could be extended with exceptions and
non-termination.

• Two models:
• A full model, which mimicks exactly Coqgen, and as a result requires to bypass the

positivity check.
• A restricted model, which does not allow to put functions in the store, but is

guaranteed to be sound.
It corresponds to so-called full-ground references [KLMS17].

11 / 23

Coqgen Monae Typed-store monad Examples Related work

Basic operations (hierarchy.v)

Inductive loc (ml_type : Type) (locT : eqType) : ml_type -> Type :=
mkloc T : locT -> loc locT T.

HB.mixin Structure isML_universe (ml_type : Type) := {
eqclass : Equality.class_of ml_type ;
coq_type : forall M : Type -> Type, ml_type -> Type ; ... }

#[short(type=ML_universe)]
HB.structure Definition ML_UNIVERSE := {ml_type & isML_universe ml_type}.
Canonical isML_universe_eqType (T : ML_universe) := EqType T eqclass.

HB.mixin Record isMonadTypedStore (MLU : ML_universe) (locT : eqType)
(M : Type -> Type) of Monad M := {

cnew : forall {T : MLU}, coq_type M T -> M (loc locT T) ;
cget : forall {T : MLU}, loc locT T -> M (coq_type M T) ;
cput : forall {T : MLU}, loc locT T -> coq_type M T -> M unit ;
crun : forall {A : Type}, M A -> option A ; (* execute in empty store *)
... }

12 / 23

Coqgen Monae Typed-store monad Examples Related work

Monadic laws

There are many laws, here are a few examples

cputget : forall T (r : loc locT T) (s : coq_type M T)
A (k : coq_type M T -> M A),

cput r s >> (cget r >>= k) = cput r s >> k s ;
cnewget : forall T (s : coq_type M T) A (k : loc locT T -> coq_type M T -> M A),

cnew s >>= (fun r => cget r >>= k r) = cnew s >>= (fun r => k r s) ;
cnewput : forall T (s t : coq_type M T) A (k : loc locT T -> M A),

cnew s >>= (fun r => cput r t >> k r) = cnew t >>= k ;
cgetC : forall T1 T2 (r1 : loc locT T1) (r2 : loc locT T2)

A (k : coq_type M T1 -> coq_type M T2 -> M A),
cget r1 >>= (fun u => cget r2 >>= (fun v => k u v)) =
cget r2 >>= (fun v => cget r1 >>= (fun u => k u v)) ;

13 / 23

Coqgen Monae Typed-store monad Examples Related work

Laws for crun

crun allows one to compare the result of computations by discarding the store.

crun : forall {A : Type}, M A -> option A ;

Note that the result type is an option. This is required so that we can build a model
where store accesses are dynamically checked.
cput and cget may fail if a reference is undefined, or has a wrong type. Of course, this
cannot happen if the translated program was well-typed.

crunret : forall (A B : Type) (m : M A) (s : B),
crun m -> crun (m >> Ret s) = Some s ;

crunskip: crun skip = Some tt ;
crunnew : forall (A : Type) T (m : M A) (s : A -> coq_type M T),

crun m -> crun (m >>= fun x => cnew (s x)) ;

Here the crun m condition means crun m <> None.

14 / 23

Coqgen Monae Typed-store monad Examples Related work

Commutation laws (typed_store_lib.v)

The above laws are insufficient to prove programs that use multiple references. We
need to allow commutation.

cputnewC : forall T T' (r : loc locT T) (s : coq_type M T) (s' : coq_type M T')
A (k : loc locT T' -> M A),

cget r >> (cnew s' >>= fun r' => cput r s >> k r') = cput r s >> (cnew s' >>= k);

Here cget ensures that r exists before creating r', proving they are distinct.
It is convenient to introduce a derived operation cchk, which commutes with anything.

Definition cchk T (r : loc T) : M unit := cget r >> skip.
Lemma cnewchk T (s : coq_type M T) (A : Type) (k : loc T -> M A) :

cnew s >>= (fun r => cchk r >> k r) = cnew s >>= k.
Lemma cchknewput T T' (r : loc T) (s : coq_type M T) (s' : coq_type M)

A (k : loc locT T' -> M A) :
cchk r >> (cnew s' >>= fun r' => cput r s >> k r') = cput r s >> (cnew s' >>= k).

15 / 23

Coqgen Monae Typed-store monad Examples Related work

Full ground model (monad_model.v)
In the full ground case, it is straightforward to build a model using the state monad
transformer MS.

Record binding (M : Type -> Type) :=
mkbind { bind_type : MLU; bind_val : coq_type M bind_type }.

Definition M : Type -> Type :=
MS (seq (binding idfun)) [the monad of option_monad].

By passing the identity monad to binding we restrict the store to pure functions.

Let cnew T (v : coq_type M T) : M (loc T) := fun st =>
let n := size st in Ret (mkloc T n, rcons st (mkbind T (v : coq_type' T))).

Let cget T (r : loc T) : M (coq_type M T) := fun st =>
if nth_error st (loc_id r) is Some (mkbind T' v) then
if coerce T v is Some u then Ret (u, st) else fail

else fail.
Let crun (A : Type) (m : M A) : option A :=

if m nil is (inr (a, _)) then Some a else None.

16 / 23

Coqgen Monae Typed-store monad Examples Related work

Recursively typed model (typed_store_model.v)

In the recursive case, we need to build an inductive type.

Record binding (MLU : ML_universe) (M : Type -> Type) :=
mkbind { bind_type : MLU; bind_val : coq_type M bind_type }.

#[bypass_check(positivity)]
Inductive Env (MLU : ML_universe) :=

mkEnv : seq (binding MLU (MS (Env MLU) option_monad)) -> Env MLU.

Definition M : Type -> Type := MS (Env MLU) option_monad.

The other definitions are essentially identical, but it still means that the model is
proved in a setting where one can prove False.

17 / 23

Coqgen Monae Typed-store monad Examples Related work

Cyclic lists (cyclic.ml, cyclic.v, example_typed_store.v)

One can prove the standard example of separation logic using only our laws.

type 'a rlist = Nil | Cons of 'a * 'a rlist ref
let cycle a b =

let r = ref Nil in let l = Cons (a, ref (Cons (b, r))) in
r := l; l

let hd x = function Nil -> x | Cons (a, _) -> a

translates to

Definition cycle (T : ml_type) (a b : coq_type T) : M (coq_type (ml_rlist T)) :=
do r <- cnew (ml_rlist T) (Nil (coq_type T));
do l <- (do v <- cnew (ml_rlist T) (Cons (coq_type T) b r);

Ret (Cons (coq_type T) a v));
do _ <- cput (ml_rlist T) r l; Ret l.

Definition hd (T : ml_type) (x : coq_type T) (param : coq_type (ml_rlist T))
: coq_type T := match param with | Nil _ => x | Cons _ a _ => a end.

18 / 23

Coqgen Monae Typed-store monad Examples Related work

Cyclic lists (cont.)
Lemma hd_tl_tl_is_true :
crun (do l <- cycle ml_bool true false; do l1 <- tl _ l; do l2 <- tl _ l1;

Ret (hd ml_bool false l2)) = Some true.
Proof.
rewrite bindA -cnewchk.
under eq_bind => r1.
under eq_bind do rewrite !bindA.
under eq_bind do under eq_bind do rewrite !(bindA,bindretf) /=.
under cchknewE do rewrite -bindA cputgetC //.
rewrite cnewget /=.
under eq_bind do under eq_bind do rewrite cputget /=.
rewrite -bindA.
over.

rewrite cnewchk -bindA crunret // -bindA_uncurry /= crungetput // bindA.
under eq_bind do rewrite !bindA.
under eq_bind do under eq_bind do rewrite bindretf /=.
by rewrite crungetnew // -(bindskipf (_ >>= _)) crunnewget // crunskip.
Qed.

19 / 23

Coqgen Monae Typed-store monad Examples Related work

Demo

20 / 23

Coqgen Monae Typed-store monad Examples Related work

Related work

• Coq-of-ocaml [GC14] and Hs-to-Coq [AS18] are also translators.
• Explicitly geared at the proof of programs.
• Neither comes with an equational theory.

• The typed-store monad is very close to Haskell’s ST monad [LP94].
• The latter additionaly uses polymorphism to scope references.
• However, nobody seems to have developed laws for the ST monad.

• Staton and Kammar [KLMS17] have developed models for a typed store.
• They only handle the full-ground case.
• The store is statically typed, but it is not clear how one would handle lists of

references for instance.

• At last, Sterling, Grazer and Birkedal [SGB23] have constructed a model allowing
effectful functions in the store.

• Their model uses a delay operation to avoid unguarded recursion.
• It does not seem easily computable.

21 / 23

Coqgen Monae Typed-store monad Examples Related work

References

Guillaume Claret. Coq of OCaml. OCaml Workshop, 2014.

Antal Spector-Zabusky et al. Total Haskell is reasonable Coq. CPP, 2018.

Jacques Garrigue and Takafumi Saikawa. Validating OCaml soundness by translation into Coq,
TYPES, 2022.

R. Affeldt, D. Nowak, T. Saikawa. A hierarchy of monadic effects for program verification using
equational reasoning, MPC, 2019.

R. Affeldt, D. Nowak. Extending equational monadic reasoning with monad transformers, TYPES,
2020.

J. Launchbury, S. Peyton-Jones. Lazy functional state threads, PLDI, 1994.

O. Kammar, P. B. Levy, S. K. Moss, S. Staton. A monad for full ground reference cells, LICS,
2017.

J. Sterling, D. Gratzer, L. Birkedal. Denotational semantics of general store and polymorphism,
2023.

22 / 23

Coqgen Monae Typed-store monad Examples Related work

Thank you

For more information see

http://www.math.nagoya-u.ac.jp/∼garrigue/cocti/coqgen/

23 / 23

http://www.math.nagoya-u.ac.jp/~garrigue/cocti/coqgen/

	Coqgen
	Monae
	Typed-store monad
	Examples
	Related work

