
Formalization of Error-correcting Codes:
from Hamming to Modern Coding Theory?

Reynald Affeldt1 and Jacques Garrigue2

1 National Institute of Advanced Industrial Science and Technology
2 Nagoya University

Abstract. By adding redundancy to transmitted data, error-correcting codes (ECCs)
make it possible to communicate reliably over noisy channels. Minimizing re-
dundancy and (de)coding time has driven much research, culminating with Low-
Density Parity-Check (LDPC) codes. At first sight, ECCs may be considered as a
trustful piece of computer systems because classical results are well-understood.
But ECCs are also performance-critical so that new hardware calls for new im-
plementations whose testing is always an issue. Moreover, research about ECCs
is still flourishing with papers of ever-growing complexity. In order to provide
means for implementers to perform verification and for researchers to firmly as-
sess recent advances, we have been developing a formalization of ECCs using the
SSReflect extension of the Coq proof-assistant. We report on the formalization of
linear ECCs, duly illustrated with a theory about the celebrated Hamming codes
and the verification of the sum-product algorithm for decoding LDPC codes.

1 Introduction

Error-correcting codes (ECCs) add redundancy to transmitted data to ensure reliable
communication over noisy channels. Low-Density Parity-Check (LDPC) codes are ECCs
discovered in 1960 by R. G. Gallager; they were not thoroughly studied until they were
shown in the nineties to deliver good performance in practice. Since then, LDPC codes
have found their way into modern devices such as hard-disk storage, wifi communica-
tions, etc. and have motivated a new body of works known as modern coding theory.

Implementations of ECCs cannot be crystallized as a generic library that can be
deemed correct because extensively tested. Because ECCs are performance-critical,
new implementations are required to take advantage of the latest hardware, so that test-
ing is always an issue. Also, research (in particular about LDPC codes) is so active that
correctness guarantees for cutting-edge ECCs are scattered in scientific publications of
ever-growing complexity.

A formalization of ECCs could help implementers and researchers. First, it would
make possible verification of concrete implementations. Today, an implementer willing
to perform formal verification should first provide a formal specification of what ECCs
are supposed to achieve. In comparison, this is more difficult than verification of cryp-
tographic functions whose specification requires little infrastructure when they rely on
number theory (e.g., [1]).

? This work was presented at ITP 2015 (http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015)

However, the formalization of ECCs is a difficult undertaking. They rely on a vast
body of mathematics: probabilities, graphs, linear algebra, etc. Teaching material is
rarely (if ever) structured as algebra textbooks: prose definitions that look incomplete
without the accompanying examples, algorithms written in prose, hypotheses about the
model that appear during the course of proofs, etc. Monographs and research papers do
not provide details for the non-expert reader. It is therefore no wonder that researchers
are seeking for means to firmly assess the correctness of their pencil-and-paper proofs:
our work is part of such a project.

Still, there is previous work that we can take advantage of to formalize ECCs. The
SSREFLECT/MATHCOMP library [8] provides big operators to formalize combinatorial
results, a substantial formalization of linear algebra, and tools to reason about graphs.
The formalization of the foundational theorems of information theory [2] provides us
with basic definitions about channels and probabilities. Last, we are fortunate enough
to have colleagues, expert in ECCs, who provided us with details about linear ECCs
and LDPC codes [9, Chapters 7 and 9].

To the best of our knowledge, our effort is the first attempt at a systematic formaliza-
tion of ECCs inside a proof-assistant. In Sect. 3, we formalize basic results about linear
ECCs. Already at this point, some effort was spent in augmenting textbook definitions
with their implicit assumptions. In Sect. 4, we formalize Hamming codes. In particu-
lar, we provide a concrete encoder and decoder and express the error rate in terms of
a closed formula. In Sect. 5, we formalize the key properties of the sum-product algo-
rithm, the standard algorithm for efficient decoding of LDPC codes. Finally, in Sect. 6,
we apply our formalization to the verification of a concrete implementation of the sum-
product algorithm, making our work the first formal verification of a decoding algorithm
for an advanced class of ECCs.

2 Premises on Information Theory and Probabilities

2.1 Channels and Codes in Information Theory

We first recall basic definitions from [2].
The most generic definition of a code is as a channel code: a pair of encoder/decoder

functions with a finite type M for the message pieces to be encoded. Encoded message
pieces (codewords) are represented by row vectors over a finite alphabet A (denoted by
’rV[A]_n in MATHCOMP). The decoder (that may fail) is fed with the outputs of a noisy
channel that are also represented by row vectors (possibly over a different3 alphabet B):

Definition encT := {ffun M → ’rV [A] _n } .
Definition decT := {ffun ’rV [B] _n → option M } .
Record code := mkCode { enc : encT ; dec : decT } .

A (discrete) noisy channel is modeled as a stochastic matrix that we formalized as a
function from the input alphabet A to probability distributions over the output alphabet B:

Notation ” C H1 (A, B) ” := (A → dist B) .

3 A and B are different for example in the case of the binary erasure channel that replaces some
bits with an erasure.

dist is the type of probability distributions. They are essentially functions from some
finite type to non-negative reals whose outputs sum to 1 (the big operator ∑_(x in P) f x

comes from MATHCOMP):

Record dist (A : finType) := mkDist {
pmf :> A → R+ ; (* "→ R+" is a notation *)

pmf1 : ∑_ (a in A) pmf a = 1 } .

Given a distribution P, the probability of an event (represented by a finite set of
elements: type {set A} in MATHCOMP) is formalized as follows:

Definition Pr P (E : {set A }) := ∑_ (a in E) P a .

Communication of n characters is thought of as happening over the nth extension
of the channel, defined as a function from input vectors to distributions of output vec-
tors ({dist T} is a notation for the type of distributions; it hides a function that checks
whether T is a finite type):

Notation ” C Hn(A, B) ” := (’ rV [A] _n → {dist ’rV [B] _n }) .

In this paper, we deal with discrete memoryless channels (DMCs). It means that the
output probability of a character does not depend on preceding inputs. In this case, the
definition of the nth extension of a channel W boils down to a probability mass function
that associates to an input vector x the following distribution of output vectors:

Definition f (y : ’rV_n) := ∏_ (i < n) W (x / _ i) (y / _ i) .

where x /_ i represents the ith element of the vector x. The notation W ˆ n (y | x)
(W n(y|x) in pencil-and-paper proofs) is the probability for the DMC of W that an input x
(of length n) is output as y.

Finally, the quality of a code c for a given channel W is measured by its error rate
(notation: ēcha(W , c)), that is defined by the average probability of errors:

Definition ErrRateCond (W : C H1 (A , B)) c m :=
Pr (W ˆ n (| enc c m)) [set y | dec c y 6= Some m] .

Definition CodeErrRate (W : C H1 (A , B)) c :=
1 / INR # | M | ∗ ∑_ (m in M) ErrRateCond W c m .

W ˆ n (| enc c m) is the distribution of outputs corresponding to the codeword enc c m

of a message m sent other the DMC of W. [set y | dec c y 6=Some m] is the set of outputs
that do not decode to m. INR injects naturals into reals.

2.2 Aposteriori Probability

Probabilities are used to specify the correctness of probabilistic decoders such as the
sum-product algorithm (see Sect. 5).

We first formalize the notion of aposteriori probability: the probability that an input
was sent knowing that some output was received. It is defined via the Bayes rule from
the probability that an output was received knowing that some input was sent. For an
input distribution P and a channel W , the aposteriori probability of an input x given the
output y is:

PW (x|y) :=
P(x)W n(y|x)

∑x′∈An P(x′)W n(y|x′)

We formalize aposteriori probabilities with the following probability mass function:

Definition den := ∑_ (x in ’rV_n) P x ∗ W ˆ n (y | x) .
Definition f x := P x ∗ W ˆ n (y | x) / den .

This probability is well-defined when the denominator is not zero. This is more than a
technical hindrance: it expresses the natural condition that, since y was received, then
necessarily a suitable x (i.e., such that P x 6=0 and W ˆ n (y | x) 6=0) was sent before-
hand. The denominator being non-zero is thus equivalent to the receivable condition:

Definition receivable y := [∃ x , (P x 6= 0) ∧ (W ˆ n (y | x) 6= 0)] .

In Coq, we denote aposteriori probabilities by P ‘ˆˆ W , H (x | y) where H is a proof
that y is receivable.

Finally, the probability that the nth
0 bit of the input is set to b (0 or 1) given the output

y is defined by the marginal aposteriori probability (K is chosen so that it is indeed a
probability):

PW
n0
(b|y) := K ∑

x∈Fn
2 xn0=b

PW (x|y)

In Coq, we will denote this probability by P ’_ n0 ‘ˆˆ W , H (b | y) where H is the
proof that y is receivable. See [3] for complete formal definitions.

3 A Formal Setting for Linear ECCs

Linear ECCs are about bit-vectors, i.e., vectors over F2 (we use the notation ’F_2 from
MATHCOMP). Their properties are mostly discussed in terms of Hamming weight (the
number of 1 bits) or of Hamming distance (the number of bits that are different). In Coq,
we provide a function wH for the Hamming weight, from which we derive the Hamming
distance: Definition dH n (x y : ’rV_n) := wH (x − y).

3.1 Linear ECCs as Sets of Codewords

The simplest definition of a linear ECC is as a set of codewords closed by addition (n is
called the length of the code):

Record lcode0 n := mkLcode0 {
codewords :> {set ’rV [’ F_2] _n} ;
lclosed : addr_closed codewords } .

In practice, a linear ECC is defined as the kernel of a parity check matrix (PCM), i.e.,
the matrix whose rows correspond to the checksum equations that codewords fulfill (∗m
is multiplication and ˆT is transposition of matrices):

Definition syndrome (H : ’M [’ F_2] _ (m , n)) (y : ’rV_n) := H ∗m y ˆ T .
Definition kernel H := [set c | syndrome H c = 0] .

Since the kernel of the PCM is closed by addition, it defines a linear ECC:

Lemma kernel_add H : addr_closed (kernel H) . Proof Qed .
Definition lcode0_kernel H := mkLcode0 (kernel_add H) .

⊥
messages

encoder

c1c2 · · ·ck

noisy
channel

c1c2 · · ·ck· · ·cn
(codeword)

decoder
discard

repair

c1? · · ·ck· · ·cn (e.g., 2nd bit flipped)

c1c2 · · ·ck

Fig. 1. The setting of error-correcting codes

When H is a m×n matrix, k = n−m is called the dimension of the code.
A code is trivial when it is reduced to the singleton with the null vector:

Definition not_trivial := ∃ cw , (cw ∈ C) ∧ (cw 6= 0) .

When a linear ECC C is not trivial (proof C_not_trivial below), one can define the
minimum distance between any two codewords, or, equivalently, the minimum weight
of non-zero codewords, using SSREFLECT’s xchoose and arg_min functions:

Definition non_0_codeword := xchoose C_not_trivial .
Definition min_wH_codeword :=

arg_min non_0_codeword [pred cw in C | wH cw 6= O] wH .
Definition d_min := wH min_wH_codeword .

The minimum distance dmin defines in particular the number of errors b dmin−1
2 c that one

can correct using minimum distance decoding (see Sect. 3.3):

Definition mdd_err_cor := (d_min -1) / 2 .

3.2 Linear ECCs with Coding and Decoding Functions

In practice, a linear ECC is not only a set of codewords but also a pair of coding and
decoding functions to be used in conjunction with a channel (see Fig. 1 [5, p. 16]). We
combine the definition of a linear ECC as a set of codewords (Sect. 3.1) and as a pair of
encoding and decoding functions (i.e., a channel code—Sect. 2.1) with the hypotheses
that (1) the encoder is injective and (2) its image is a subset of the codewords:

Record lcode n k : Type := mkLcode {
lcode0_of :> lcode0 n ;
enc_dec :> code ’F_2 ’F_2 ’rV [’ F_2] _k n ;
enc_inj : injective (enc enc_dec) ;
enc_img : enc_img_in_code lcode0_of (enc enc_dec) } .

enc_img_in_code is the hypothesis that the image of the messages (here, ’rV[’F_2]_k)
by the encoder (enc enc_dec) is included in the set of codewords (here, lcode0_of).
Note that k ≤n can be derived from the injectivity of the encoder.

As indicated by Fig. 1, the decoder is decomposed into (1) a function that repairs
the received output and (2) a function that discards the redundancy bits:

Record lcode1 n k := mkLcode1 {
lcode_of :> lcode n k ;
repair : repairT n ; (* ’rV[’F_2]_n → option (’rV[’F_2]_n) *)

discard : discardT n k ; (* ’rV[’F_2]_n → ’rV[’F_2]_k *)

dec_is_repair_discard :
dec lcode_of = [ffun y ⇒ omap discard (repair y)] ;

enc_discard_is_id : cancel_on lcode_of (enc lcode_of) discard } .

enc_discard_is_id is a proof that discard followed by encoding enc is the identity
over the domain lcode_of.

Example The r-repetition code encodes one bit by replicating it r times. It has therefore
two codewords: 00 · · ·0 and 11 · · ·1 (r times). The PCM can be defined as H = A ||1
where A is a column vector of r− 1 1’s, and the corresponding encoder is the matrix
multiplication by G= 1 ||(−A)T . More generally, let A be a (n−k)×k matrix, H =A ||1
and G = 1 ||(−A)T . Then H is the PCM of a (n,k)-code with the (injective) encoding
function x 7→ x×G. Such a linear ECC is said to be in systematic form (details in [3]).

3.3 The Variety of Decoding Procedures

There are various strategies to decode the channel output. Minimum distance decoding
chooses the closest codeword in terms of Hamming distance. When such a decoder
decodes an output y to a message m, then there is no other message m’ whose encoding
is closer to y:

Definition minimum_distance_decoding :=
∀ y m , (dec c) y = Some m →
∀ m ’ , dH ((enc c) m) y ≤ dH ((enc c) m ’) y .

We can now formalize the first interesting theorem about linear ECCs [11, p. 10] that
shows that a minimum distance decoder can correct mdd_err_cor (see Sect. 3.1) errors:

Lemma encode_decode m y : (dec C) y 6= None →
dH ((enc C) m) y ≤ mdd_err_cor C_not_trivial → (dec C) y = Some m .

For example, a repetition code can decode (r−1)/2 errors (with r odd) since minimum
distance decoding can be performed by majority vote (see [3] for formal proofs):

Definition majority_vote r (s : seq ’F_2) : option ’F_2 :=
let cnt := num_occ 1 s in

if r / 2 < cnt then Some 1
else if (r / 2 = cnt) ∧ ~~ odd r then None

else Some 0 .

Maximum likelihood (ML) decoding decodes to the message that is the most likely
to have been encoded according to the definition of the channel. More precisely, for an
encoder f , a ML decoder φ is such that W n(y| f (φ(y)) = maxm∈M W n(y| f (m)):

Definition maximum_likelihood_decoding :=
support (enc c) → ∀ y , receivable W P y →
∃ m , (dec c) y = Some m ∧

W ˆ n (y | (enc c) m) = \rmax_ (m ’ in M) W ˆ n (y | (enc c) m ’) .

The assumption receivable W P y says that we consider outputs with non-zero prob-
ability (see Sect. 2.2). The assumption support (enc c) says that only codewords can
be input. Textbooks do not make these assumptions explicit but they are essential to
complete formal proofs.

ML decoding is desirable because it achieves the smallest error rate among all the
possible decoders [3, lemma ML_smallest_err_rate]. Still, it is possible to achieve ML
decoding via minimum distance decoding. This is for example the case with a binary
symmetric channel (that inputs and outputs bits) with error probability p < 1

2 . Formally,
for a code c with at least one codeword:

Lemma MD_implies_ML : p < 1 / 2 → minimum_distance_decoding c →
(∀ y , (dec c) y 6= None) → maximum_likelihood_decoding W c P .

Maximum aposteriori probability (MAP) decoding decodes to messages that max-
imize the aposteriori probability (see Sect. 2.2). MAP decoding is desirable because
it achieves ML decoding [3, lemma MAP_implies_ML]. Maximum posterior marginal
(MPM) decoding is similar to MAP decoding: it decodes to messages such that each bit
maximizes the marginal aposteriori probability. The sum-product algorithm of Sect. 5
achieves MPM decoding.

4 Formalization of Hamming Codes and Their Properties

We formalize Hamming codes. In particular, we show that the well-known decoding
procedure for Hamming code is actually a minimum distance decoding and that the
error rate can be stated as a closed formula.

Formal Definition Hamming codes are (n = 2m−1,k = 2m−m−1) linear ECCs, i.e.,
one adds m extra bits for error checking. The codewords are defined by the PCM whose
columns are the binary representations of the 2m−1 non-null words of length m. For a
concrete illustration, here follows the PCM of the (7,4)-Hamming code:

hamH7,4 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Formally, for any m, we define the PCM using a function nat2bin_cV that builds column
vectors with the binary representation of natural numbers (e.g., for the matrix H above,
nat2bin_cV 3 1 returns the first column vector, nat2bin_cV 3 2 the second, etc.):

Definition hamH := \matrix_ (i < m , j < n) (nat2bin_cV m j+1 i 0) .
Definition hamC : lcode0 n := lcode0_kernel hamH .

Minimum Distance The minimum distance of Hamming codes is 3, and therefore, by
minimum distance decoding, Hamming codes can correct 1-bit errors (by the lemma
encode_decode of Sect. 3.3). The fact that the minimum distance is 3 is proved by
showing that there are no codewords of weights 1 and 2 (by analysis of H) while there
is a codeword of weight 3 (7×2n−3 = (1110 · · ·0)2). Hamming codes are therefore not
trivial and their minimum distance is 3:

Lemma hamming_not_trivial : not_trivial hamC .
Lemma minimum_distance_is_3 : d_min hamming_not_trivial = 3 .

Minimum Distance Decoding The procedure of decoding for Hamming codes is well-
known. To decode the output y, compute its syndrome: if it is non-zero, then it is the
binary representation of the index of the bit to flip back. The function ham_detect com-
putes the index i of the bit to correct and prepare a vector to repair the error. The
function ham_repair fixes the error by adding this vector:

Definition ham_detect y :=
let i := bin2nat_cV (syndrome hamH y) in

if i is O then 0 else nat2bin_rV n (2 ˆ (n − i)) .
Definition ham_repair : decT _ _ m := [ffun y ⇒

let ret := y + ham_detect y in

if syndrome hamH ret = 0 then Some ret else None] .

Let ham_scode be a linear ECC using the ham_repair function. We can show that it
implements minimum distance decoding:

Lemma hamming_MD : minimum_distance_decoding ham_scode .

It is therefore an ML decoding (by the lemma MD_implies_ML from Sect. 3.3).

The Encoding and Discard Functions We now complete the formalization of Ham-
ming codes by providing the encoding and discard functions (as in Fig. 1). Modulo
permutation of the columns, the PCM of Hamming codes can be transformed into sys-
tematic form sysH = sysA ||1 (as explained in the example about repetition codes in
Sect. 3.2). This provides us with a generating matrix sysG = 1 ||(−sysA)T . For illustra-
tion in the case of the (7,4)-Hamming code:

sysH7,4 =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 sysG7,4 =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

Let sysH_perm be the column permutation that turns H into sysH. The parity check and
generating matrices in systematic form are formalized as follows:

Definition sysH : ’M [’ F_2] _ (m , n) := col_perm sysH_perm hamH .
Definition sysG :=

castmx (erefl , subnK (m_len m ’)) (row_mx 1%:M (−sysA) ˆ T) .

(castmx is a cast that deals with dependent types.) The discard function in systematic
form is obvious:

Definition sysDiscard : ’M [’ F_2] _ (n − m , n) :=
castmx (erefl , subnK (m_len m ’)) (row_mx 1%:M 0) .

Using the column permutation sysH_perm the other way around, we can produce the
discard function and the generating matrix corresponding to the original hamH:

Definition ham_discard := col_perm sysH_perm ˆ−1 sysDiscard .
Definition hamG := col_perm sysH_perm ˆ−1 sysG .

Coupled with the ham_repair function above, hamG and ham_discard provides us with
a complete definition of Hamming encoders and decoders:

Definition ham_channel_code := mkCode

[ffun t ⇒ t ∗m hamG] [ffun x ⇒ omap ham_discard (ham_repair _ x)] .

Error Rate Finally, we show, in the case of a binary symmetric channel W, that the
error rate (see Sect. 2.1) of Hamming codes can be expressed as a closed formula:

Lemma hamming_error_rate : p < 1 / 2 → ēcha (W , ham_channel_code) =
1 − ((1 − p) ˆ n) − INR n ∗ p ∗ ((1 − p) ˆ (n − 1)) .

The existence of codes with arbitrary small error rates is the main result of Shannon’s
theorems. But Shannon’s proofs are not constructive. Our formalization of Hamming
codes with a closed formula for their error rate provides us with a concrete candidate.

5 Formalization of the Properties of Sum-product Decoding

The sum-product algorithm provides efficient decoding for LDPC codes. It computes
for each bit its marginal aposteriori probability by propagating probabilities in a graph
corresponding to the PCM. We explain those graphs in Sect. 5.1, the summary operator
used to specify the sum-product algorithm in Sect. 5.2, and the main properties of the
sum-product algorithm in Sect. 5.3.

5.1 Parity Check Matrix as Tanner Graphs

The vertices of a Tanner graph correspond to the rows and columns of a parity-check
matrix H with an edge between m and n when Hm,n = 1. Rows are called function nodes
and columns are called variable nodes. By construction, a Tanner graph is bipartite.

Sets of successor nodes and subgraphs of Tanner graphs appear as indices of big
operators in the definitions and proofs of the sum-product algorithm.

Let g be a graph (formalized by a binary relation) and m and n be two connected
vertices. The subgraph rooted at the edge m–n is the set of vertices reachable from m

without passing through n:

Variables (V : finType) (g : rel V) .
Definition except n := [rel x y | g x y ∧ (x 6= n) ∧ (y 6= n)] .
Definition subgraph m n := [set v | g n m ∧ connect (except n) m v] .

For Tanner graphs, we distinguish successors and subgraphs of variable nodes and
of function nodes. We denote the successors of the function (resp. variable) node m0

(resp. n0) by ‘V m0 (resp. ‘F n0). We denote the function nodes of the subgraph rooted
at edge m0–n0 by ‘F(m0, n0). Similarly, we denote the variable nodes of the subgraph
rooted at edge m0–n0 (to which we add n0) by ‘V(m0, n0). Fig. 2 provides an explanatory
illustration, see [3] for complete definitions.

It will be important to distinguish acyclic Tanner graphs:

Definition acyclic g := ∀ l , 2 < size l → ~ path . ucycle g l .

Technically, we will need to establish partition properties when proving the properties
of the sum-product decoding algorithm (see Sect. 5.3 for a concrete example).

n0

m0

n1

m1

n3

m3

m2

n4

m4

n2

‘V m0

‘V(m0, n0)

n0

m0

n1

m1

n3

m3

m2

n4

m4

n2

‘F n1

‘F(m0, n0)

Fig. 2. Successors and subtrees in an acyclic Tanner graph

5.2 The Summary Operator

Pencil-and-paper proofs in modern coding theory [12] make use of a special summation
called the summary operator [10]. It is denoted by ∑∼s and indicates the variables not
being summed over. This operator saves the practitioner “from a flood of notation” [12,
p. 49], for example by writing steps such as:

∏
m0∈F(n0)

∑
∼{n0}

· · ·= ∑
∼{n0}

∏
m0∈F(n0)

· · · , (1)

the reader being trusted to understand that both operators sum over different sets.
We formalize the summary operator as a sum over vectors x such that x /_ i is fixed

using a default vector d when i 6∈ s and write ∑_(x # s, d) instead of ∑∼s:

Definition summary (s : {set ’I_n }) (d x : ’rV [A] _n) :=
[∀ i , (i ∈ ~ : s) ⇒ (x / _ i = d / _ i)] .

Notation ”∑ (x ’# ’ s ’ , ’ d) e ” := (∑_ (x | summary s d x) e)

Indeed, ∑∼s can be understood as a sum over vectors [x0;x1; ...;xn−1] such that xi is
fixed when i ∈ s. We found it difficult to recover the terseness of the pencil-and-paper
summary operator in a proof-assistant. First, the precise set of varying x j is implicit;
it can be inferred by looking at the x j appearing below the summation sign but this is
difficult to achieve unless one reflects most syntax. Second, it suggests working with
vectors x of varying sizes, which can be an issue when the size of vectors appears in
dependent types (tuples or row vectors in MATHCOMP). Last, it is not clear about the
values of xi when i ∈ s.

In contrast, our formalization makes clear, for example, that in equation (1) the
first summary operator sums over V (m0,n0)\{n0} while the second one sums over
[1, . . . ,n]\{n0} (see Sect. 5.3 for the formalization). More importantly, we can bene-
fit from MATHCOMP lemmas about big operators to prove the properties of the sum-
product decoding thanks to our encoding (see Sect. 5.3).

Alternatively, our summary operator ∑_(x # s , d) e x can also be thought as
∑x1∈F2

· · ·∑x|s|∈F2
e d[s1 := x1] · · · [s|s| := x|s|] where d[i := b] represents the vector d

where index i is updated with b. Put formally (enum s below is the list [s1;s2; · · · ;s|s|]):

Definition summary_fold (s : {set ’I_n }) d e :=
foldr (fun n0 F t ⇒ ∑_ (b in ’F_2) F (t ‘ [n0 := b])) e (enum s) d .

This is equivalent (∑_(x # s, d) e x = summary_fold s d e) but we found it easier to use
summary_fold to prove our implementation of the sum-product algorithm in Sect. 6.

5.3 Properties of the Sum-product Decoding

Correctness of the Estimation Let us consider a channel W and a channel output y.
With sum-product decoding, we are concerned with evaluating PW

n0
(b|y) where b is the

value of the nth
0 bit of the input codeword (see Sect. 2.2). In the following, we show that

it is proportional to the following quantity:

PW
n0
(b|y) ∝ W (yn0 |b) ∏

m0∈F(n0)

αm0,n0(b).

αm0,n0(b) (formal definition below) is the contribution to the marginal aposteriori prob-
ability of the nth

0 bit coming from a subtree of the Tanner graph (we assume that the
Tanner graph is acyclic).

We now provide the formal statement. Let W be a channel. Let H be a m×n PCM such
that the corresponding Tanner graph is acyclic (hypothesis acyclic_graph (tanner_rel H),
where tanner_rel turns a PCM into the corresponding Tanner graph). Let y be the
channel output to decode. We assume that it is receivable (hypothesis Hy below, see
Sect. 2.2). Finally, let d be the vector used in the summary operator. Then the aposteri-
ori probability PW

n0
(b|y) can be evaluated by a closed formula:

Lemma estimation_correctness (d : ’rV_n) n0 :
let b := d / _ n0 in let P := ‘U C_not_empty in

P ’_ n0 ‘ ˆ ˆ W , Hy (b | y) =
Kmpp Hy ∗ Kpp W H y ∗ W b (y / _ n0) ∗ ∏_ (m0 in ‘F n0) α m0 n0 d .

Kmpp and Kpp are normalization constants (see [3]). P is a uniform distribution. The
distribution ‘U C_not_empty of codewords has the following probability mass function:
cw 7→ 1/|C| if cw ∈C and 0 otherwise. α is the marginal aposteriori probability of the
nth

0 bit of the input codeword in the modified Tanner graph that includes only function
nodes from the subgraph rooted at edge m0–n0 and in which the received bit y /_ n0

has been erased. The formal definition relies on the summary operator:

Definition α m0 n0 d := ∑_ (x # ‘V (m0 , n0) :\ n0 , d)
W ˆ _ (y # ‘V (m0 , n0) :\ n0 | x # ‘V (m0 , n0) :\ n0) ∗

∏_ (m1 in ‘F (m0 , n0)) INR (δ (‘ V m1) x) .

δ s x is an indicator function that performs checksum checks:

Definition δ n (s : {set ’I_n }) (x : ’rV [’ F_2] _n) :=
(\ big[+%R / Zp0] _ (n0 in s) x / _ n0) = Zp0 .

Let us comment about two technical aspects of the proof of estimation_correctness.
The first one is the need to instrument Tanner graphs with partition lemmas to be able to
decompose big sums/prods. See the next paragraph on lemma recursive_computation

for a concrete example. The second one is the main motivation for using the summary
operator. We need to make big sums commute with big prods in equalities like:

∏_ (m0 in ‘F n0) ∑_ (x # ‘V (m0 , n0) :\ n0 , d) . . . =
∑_ (x # setT :\ n0 , d) ∏_ (m0 in ‘F n0) . . .

Such steps amount to apply the MATHCOMP lemma big_distr_big_dep together with
technical reindexing. This is one of our contributions to provide lemmas for such steps.

Recursive Computation of α’s The property above provides a way to evaluate PW
n0
(b|y)

but not an efficient algorithm because the computation of αm0,n0(b) is about the whole
subgraph rooted at the edge m0–n0. The second property that we formalize introduces
β probabilities such that α’s (resp. β ’s) can be computed from neighboring β ’s (resp.
α’s). This is illustrated by Fig. 3 whose meaning will be made clearer in Sect. 6. We
define β using α as follows:

Definition β n0 m0 (d : ’rV_n) :=
W (d / _ n0) (y / _ n0) ∗ ∏_ (m1 in ‘F n0 :\ m0) α m1 n0 d .

We prove that α’s can be computed using β ’s by the following formula (we assume the
same setting as for the lemma estimation_correctness):

Lemma recursive_computation m0 n0 d : n0 ∈ ‘V m0 →
α m0 n0 d = ∑_ (x # ‘V m0 :\ n0 , d)

INR (δ (‘ V m0) x) ∗ ∏_ (n1 in ‘V m0 :\ n0) β n1 m0 x .

This proof is technically more involved than the lemma estimation_correctness but
relies on similar ideas: partitions of Tanner graphs to split big sums/prods and com-
mutations of big sums and big prods using the summary operator. Let us perform the
first proof step for illustration. It consists in turning the inner product of α messages
∏_(m1 in ‘F(m0, n0) :\ m0) INR (δ (‘V m1) x) into:

∏_ (n1 in ‘V m0 :\ n0) ∏_ (m1 in ‘F n1 :\ m0)
∏_ (m2 in ‘F (m1 , n1)) INR (δ (‘ V m2) x)

This is a consequence of the fact that ‘F(m0, n0) :\ m0 can be partitioned (when H is
acyclic) into smaller ‘F(m1, n1) where n1 is a successor of m0 and m1 is a successor of
n1, i.e., according to the following partition:

Definition Fgraph_part_Fgraph m0 n0 : {set {set ’I_m}} :=
(fun n1 ⇒

⋃
_ (m1 in ‘F n1 :\ m0) ‘F (m1 , n1)) @ : ((‘ V m0) :\ n0) .

Once Fgraph_part_Fgraph m0 n0 has been shown to cover ‘F(m0, n0) :\ n0 with pair-
wise disjoint sets, this step essentially amounts to use the lemmas big_trivIset and
big_imset from MATHCOMP. See [3, tanner_partition.v] for related lemmas.

6 Implementation and Verification of Sum-product Decoding

An implementation of sum-product decoding takes as input a Tanner graph and an out-
put y, and computes for all variable nodes, each representing a bit of the decoded code-

n0

m0

n1

m1 m2

n2

m3 m4

αm0,n0(0),
αm0,n0(1)

βn1,m0(0),
βn1,m0(1)

βn2,m0(0),
βn2,m0(1)

αm4,n2(0),
αm4,n2(1)

αm3,n2(0),
αm3,n2(1)

αm2,n1(0),
αm2,n1(1)

αm1,n1(0),
αm1,n1(1)

n0

m0

n1

m1 m2

n2

m3 m4

βn0,m0(0),
βn0,m0(1)

βn1,m0(0),
βn1,m0(1) αm0,n2(0),

αm0,n2(1)

Fig. 3. Illustrations for sumprod_up and sumprod_down. Left: sumprod_up computes the up

links from the leaves to the root. Right: sumprod_down computes the down link of edge m0–n2
using the β ’s of edges m0–ni (i 6= 2).

word, its marginal aposteriori probability. One chooses to decode the nth
0 bit either as 0

if PW
n0
(0|y)≥ PW

n0
(1|y) or as 1 otherwise, so as to perform MPM decoding.

The algorithm we implement is known in the literature as the forward/backward
algorithm and has many applications [10]. It uses the tree view of an acyclic Tanner
graph to structure recursive computations. In a first phase it computes α’s and β ’s (see
Sect. 5.3) from the leaves towards the root of the tree, and then computes α’s and β ’s
in the opposite direction (starting from the root that time). Fig. 3 illustrates this.

Concretely, we provide Coq functions to build the tree, compute α’s and β ’s, and
extract the estimations, and prove formally that the results indeed agree with the defini-
tions from Sect. 5.3.

Definition of the tree Function nodes and variable nodes share the same data structure,
and are just distinguished by their kind.

Definition R2 := (R ∗ R)%type .
Inductive kind : Set := kf | kv .
Fixpoint negk k := match k with kf ⇒ kv | kv ⇒ kf end .
Inductive tag : kind → Set := Func : tag kf | Var : R2 → tag kv .
Inductive tn_tree (k : kind) (U D : Type) : Type :=

Node { node_id : id ; node_tag : tag k ;
children : seq (tn_tree (negk k) U D) ;
up : U ; down : D } .

This tree is statically bipartite, thanks to the switching of the kind for the children.
Additionally, in each variable node, node_tag is expected to contain the channel prob-
abilities for this bit to be 0 or 1, i.e., the pair (W (yn0 |0),W (yn0 |1)). The up and down

fields are to be filled with the values of α and β (according to the kind), going to the
parent node for up, and coming from it for down. Here again we will use pairs of the 0
and 1 cases. Note that the values of α’s and β ’s need not be normalized.

Computation of α and β The function α_β takes as input the tag of the source node,
and the α’s and β ’s from neighboring nodes, excluding the destination, and computes

either α or β , according to the tag. Thanks to this function, the remainder of the algo-
rithm keeps a perfect symmetry between variable and function nodes.

Definition α_op (out inp : R2) :=
let (o , o ’) := out in let (i , i ’) := inp in

(o∗i + o ’∗i ’ , o∗i ’ + o ’∗i) .
Definition β_op (out inp : R2) :=

let (o , o ’) := out in let (i , i ’) := inp in (o∗i , o ’∗i ’) .
Definition α_β k (t : tag k) : seq R2 → R2 :=

match t with

| Func ⇒ foldr α_op (1 , 0)
| Var v ⇒ foldl β_op v

end .

The definition for β is clear enough: assuming that v contains the channel probabilities
for the corresponding bit, it suffices to compute the product of these probabilities with
the incoming α’s. For α , starting from the recursive_computation lemma, we remark
that assuming a bit to be 0 leaves the parity unchanged, while assuming it to be 1
switches the parities. This way, the sum-of-products can be computed as an iterated
product, using α_op. This optimization is described in [10, Sect. 5-E]. We will of course
need to prove that these definitions compute the same α’s and β ’s as in Sect. 5.3.

Propagation of α and β sumprod_up and sumprod_down compute respectively the
contents of the up and down fields.

Fixpoint sumprod_up {k} (n : tn_tree k unit unit)
: tn_tree k R2 unit :=
let children ’ := map sumprod_up (children n) in

let up ’ := α_β (node_tag n) (map up children ’) in

Node (node_id n) (node_tag n) children ’ up ’ tt .
Fixpoint seqs_but1 (a b : seq R2) :=

if b is h : : t then (a++t) : : seqs_but1 (rcons a h) t else [: :] .
Fixpoint sumprod_down {k} (n : tn_tree k R2 unit)

(from_above : option R2) : tn_tree k R2 R2 :=
let (arg0 , down ’) :=

if from_above is Some p then ([: : p] , p) else ([: :] , (1 , 1)) in

let args := seqs_but1 arg0 (map up (children n)) in

let funs := map

(fun n ’ l ⇒ sumprod_down n ’ (Some (α_β (node_tag n) l)))
(children n) in

let children ’ := apply_seq funs args in

Node (node_id n) (node_tag n) children ’ (up n) down ’ .
Definition sumprod {k} n := sumprod_down (@sumprod_up k n) None .

The from_above argument is None for the root of the tree, or the β coming from the
parent node otherwise. apply_seq applies a list of functions to a list of arguments. This
is a workaround to allow defining sumprod_down as a Fixpoint.

Building the tree A parity-check matrix H and the probability distribution rW for each
bit (computed from the output y and the channel W) is turned into a tn_tree, using the
function build_tree, and fed to the above sumprod algorithm:

Variables (W : C H1 (’ F_2 , B)) (y : ’rV [B] _n) .
Let rW n0 := (W 0 (y / _ n0) , W 1 (y / _ n0)) .
Let computed_tree := sumprod (build_tree H rW (k := kv) ord0) .

Extraction of estimations We finally recover normalized estimations from the tree:

Definition normalize (p : R2) :=
let (p0 , p1) := p in (p0 / (p0 + p1) , p1 / (p0 + p1)) .

Fixpoint estimation {k} (n : tn_tree k R2 R2) :=
let l := flatten (map estimation (children n)) in

if node_tag n is Var _ then

(node_id n , normalize (β_op (up n) (down n))) : : l

else l (* node_tag n is Func *) .

Correctness The correctness of the algorithm above consists in showing that the esti-
mations computed are the intended aposteriori probabilities:

Let estimations := estimation computed_tree .
Definition esti_spec n0 (x : ’rV_n) :=

(‘ U C_not_empty) ’_ n0 ‘ ˆ ˆ W , Hy (x / _ n0 | y) .
Definition estimation_spec := uniq (unzip1 estimations) ∧
∀ n0 , (inr n0 , p01 (esti_spec n0) n0) ∈ estimations .

where p01 f n0 applies f, to a vector whose nth
0 bit is set to 0 and 1.

Theorem estimation_ok in [3, ldpc_algo_proof.v] provides a proof of this fact. As
key steps, it uses the lemmas recursive_computation and estimation_correctness

from Sect. 5.3.

Concrete codes All proofs of probabilistic sum-product decoding assume the Tanner
graph to be acyclic [10]. In practice codes based on acyclic graphs are rare and not very
efficient [7]. We tested our implementation with one of them [3, sumprod_test.ml].

In the general case where the Tanner graph contains cycles, one would use an al-
ternative algorithm that computes the α’s and β ’s repeatedly, propagating them in the
graph until the corrected word satisfies the parity checks, failing if the result is not
reached within a fixed number of iterations [10, Sect. 5]. This works well in practice
but there is no proof of correctness, even informal. In place of this iterative approach,
one could also build a tree approximating the graph, by unfolding it to a finite depth,
and apply our functional algorithm.

7 Related Work

Coding theory has been considered as an application of the interface between the Is-
abelle proof-assistant and the Sumit computer algebra system [4]. In order to take ad-
vantage of the computer algebra system, proofs are restricted to a certain code length.
Though the mathematical background about polynomials has been formally verified,
results about coding theory are only asserted. In comparison, we formally verify much
more (generic) lemmas. Yet, for example when proving that certain bitstrings are code-
words, we found ourselves performing formal proofs close to symbolic computation.
With this respect, we may be able in a near future to take advantage of extensions of the
MATHCOMP library that provide computation [6].

8 Conclusion

In this paper, we have proved the main properties of Hamming codes and sum-product
decoding. It is interesting to contrast the two approaches, respectively known as classi-
cal and modern coding theory.

For Hamming codes, we could provide an implementation of minimal-distance de-
coding, and prove that it indeed realizes maximum likelihood decoding, i.e., the best
possible form of decoding.

For sum-product decoding, which provides the basis for LDPC codes, one can only
prove that the sum-product algorithm allows to implement MPM decoding. However,
this is two steps away from maximum likelihood: the proof is only valid for acyclic
Tanner graphs, while interesting codes contain cycles, and MPM is an approximation
of MAP decoding, with only the latter providing maximum likelihood. Yet, this “extrap-
olation” methodology does work: sum-product decoding of LDPC codes is empirically
close to maximum likelihood, and performs very well in practice.

Acknowledgments T. Asai, T. Saikawa, K. Sakaguchi, and Y. Takahashi contributed to
the formalization. The formalization of modern coding theory is a collaboration with M.
Hagiwara, K. Kasai, S. Kuzuoka, and R. Obi. The authors are grateful to the anonymous
reviewers for their comments. This work is partially supported by a JSPS Grant-in-Aid
for Scientific Research (Project Number: 25289118).

References

1. Affeldt, R., Nowak, D., Yamada, K.: Certifying Assembly with Formal Security Proofs: the
Case of BBS. Sci. Comput. Program. 77(10-11):1058-1074 (2012).

2. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems. J. Autom.
Reasoning 53(1):63–103 (2014).

3. Affeldt, R., Garrigue, J.: Formalization of Error-correcting Codes: from Hamming to Mod-
ern Coding Theory. Coq scripts. Available at https://staff.aist.go.jp/reynald.affeldt/ecc.

4. Ballarin, C., Paulson, L.C.: A Pragmatic Approach to Extending Provers by Computer
Algebra—with Applications to Coding Theory. Fundam. Inform. 34(1–2):1–20 (1999).

5. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.: Error-
Correcting Linear Codes—Classification by Isometry and Applications. Springer (2006).

6. Dénès, M., Mörtberg, A., Siles, V.: A Refinement-Based Approach to Computational Alge-
bra in Coq. In: Proc. of the 3rd International Conference on Interactive Theorem Proving
(ITP 2012). LNCS, vol. 7406, pp. 83–98. Springer (2012).

7. Etzion, T., Trachtenberg, A., Vardy, A.: Which codes have cycle-free Tanner graphs? IEEE
Trans. Inf. Theory 45(6):2173–2181 (1999).

8. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the Coq system.
Technical Report RR-6455. INRIA (2008). Version 14 (March 2014).

9. Hagiwara, M.: Coding Theory: Mathematics for Digital Communication. Nippon Hyoron
Sha (2012). In Japanese.

10. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algo-
rithm. IEEE Trans. Inf. Theory 47(2):498–519 (2001).

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland
(1977). 7th impression (1992).

12. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press (2008).

A Overview of the Formalization

Table 1 indicates where to find in our formalization [3] the files relevant to the defini-
tions and lemmas discussed in the paper. As explained in Sect. 2.1, this formalization
relies on previous work on information theory [2] regarding the formalization of prob-
abilities, channel codes, channels, etc. We have not listed up files that provide MATH-
COMP with minor extensions: big operator for maximum over reals (Rbigop_max.v),
additional definitions about row vectors (ssralg_ext.v), etc. There are also several files
with minor results (cyclic_code.v, mceliece.v, etc.) or in a work-of-progress state that
we have not referred to in this paper.

file name contents l.o.c.
f2.v Lemmas about F2 215
pproba.v Aposteriori probability (Sect. 2.2) 151
natbin.v Naturals as bit-vectors (such as nat2bin_cV of Sect. 4) 618
linear_code.v Formalization of linear codes (Sect. 3) 648
repcode.v Example: repetition codes (see Sections 3.2 and 3.3) 418
decoding.v Specifications of decoders (Sect. 3.3) 309
hamming.v Hamming weight and Hamming distance and lemmas (Sect. 4) 889
hamming_code.v Theory of Hamming codes (Sect. 4) 1227
subgraph_partition.v Subgraphs and generic partition properties (Sect. 5.1) 1590
tanner.v Tanner graphs: definitions and notations (Sect. 5.1) 217
tanner_partition.v Partition properties of Tanner graphs (Sect. 5.1) 1257
summary.v Summary operator (Sect. 5.2) 458
summary_tanner.v Properties of the summary operator (see Sect. 5.2 for example) 797
checksum.v Properties of the δ function (see Sect. 5.3) 219
ldpc.v Properties of sum-product decoding (Sect. 5.3) 1127
ldpc_algo.v Implementation of the sum-product algorithm (Sect. 6) 321
ldpc_algo_proof.v Verification of the sum-product implementation (Sect. 6) 2456
sumprod_test.ml OCaml code for testing, partly extracted (Sect. 6) 143

Total (Coq only): 12917

Table 1. Overview of the formalization [3]

