
Introduction Translating types Translating programs Conclusion

A Gallina generating backend to check OCaml’s
type inference correctness

Jacques Garrigue

Graduate School of Mathematics, Nagoya University

November 22, 2021

1 / 18

Introduction Translating types Translating programs Conclusion

Starting point

• Proving the correctness of the full OCaml type inference is
hard

• We can prove it theoretically for subparts, but combining
them is complex

• Writing a type checker for the typed syntax tree might help,
but still suffers the same diffculties

• Alternative approach: ensure that the generated typed syntax
trees enjoys type soundness by translating them into another
type system

2 / 18

Introduction Translating types Translating programs Conclusion

Soundness by translation

P

x

OCaml Coq

[[x]]

[[P]]

P(x) [[P]]([[x]])

Input

Program

Output

If for all P : τ → τ ′ and x : τ

• P translates to [[P]], and
` [[P]] : [[τ → τ ′]]

• x translates to [[x]], and
` [[x]] : [[τ]]

• [[P]] applied to [[x]] evaluates
to [[P(x)]]

• [[·]] is injective (on types)

then the soundness of Coq’s type
system implies the soundness of
OCaml’s evaluation

3 / 18

Introduction Translating types Translating programs Conclusion

Requirements for soundness

• Need to evaluate programs, so no axioms in translated
programs

• Need to preserve Coq’s soundness, so avoid other axioms too

• Must implement OCaml’s features, such as references, or
polymorphic comparison inside Coq

• In turn this requires an intensional representation of OCaml’s
types, to be able to use them in computations

4 / 18

Introduction Translating types Translating programs Conclusion

Overview

• Define a type representing OCaml types: ml_type

• And a translation function coq_type : ml_type -> Type

This function must be computable.

• Wrap mutability and failure/non-termination into a monad

Definition M T := Env -> Env * (T + Exn).

• Env is a mapping from keys (which contain some T : ml_type)
to values of type coq_type T.
The definition of Env needs to bypass the positivity check.

• As a result one can write non-terminating programs in Coq,
but we think that since env contains only ML values, this does
not make Coq incoherent.

• No other axiom or bypassing is used (at this point).

5 / 18

Introduction Translating types Translating programs Conclusion

Definition of ml_type

ml_type is just an inductive type with a branch for each OCaml
type constructor used in the program. For instance:

Inductive ml_type :=
| ml_int (* predefined types *)
| ml_exn
| ml_arrow (_ : ml_type) (_ : ml_type)
| ml_ref (_ : ml_type)
| ml_list (_ : ml_type)
| ...
| ml_color (* types from the program *)
| ml_tree (_ : ml_type) (_ : ml_type)
| ml_ref_vals (_ : ml_type).

Since it is used as a parameter for all polymorphic definitions, it
needs to be defined first, but depends on nothing else.
Decidable equality is generated automatically by tactics.

6 / 18

Introduction Translating types Translating programs Conclusion

Translation of type definitions

• ML types have two representions in Coq: an intensional one
as a term t : ml_type, and a shallow embedding coq_type t.

• In order to infer type equalities, some embedded types need to
refer to intensional representations:

loc : ml_type -> Type (* translation of 'a ref *)
newref : forall (T : ml_type), coq_type T -> M (loc T)

• This creates a problem when translating polymorphic type
definitions, as their type variables may be used either in an
intensional or extensional way, and coq_type is not yet defined.

• Solution: use separate type parameters for intensional and
extensional occurrences.

(* type 'a ref_vals = RefVal of 'a ref * 'a list *)
Inductive ref_vals (a : Type) (a_1 : ml_type) :=
RefVal (_ : loc a_1) (_ : list a).

7 / 18

Introduction Translating types Translating programs Conclusion

Definition of coq_type

Once we have translated the type definitions, coq_types can be
generated:

Variable M : Type -> Type. (* The monad is not yet defined *)
Fixpoint coq_type (T : ml_type) : Type :=

match T with
| ml_int => Int63.int
| ml_exn => ml_exns
| ml_arrow T1 T2 => coq_type T1 -> M (coq_type T2)
| ml_ref T1 => loc T1
| ml_list T1 => list (coq_type T1)
| ...
| ml_color => color
| ml_tree T1 T2 => tree (coq_type T1) (coq_type T2)
| ml_ref_vals T1 => ref_vals (coq_type T1) T1

Thanks to this definition, polymorphic values need only take the
intensional representation as parameter.

8 / 18

Introduction Translating types Translating programs Conclusion

Building the execution monad
We can now build the monad, by applying a predefined functor,
which takes ml_type and coq_type as parameters.

Record binding (M : Type -> Type) := mkbind
{ bind_key : key; bind_val : coq_type M (key_type bind_key) }.

Inductive Exn := Catchable of ml_exns | GasExhausted | ...
Definition M0 Env T := Env -> Env * (T + Exn).
#[bypass_check(positivity)] (* non-positive definition *)
Inductive Env := mkEnv : int -> seq (binding (M0 Env)) -> Env.

Definition M T := M0 Env T.
Definition Ret {A} (x : A) : M A := fun env => (env, inl x).
Definition Fail {A} (e : Exn) : M A := fun env => (env, inr e).
Definition Bind {A B} (x : M A) (f : A -> M B) : M B :=

fun env => match x env with
| (env', inl a) => f a env'
| (env', inr e) => (env', inr e)
end.

9 / 18

Introduction Translating types Translating programs Conclusion

Purity analysis
• For each definition, we compute its pure arity, i.e. the number

of applications before it may exhibit impure behavior.

• We use it to avoid turning all arrows into monadic ones.

• To avoid purity polymorphism, all function arguments are
assumed to be values of pure arity 1.

type ('a,'b) tree =
Leaf of 'a | Node of ('a,'b) tree * 'b * ('a,'b) tree ;;

let mknode t1 t2 = Node (t1, 0, t2) ;; (* pure arity = 3 *)

Inductive tree (a : Type) (b : Type) :=
| Leaf (_ : a)
| Node (_ : tree a b) (_ : b) (_ : tree a b).

Definition mknode (T : ml_type) (t1 t2 : coq_type (ml_tree T ml_int))
: coq_type (ml_tree T ml_int) :=
Node (coq_type T) (coq_type ml_int) t1 0%int63 t2.

10 / 18

Introduction Translating types Translating programs Conclusion

Translating recursive functions

To allow the translation of arbitrary recursive functions, all
recursive functions take a gas parameter, and as a result may raise
the exception GasExhausted.

let rec mccarthy_m n = (* pure arity = 1 *)
if n > 100 then n - 10
else mccarthy_m (mccarthy_m (n + 11));;

Fixpoint mccarthy_m (h : nat) (n : coq_type ml_int)
: M (coq_type ml_int) :=
if h is h.+1 then

do v <- ml_gt h ml_int n 100%int63; (* comparison *)
if v then Ret (Int63.sub n 10%int63) else
do v <- mccarthy_m h (Int63.add n 11%int63);
mccarthy_m h v

else Fail GasExhausted.

11 / 18

Introduction Translating types Translating programs Conclusion

Comparison functions
OCaml allows polymorphic comparison. We mimic it by generating
a type analyzing function.

Fixpoint compare_rec (h : nat) (T : ml_type)
: coq_type T -> coq_type T -> M comparison :=
if h is h.+1 then
match T as T return coq_type T -> coq_type T -> M comparison with
| ml_int => fun x y => Ret (Int63.compare x y)
| ml_arrow T1 T2 => (* fail as in OCaml *)

fun x y => Fail (Catchable (Invalid_argument "compare"%string))
| ml_ref T1 => (* compare contents of references *)

fun x y => compare_ref (compare_rec h) T1 x y
| ml_ref_vals T1 => fun x y =>

match x, y with RefVal x1 x2, RefVal y1 y2 =>
lexi_compare (compare_rec h (ml_ref T1) x1 y1)

(Delay (compare_rec h (ml_list T1) x2 y2))
end

...
end

else fun _ _ => FailGas.
12 / 18

Introduction Translating types Translating programs Conclusion

Breaking strong normalization...

The seemingly innocuous non-positive definition of Env allows to
define really non-termination functions (without gas).

let omega x =
let r = ref (fun x -> x) in
let delta y = !r y in
r := delta; delta x ;;

Definition omega (T : ml_type) (x : coq_type T) : M (coq_type T) :=
do r <- newref (ml_arrow T T)

(fun x : coq_type T => Ret (x : coq_type T));
let delta (y : coq_type T) : M (coq_type T) :=
AppM (getref (ml_arrow T T) r) y in

do _ <- setref (ml_arrow T T) r delta; delta x.

Note that one still needs to use a reference, so this can only be
done inside the monad. That is why we believe that one cannot
use this to prove False.

13 / 18

Introduction Translating types Translating programs Conclusion

Simulating the toplevel
Contrary to C, OCaml allows toplevel statements (of pure arity 0)
to change the global state. This is tricky to do this in Coq.

let r = ref [3] ;;
let z = r := 1 :: !r; !r;;

Definition Restart {A B} (x : W A) (f : M B) : W B :=
BindW (fun _ => x) (fun _ => f). (* W for Writer monad *)

Definition it : W unit := (empty_env, inl tt).

Definition r :=
Restart it (newref (ml_list ml_int) (3%int63 :: @nil (coq_type ml_int))).

Definition z :=
Restart r (* the same state should only be restarted once! *)
(do r <- FromW r; (* can access the value repeatedly *)
do _ <- (do v <- (do v <- getref (ml_list ml_int) r;

Ret (@cons (coq_type ml_int) 1%int63 v));
setref (ml_list ml_int) r v);

getref (ml_list ml_int) r).
Eval vm_compute in z.

14 / 18

Introduction Translating types Translating programs Conclusion

How to use

• New backend to OCaml, defined in the ocaml_in_coq branch
of COCTI/ocaml on GitHub. (PR #3)

https://github.com/COCTI/ocaml/pull/3

• Adds a -coq option to ocamlc, which switches to the Coq
generation backend, producing a .v rather than a .cmo.

• At this point, supports only single file programs written in
core ML plus references and algebraic datatypes (sum types),
using a subset of Pervasives

15 / 18

https://github.com/COCTI/ocaml/pull/3

Introduction Translating types Translating programs Conclusion

Related work

Guillaume Claret. Coq of OCaml. OCaml Workshop, 2014.

Antal Spector-Zabusky et al. Total Haskell is reasonable Coq. CPP, 2018.

Danil Annenkov et al. ConCert: a smart contract certification framework
in Coq. CPP, 2020.

Laila El-Beheiry et al. SMLtoCoq: Automated Generation of Coq
Specifications and Proof Obligations from SML Programs with Contracts.
LFMTP, 2021.

Matthieu Sozeau et al. Coq Coq correct! verification of type checking and
erasure for Coq, in Coq, POPL, 2020.

Pierrick Couderc. Vérification des résultats de l’inférence de types du
langage OCaml. PhD Thesis, Université Paris-Saclay, 2018.

16 / 18

Introduction Translating types Translating programs Conclusion

Prospects

• Could also be used to do proofs about the translated
programs, using the Monae library [Affeldt et al., 2019]

• We first plan to add our monad to the Monae hierarchy

• The use of an intentional representation for ML types should
allow to properly translate GADTs

• Translating polymorphic variants and objects is another
challenge

• Anybody interested ?

17 / 18

Introduction Translating types Translating programs Conclusion

Demo

18 / 18

	Introduction
	Translating types
	Translating programs
	Conclusion

