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Abstract. Convex sets appear in various mathematical theories, and
are used to define notions such as convex functions and hulls. As an
abstraction from the usual definition of convex sets in vector spaces,
we formalize in Coq an intrinsic axiomatization of convex sets, namely
convex spaces, based on an operation taking barycenters of points. A
convex space corresponds to a specific type that does not refer to a
surrounding vector space. This simplifies the definitions of functions on
it. We show applications including the convexity of information-theoretic
functions defined over types of distributions. We also show how convex
spaces are embedded in conical spaces, which are abstract real cones,
and use the embedding as an effective device to ease calculations.

1 Introduction

The notion of convex sets appears in various mathematical theories. A subset X
of a real vector space is called a convex set if, for any x, y ∈ X and p ∈ [0, 1],
their convex combination px + (1 − p)y is again in X. One basic use of it is to
define the convexity of functions. A function f is said to be convex if f(px +
(1− p)y) ≤ pf(x) + (1− p)f(y) for any convex combination px+ (1− p)y. Thus,
convex sets are natural domains for convex functions to be defined on. Good
examples of these notions can be found in information theory, where convexity is
a fundamental property of important functions such as logarithm, entropy, and
mutual information. Our InfoTheo library [17] developed in the Coq proof
assistant [29] has a formalization of textbook proofs [12] of such results.

In the course of formalizing such convexity results, we find that axiomatizing
convex sets is a useful step which provides clarity and organizability in the
results. We abstract the usual treatment of convex sets as subsets of some vector
space and employ an algebraic theory of convex spaces, which was introduced
by Stone [27]. The formalization uses the packed class construction [15, 24], so
as to obtain generic notations and lemmas, and more importantly, to be able
to combine structures. Binary convex spaces are formalized in Sect. 2, and their
multiary versions are formalized in Sect. 3, along with proofs of equivalence.

We also formalize an embedding of convex spaces into conical spaces (a.k.a.
cones or real cones [31]), which we find an indispensable tool to formalize convex



spaces. Examples in the literature avoid proving properties of convex spaces
directly and choose to work in conical spaces. This is especially the case when
their goal can be achieved either way [23, 31]. Some authors suggest that the
results in conical spaces can be backported to convex spaces [13, 21]. We apply
this method in Sect. 4 to enable additive handling of convex combinations. By
formalizing the relationship between convex and conical spaces, we work out
short proofs of a number of lemmas on convex spaces. Among them is Stone’s
key lemma [27, Lemma 2], whose proof is often omitted in the literature despite
its fundamental role in the study of convex spaces.

We complete this presentation with applications of our formalization to con-
vex hulls (Sect. 5) and to convex functions (Sect. 6).

While our proofs do not introduce extra axioms, some libraries used in our
development, such as mathcomp-analysis [1], contain axioms which make parts
of our work classical. In particular, our definition of convex sets is based on
classical sets, assuming decidable membership.

2 Convex spaces

Let us begin with the definition of convex spaces. As mentioned in the intro-
duction, convex spaces are an axiomatization of the usual notion of convex sets
in vector spaces. It has a long history of repeated reintroduction by many au-
thors, often with minor differences and different names: barycentric algebra [27],
semiconvex algebra [28], or, just, convex sets [19].

We define convex spaces following Fritz [14, Definition 3.1].

Definition 1 (Module ConvexSpace in [18]). A convex space is a structure for
the following signature:

– Carrier set X.
– Convex combination operations ( / p . ) : X ×X → X indexed by p ∈ [0, 1].
– Unit law: x / 1 . y = x.
– Idempotence law: x / p . x = x.
– Skewed commutativity law: x / 1−p . y = y / p . x.
– Quasi-associativity law: x / p . (y / q . z) = (x / r . y) / s . z,

where s = 1− (1− p)(1− q) and r =

{
p/s if s 6= 0

0 otherwise
.

(Note that r is irrelevant to the value of (x / r . y) / s . z if s = 0.)

We can translate this definition to Coq as a packed class [15] with the fol-
lowing mixin interface:

1 Record mixin_of (T : choiceType) : Type := Mixin {

2 conv : prob -> T -> T -> T where "a <| p |> b" := (conv p a b);

3 _ : forall a b, a <| 1%:pr |> b = a ;

4 _ : forall p a, a <| p |> a = a ;

5 _ : forall p a b, a <| p |> b = b <| p.~%:pr |> a;

6 _ : forall (p q : prob) (a b c : T),

7 a <| p |> (b <| q |> c) = (a <|[r_of p, q]|> b) <| [s_of p, q] |> c }.



There are some notations and definitions to be explained. The type prob in the
above Coq code denotes the closed unit interval [0, 1]. The notation r%:pr is a
notation for a real number r equipped with a canonical proof that 0 ≤ r ≤ 1.
The notation p.~ is for 1− p. The notation [s_of p, q] is for 1− (1− p)(1− q),
and [r_of p, q] for p/[s_of p, q].

Intuitively, one can regard the convex combination as a probabilistic choice
between two points. At line 3, the left argument is chosen with probability 1.
The lines that follow correspond to idempotence, skewed commutativity, and
quasi-associativity.

An easy example of convex space is the real line R, whose convex combination
is expressed by ordinary addition and multiplication as pa+(1−p)b. Probability
distributions also form a convex space. In the formalization, the type fdist A of
distributions over any finite type A (borrowed from previous work [6]) is equipped
with a convex space structure, where the convex combination of two distributions
d1, d2 is defined pointwise as x 7→ pd1(x) + (1− p)d2(x).

As a result of the packed class construction, we obtain the type convType of
all types which implicitly carry the above axioms. Then, each example of convex
space is declared to be canonically a member of convType, enabling the implicit
inference of the appropriate convex space structure. These two implicit inference
mechanisms combined make the statement of generic lemmas on convex spaces
simple and applications easy.

3 Multiary convex combination

Convex spaces can also be characterized by multiary convex combination oper-
ations, which combine finitely many points x0, . . . , xn−1 at once, according to
some finite probability distribution d over the set In = {0, . . . , n−1}, i.e., di ≥ 0
and

∑
i<n di = 1. In this section we consider different axiomatizations, and their

equivalence with the binary axioms.

3.1 Axiomatization

A definition of convex spaces based on multiary operations is given as follows
(see for example [10, Definition 5] and [16, Sect. 2.1]).

Definition 2 (Convex space, multiary version). A convex space based on
multiary operations is a structure for the following signature:

– Carrier set X.
– Multiary convex combination operations, indexed by an arity n and a distri-

bution d over In:
Xn → X

(xi)i<n 7→ CB
i<n

dixi

– Projection law: if dj = 1, CB
i<n

dixi = xj. (ax_proj in [18])



– Barycenter law: CB
i<n

di

(
CB
j<m

ei,jxj

)
= CB
j<m

(∑
i<n

diei,j

)
xj. (ax_bary in [18])

Note that in our Coq code, CBi<n dixi appears as <&>_d x or altConvn d x,
indicating more explicitly that the operation takes two arguments d and x.

This multiary convex structure and the binary one given in Sect. 2 are equiva-
lent: the multiary and binary operators interpret each other satisfying the needed
axioms, and the interpretations cancel out when composed. While the binary ax-
iomatization is easy to instantiate, the multiary version exhibits the relationship
to probability distributions. Therefore we want to establish this equivalence be-
fore working further on other constructions over convex spaces.

In the literature, this equivalence is justified without much detail by referring
to the seminal article by Stone [27] (see, e.g., [19, Theorem 4], [10, Proposition
7]). Yet, what Stone gave is not an explicit axiomatization of the multiary convex
operator, but a number of lemmas targeted at proving an embedding of (binary)
convex spaces into vector spaces. These lemmas include the following one, that
is seen as a justification for the barycenter law in the binary axiomatization.

Lemma 1 (Lemma 4 in [27]). If the given masses and their associated points
are partitioned into groups (of non-zero total masses) in any way, then the center
of mass is identical with that of masses equal to the respective total masses for
the various groups, each placed at the center of mass for the corresponding group.

The relation to the barycenter law is implied if one sees a convex combination
CBj<m (

∑
i<n diei,j)xj as a point defined in terms of a set of generating points

{xj}j<m (they generate their convex hull). Then CBi<n di(CBj<m ei,jxj) corre-
sponds to grouping the generating points by filtering through the distributions
{ei}i<n. But this grouping is not necessarily a partition since there could be
shared elements, hence the relation is not direct.

Beaulieu [8, Def. 3.1.4] proposed an alternative multiary axiomatization,
which was actually presented as a model for countable probabilistic choice (rather
than a definition of convex space). His partition law corresponds exactly to the
statement of Stone’s lemma.

Definition 3 (Convex space, Beaulieu style). A convex space is a structure
for the previous operations CBi<n di and the following laws.

– Partition law: CB
i∈I

λixi = CB
j∈J

ρj

(
CB
k∈Kj

λk
ρj
xk

)
(ax_part in [18])

where {Kj | j ∈ J} is a partition of I, and ρj =
∑
k∈Kj

λk 6= 0.

– Idempotence law: CB
i∈I

λiAi = A if Ai = A for all λi > 0. (ax_idem in [18])

In the implementation, using sets as indexing domains of the combination op-
erators would be cumbersome, so that the partition law is actually expressed as
follows, using a map Ǩ and Kronecker’s δ.

CB
i<n

λixi = CB
j<m

ρj

(
CB
k<n

δj,Ǩ(k)

λk
ρj
xk

)
where Ǩ : In → Im, Kj = Ǩ−1(j)



We also have to separately show that (δj,Ǩ(k)
λk

ρj
)k<n and (ρj)j<m form probabil-

ity distributions. As an exceptional case, (δj,Ǩ(k)
λk

ρj
)k<n is replaced by a uniform

distribution if ρj = 0.

3.2 Equivalence of axiomatizations

After considering the different axiomatizations, we decided to prove a triangular
equivalence: between multiary convex structures in standard and Beaulieu style,
and then with the binary convex structure given in Sect. 2. The relations we will
explain in this section are depicted in Fig. 1.

Beaulieu

Multiary operator <&>_

- Partition law
- Idempotence law

Standard

Multiary operator <&>_

- Projection law
- Barycenter lawBeaulieuToStandard

- Partition-barycenter law
- Injective map law

StandardToBeaulieu

convType

Binary operator <| |>

- Laws from Def. 1
NaryToBin

- Map law
BinToNary

Fig. 1. Relations between the various formalizations of convex spaces

The first equivalence, between multiary convex axioms, is rather technical.
The first direction, proving Beaulieu’s axioms from the standard presentation
(functor StandardToBeaulieu in [18]), is relatively easy, as the partition law is
intuitively just a special case of the barycenter law, where supports3 are disjoint,
and the idempotence law can be derived as a combination of the two standard
laws. However, the second direction (functor BeaulieuToStandard) is harder, and
led us to introduce two derived laws:

– Partition-barycenter law: barycenter law, with disjoint supports. (ax_bary_part)

– Injective map law: CB
i<m

digu(i) = CB
j<n

∑
i<m
u(i)=j

digj with u injective. (ax_inj_map)

The partition-barycenter law can be derived from the Beaulieu style axioms, and
in turn is used to prove the injective map law. Together they allow to prove the
barycenter law.

The equivalence between binary and multiary axiomatizations requires first
to define their operators in terms of each other.

3 The support of a probability distribution d is the set {i | di > 0}.



Definition 4 (Convn and binconv in [18]).

(a) Let d : In → [0, 1] be a finite distribution, and x : In → X be points in a
convex space X. Then the multiary convex combination of these points and
distribution is defined from the binary operator by recursion on n as follows:

CB
i<n

dixi =

x0 if d0 = 1 or n = 1

x0 / d0 .

(
CB

i<n−1
d′ixi+1

)
otherwise

where d′ is a new distribution: d′i = di+1/(1− d0) .

(b) Let p be a probability and x0, x1 be points in a convex space. Then their
binary combination is defined from the multiary operator as follows:

x0 / p . x1 = CB
i<2

dixi where d0 = p and d1 = 1− p.

The first direction, functor BinToNary in [18], must prove that the first defi-
nition satisfies the multiary axioms, and indeed amounts to proving a variant of
Stone’s lemma. We will see in the next section that the original proof by Stone
is better formalized by transporting the argument to conical spaces.

The opposite direction, functor NaryToBin, must prove the binary axioms from
the multiary ones. While we start from the standard version, the idempotence law
proved to be instrumental in this task, together with the following unrestricted
map law.

– Map law: CB
i<m

digu(i) = CB
j<n

∑
i<m
u(i)=j

digj for any map u. (ax_map in [18])

Finally, one also needs to prove that the definitions we used for each operation
in both directions are coherent.

Lemma 2 (equiv_conv and equiv_convn in [18]). The constructions in Def. 4
(Convn and binconv) cancel each other. That is,

– If CB∗ is the operator induced by Def. 4(a), and / .† the one induced from
it by Def. 4(b), we can derive a / p .

† b = a / p . b from the binary axioms.
– If / .∗ the operator induced by Def. 4(b), CB† is the one induced from it by

Def. 4(a), we can derive CB†i<n dixi = CBi<n dixi from the multiary axioms.

4 Conical spaces and embedded convex spaces

The definition of multiary convex combination operator in the previous section
(Def. 4(a)) relied on recursion. This makes the definition look complicated, and
moreover, the algebraic properties of the combination difficult to see. If we con-
sider the special case of convex sets in a vector space, the meaning of multiary
combinations and the algebraic properties become evident:

CB
i<n

dixi = d0x0 + · · ·+ dn−1xn−1.



The additions on the right-hand side are of vectors, and thus are associative and
commutative. This means that the multiary combination on the left-hand side
is invariant under permutations or partitions on indices. We want to show that
these invariance properties are also satisfied generally in any convex space.

However, the search for the proofs is painful if naively done. This is because
binary convex combination operations satisfy associativity and commutativity
only through cumbersome parameter computations. For example, a direct proof
of the permutation case involves manipulations on the set In of indices and on
the symmetry groups, which require fairly long combinatorics [27, Lemma 2].

We present a solution to this complexity by transporting the arguments on
convex spaces to a closely related construction of conical spaces. Conical spaces
are an abstraction of cones in real vector spaces just like convex spaces are an
abstraction of convex sets. Like convex spaces, the definition of conical spaces ap-
pears in many articles. We refer to the ones by Flood (called semicone there) [13]
and by Varacca and Winskel (called real cone there) [31]:

Definition 5 (Conical space). A conical space is a semimodule over the semir-
ing of non-negative reals. That is, it is a structure for the following signature:

– Carrier set X.
– Zero 0 : X.
– Addition operation + : X ×X → X.
– Scaling operations c : X → X indexed by c ∈ R≥0.
– Associativity law for addition: x+ (y + z) = (x+ y) + z.
– Commutativity law for addition: x+ y = y + x.
– Associativity law for scaling: c(dx) = (cd)x.
– Left-distributivity law: (c+ d)x = cx+ dx.
– Right-distributivity law: c(x+ y) = cx+ cy.
– Zero law for addition: 0 + x = x.
– Left zero law for scaling: 0x = 0.
– Right zero law for scaling: c0 = 0.
– One law for scaling: 1x = x.

We display this definition only to show that conical spaces have straightfor-
ward associativity and commutativity. In fact, the formalization is elaborated
on the embedding of convex spaces into canonically constructed conical spaces,
which appeared in the article by Flood [13]. We build on top of each convex
space X, the conical space SX of its “scaled points”:

Definition 6 (scaled_pt, addpt, and scalept in [18]). Let X be a convex space.
We define a set SX which becomes a conical space with the following addition
and scaling operations.

SX := (R>0 ×X) ∪ {0}.
That is, the points of SX are either a pair p ∗ x of p ∈ R>0 and x ∈ X, or a new
additive unit 0. Addition of points a, b ∈ SX is defined by cases to deal with 0:

a+ b :=


(r + q) ∗ (x / r/(r+q) . y) if a = r ∗ x and b = q ∗ y
a if b = 0

b if a = 0



Scaling a ∈ SX by p ∈ R≥0 is also defined by cases:

pa :=

{
pq ∗ x if p > 0 and a = q ∗ x
0 otherwise

We omit here the proofs that SX with these addition and scaling satisfies the
conical laws. They are proved formally in [18] (see the lemmas addptC, addptA,
scalept_addpt, etc.).

Properties of the underlying convex spaces are transported into and back
from this conical space, through an embedding:

Definition 7 (S1 in [18]).
ι : X � SX

x 7→ 1 ∗ x

Convex combinations in X are mapped by ι to additions in SX .

Lemma 3 (S1_convn in [18]).

ι(CB
i<n

dixi) =
∑
i<n

diι(xi).

The right-hand side of the lemma is a conical sum (Fig. 2), which behaves like
an ordinary linear sum thanks to the conical laws, and enjoys good support from
MathComp’s big operator library [9].

wx

y

z
ι−→

wx

y

z

0

x/2
y/4

z/4

y/4+z/4

Fig. 2. Example of S1_convn: 1 ∗ w = 1
2
∗ x + 1

4
∗ y + 1

4
∗ z

With these preparations, properties such as [27, Lemma 2] can be proved in
a few lines of Coq code:

Lemma 4 (Convn_perm in [18]).

CB
i<n

dixi = CB
i<n

(d ◦ s)i(x ◦ s)i,

where s is any permutation on the set of indices n.



The proof of the barycenter property [27, Lemma 4] from Sect. 3 is based on
the same technique (see Convn_convnfdist in [18]).

A way to understand this conical approach is to start from Stone’s definition
of convex spaces [27]. He uses a quaternary convex operator (x, y;α, β) where x
and y are points of the space, and α and β are non-negative coefficients such that
α+ β > 0. Its values are quotiented by an axiom to be invariant under scaling,
removing the need to normalize coefficients for associativity. This amounts to
regarding a convex space as the projective space of some conical space.

The definition of SX is a concrete reconstruction of such a conical space from
a given convex space X. The benefit of this method over Stone’s is the removal of
quotients by moving the coefficients from operations to values. We can then use
the linear-algebraic properties of conical sums such as the neutrality of zeroes,
which had to be specially handled in Stone’s proofs (e.g., [27, Lemma 2]).

Examples We illustrate how ι is used in practice with the proof of the entropic
identity. Let T be a convType; we want to show that

(a / q . b) / p . (c / q . d) = (a / p . c) / q . (b / p . d). (1)

We could use the properties of convex spaces, but this will result in cumbersome
computations, in particular because of quasi-associativity. Instead, we proceed
by an embedding into the set of scaled points over T using ι. First, we observe
that these scaled points form a convex space for the operator p, a, b 7→ pa + p̄b
and that ι(a / p . b) = ι(a) / p . ι(b). As a consequence, when we apply ι to
Equation (1), its left-hand side becomes

p(qι(a) + q̄ι(b)) + p̄(qι(c) + q̄ι(d)).

The main difference with Equation (1) is that + (Coq notation: addpt) enjoys
(unconditional) associativity, making the rest of the proof easier. In the proof
script below, line 4 performs the embedding by first using the injectivity of ι
(lemma S1_inj), then using the fact that ι is a morphism w.r.t. / p . (lemma
S1_conv), and last by revealing the definition of the operator of the convex spaces
formed by scaled points (lemma convptE). The proof can be completed by rewrit-
ings with properties of addpt and scalept until the left-hand side matches the
right-hand side.

1 Lemma convACA (a b c d : T) p q :

2 (a <|q|> b) <|p|> (c <|q|> d) = (a <|p|> c) <|q|> (b <|p|> d).

3 Proof.

4 apply S1_inj; rewrite ![in LHS]S1_conv !convptE.

5 rewrite !scalept_addpt ?scalept_comp //.

6 rewrite !(mulRC p) !(mulRC p.~) addptA addptC (addptC (scalept (q * p) _)).

7 rewrite !addptA -addptA -!scalept_comp -?scalept_addpt //.

8 by rewrite !(addptC (scalept _.~ _)) !S1_conv.

9 Qed.

We conclude this section with an example that provides a closed formula for
the multiary convex combination CBi<n eigi (Coq notation: <|>_e g) in the case
of the real line (seen as a convex space):



1 Definition scaleR x : R := if x is p *: y then p * y else 0.

2 Definition big_scaleR := big_morph scaleR scaleR_addpt scaleR0.

3 Lemma avgnRE n (g : 'I_n -> R) e : <|>_e g = \sum_(i < n) e i * g i.

4 Proof.

5 rewrite -[LHS]Scaled1RK S1_convn big_scaleR.

6 by under eq_bigr do rewrite scaleR_scalept // Scaled1RK.

7 Qed.

This corresponds to the following transformations of the left-hand side.

CBi<n eigi = scaleR(ι(CBi<n eigi)) by Scaled1RK

= scaleR(
∑
i<n eiι(gi)) by S1_convn

=
∑
i<n scaleR(eiι(gi)) by big_scaleR

=
∑
i<n eiscaleR(ι(gi)) by scaleR_scalept

=
∑
i<n eigi by Scaled1RK

5 Formalization of convex sets and hulls

Our first application of convex and conical spaces is the formalization of convex
sets and convex hulls. Besides mathematics, they also appear in many applica-
tions of convex spaces such as program semantics [8, 11].

Definition 8 (is_convex_set in [18]). Let T be a convex space. A subset D
in T is a convex set if, for any p ∈ [0, 1] and x, y ∈ D, x / p . y ∈ D.

We use the predicate is_convex_set to define the type {convex_set T} of convex
sets over T.

We can turn any set of points in a convex space into a convex set, namely,
by taking convex hulls.

Definition 9 (hull in [18]). For a subset X of T , its hull X is

X =

{
CB
i<n

dixi

∣∣∣∣ n ∈ N ∧ d is a distribution over In ∧ ∀i < n, xi ∈ X
}
.

Example The following example illustrates the usefulness of conical spaces when
reasoning about convex hulls.

Our goal is to prove that for any z ∈ hull (X ∪ Y ) (X 6= ∅, Y 6= ∅), there exist
x ∈ X and y ∈ Y such that z = x / p . y for some p (see the formal statement at
line 1 below).

We first introduce two notations. Let scaled_set X be the set {p ∗ x |x ∈ X}.
For any a 6= 0, let [point of a0] (where a0 is the proof that a 6= 0) be the x
such that a = p ∗ x for some p.

To prove our goal, it is sufficient to prove that there exist a ∈ scaled_set X

and b ∈ scaled_set Y such that ι(z) = a+ b (this reasoning step is the purpose
of line 6). When a = 0 or b = 0, we omit easy proofs at lines 8 and 9. Otherwise,
we can take x to be [point of a0] and y to be [point of b0] as performed by
the four lines from line 10.



We now establish the sufficient condition (from line 14). Since z is in the
hull, we have a distribution d and n points gi such that z = CBi<n digi. We then
decompose ι(z) as follows:

ι(z) =
∑
i<n

di(ι(gi)) =
∑

i<n,gi∈X
di(ι(gi))︸ ︷︷ ︸
b

+
∑

i<n,gi /∈X

di(ι(gi))︸ ︷︷ ︸
c

.

We conclude by observing that b is in scaled_set X and that c is in scaled_set Y

because {gi|gi /∈ X} ⊆ Y .

1 Lemma hull_setU (z : T) (X Y : {convex_set T}) : X !=set0 -> Y !=set0 ->

2 hull (X `|` Y) z ->

3 exists2 x, x \in X & exists2 y, y \in Y & exists p, z = x <| p |> y.

4 Proof.

5 move=> [dx ?] [dy ?] [n -[g [d [gT zg]]]].

6 suff [a] : exists2 a, a \in scaled_set X & exists2 b, b \in scaled_set Y &

7 S1 z = addpt a b.

8 have [/eqP -> _ [b bY]|a0 aX [b]] := boolP (a == Zero) by ...

9 have [/eqP -> _|b0 bY] := boolP (b == Zero) by ...

10 rewrite addptE => -[_ zxy].

11 exists [point of a0]; first exact: (@scaled_set_extract _ a).

12 exists [point of b0]; first exact: scaled_set_extract.

13 by eexists; rewrite zxy.

14 move/(congr1 (@S1 _)): zg; rewrite S1_convn.

15 rewrite (bigID (fun i => g i \in X)) /=.

16 set b := \ssum_(i | _) _.

17 set c := \ssum_(i | _) _.

18 move=> zbc.

19 exists b; first exact: ssum_scaled_set.

20 exists c => //.

21 apply: (@ssum_scaled_set _ [pred i | g i \notin X]) => i /=.

22 move/asboolP; rewrite in_setE.

23 by case: (gT (g i) (imageP _ I)).

24 Qed.

6 Formalization of convex functions

In this section, we first (Sect. 6.1) formalize a generic definition of convex func-
tions based on convex spaces; for that purpose, we introduce in particular or-
dered convex spaces. To demonstrate this formalization, we then apply it to the
proof of the concavity of the logarithm function and to an information-theoretic
function (Sect. 6.2).

6.1 Ordered convex spaces and convex functions

An ordered convex space extends a convex space with a partial order structure:



Definition 10 (Module OrderedConvexSpace in [18]). An ordered convex space
is a structure whose signature extends the one of convex spaces as follows:

– Convex space X.
– Ordering relation ( ≤ ) ⊂ X ×X.
– Reflexivity law: x ≤ x.
– Transitivity law: x ≤ y ∧ y ≤ z ⇒ x ≤ z.
– Antisymmetry law: x ≤ y ∧ y ≤ x⇒ x = y.

The above definition does not force any interaction between convexity and
ordering. It would also be a natural design to include an axiom stating that
convex combinations preserve ordering [21, Sect. 2]. We however do not need
such interactions for defining convex functions, which is our purpose here.

Convexity of a function is defined if its codomain is an ordered convex space.
In the following, let T be a convex space and U be an ordered convex space.

Definition 11 (convex_function_at in [18]). A function f : T → U is convex
at p ∈ [0, 1] and x, y ∈ T if f(x / p . y) ≤ f(x) / p . f(y).

Definition 12 (convex_function in [18]). A function f : T → U is convex if
it is convex at all p ∈ [0, 1] and x, y ∈ T .

The above predicates expect total functions. For partial functions, we resort
to convex sets (Def. 8).

Definition 13 (convex_function_in in [18]). Let D be a convex set in T .
A function f : T → U is convex in D if it is convex at any p ∈ [0, 1] and
x, y ∈ D.

Concave functions are defined similarly since f is concave for the order ≤ if
it is convex for ≥. When the codomain of f is R, the prototypical example of an
ordered convex space, it is also easy to prove that f is concave if −f is convex.

6.2 Examples of convex functions

As a first example, we prove that the real logarithm function is concave. The
concavity of logarithm is frequently used in information theory, for example,
properties of data compression depend on it [4].

The definition of logarithm we use in Coq is the one of the standard library;
it has the entire R as its domain by setting log(x) = 0 for x ≤ 0. The statement
of concavity is then restricted to the subset R>0. 4

4 This way of restricting the domain of functions in their properties rather than in the
definitions is a design choice often found in Coq. It makes it possible for functions
such as the logarithm to be composable without being careful about their domains
and ranges, and leads to a clean separation between definitions and properties of
functions in the formalization.



Lemma 5 (log_concave in [17, probability/ln facts.v]). The extended loga-
rithm function

x 7→

{
log(x) if x ∈ R>0

0 otherwise

is concave in R>0.

The statement in Coq of these lemmas is as follows:

Lemma log_concave : concave_function_in Rpos_interval log.

The predicate concave_function_in has been explained in Sect. 6.1. The ob-
ject Rpos_interval is the set of positive numbers described as the predicate
fun x => 0 < x equipped with the proof that this set is indeed convex. The heart
of the proof is the fact that a function whose second derivative is non-negative is
convex (Section twice_derivable_convex in [18]). Our proof proceeds by using
the formalization of real analysis from the Coq standard library; our formaliza-
tion of convex spaces can thus be seen as an added abstraction layer of convexity
to this library.

Our second example of convex function is the divergence (a.k.a. relative en-
tropy or Kullback-Leibler divergence) of two probability distributions: an im-
portant information-theoretic function. Let P and Q be two finite distributions
(over some finite type A). Their divergence div is defined as follows:

Variables (A : finType) (P Q : fdist A).

Definition div := \sum_(a in A) P a * log (P a / Q a).

Actually, div P Q is defined only when Q dominates P, i.e., when Q a = 0 implies
P a = 0 for all a. We call such a pair of probability distributions a dominated
pair. Hereafter, we denote div P Q by D(P || Q) and the dominance of P by Q by
P `<< Q.

We now show that the divergence function is convex over the set of domi-
nated pairs. To formalize this statement using our definitions, we first need to
show that dominated pairs form a convex space. To achieve this, it suffices to
define the convex combination of the dominated pairs a `<< b and c `<< d as
a <| p |> c `<< b <| p |> d (where we use the convex combination of prob-
ability distributions). This operator is easily shown to enjoy the properties of
convex spaces (Sect. 2). Once this is done, one just needs to uncurry the diver-
gence function to use the convex_function predicate:

Lemma convex_div : convex_function (uncurry_dom_pair (@div A)).

The proof follows the standard one [12, Thm. 2.7.2] and relies on the log-sum
inequality formalized in previous work [6].

In previous work [5], we applied above results to the proofs of convexity
of other information-theoretic functions such as the entropy and the mutual
information.



7 Related work

Conical spaces have been known in the literature to work as a nice-behaving re-
placement of convex spaces when constructing models of nondeterministic com-
putations. Varacca and Winskel [31] used convexity when building a categorical
monad combining probability and nondeterminism, but they chose to avoid the
problem of equational laws in convex spaces by instead working with conical
spaces. There is a similar preference in the study of domain-theoretic semantics
of nondeterminism, to a conical structure (d-cones [23]) over the correspond-
ing convex structure (abstract probabilistic domain [20]). The problem is the
same in this case: the difficulty in working with the equational laws of convex
spaces [22,30].

Flood [13] proposed to use conical spaces to investigate the properties of
convex spaces. He showed that for any convex space, there is an enveloping
conical space and the convex space is embedded in it. (A version of the embedding
for convex sets into cones in vector spaces was already present in Semadini’s
book [26].) Keimel and Plotkin [21] extended the idea for their version of ordered
convex spaces and applied it in the proof of their key lemma [21, Lemma 2.8],
which is an ordered version of the one proved by Neumann [25, Lemma 2].

Another aspect of convex spaces is the relationship to probabilistic distri-
butions. From any set, one can freely generate a convex space by formally tak-
ing all finite convex combinations of elements of this set. The resulting convex
space can be seen as a set of distributions over the original set, since the for-
mal convex combinations are equivalent to distributions over the given points.
By this construction, convex spaces serve as a foundation for the algebraic and
category-theoretic treatments of probability. This allows for another application
of our work to the semantics of probabilistic and nondeterministic program-
ming [16, 19]. We have also been investigating this topic [3, 7]. Our most recent
result [2] is based on the properties of convex sets and convex hulls, and deals
with derived notions such as convex powersets. Its purpose is the formal study of
program semantics from a category-theoretic point of view, rather than the for-
mal study of the mathematical structure of convex spaces itself, which is rather
the purpose of this paper.

8 Conclusion

In this paper, we formalized convex and conical spaces and developed their the-
ories. In particular, we formally studied the various presentations of the convex
combination operator, be it binary or multiary (Sect. 3). We provide formal
proofs of the equivalence between several axiomatizations of both operators,
where “proofs” in the literature were often only mere references to Stone’s foun-
dational paper [27], while it only contains a reduction of the multiary case to
the binary one. Based on convex and conical spaces, we also developed a theory
of convex functions and of convex hulls. We illustrated these developments with
detailed examples from real analysis and information theory.
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