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Overview

This work builds a hub to connect many interesting domains of
formalization: probability, analysis, program semantics, etc.
Applications:

• Convex functions

• Barycenter

• Convex hulls

• Semantics of probabilistic programs

Contribution: we formalized different interfaces and lemmas
connecting them, and defined derived constructions for
applications.
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Convex combination and convex
space

Convexity notions such as

• Convex functions:
f (px + (1− p)y) ≤ pf (x) + (1− p)f (y)

• Convex sets: x , y ∈ X ⇒ px + (1− p)y ∈ X

are based on convex combinations in vector spaces:

x / p . y = px + (1− p)y

Many authors axiomatized convex combinations, capturing
essentially the same concept:

• Barycentric calculus [Stone, 1949]

• Semiconvex algebra [Flood, 1981]

• Abstract probabilistic domain [Jones and Plotkin, 1989]

• Convex Spaces [Fritz, 2015]
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Convex space

• Carrier set X

• Convex combination operations ( / p . ) : X × X → X
indexed by p ∈ [0, 1]

• Some appropriate laws

Laws come from a geometric intuition: convex combination
defines a barycenter of points.
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Barycenter = n-ary combination
Let
• d : a finite distribution (

∑
i di = 1)

• x : sequence of points in a convex space X

The barycenter of n points xi with weights di is recursively
defined:

CB
i<n

dixi =

x0 if d0 = 1

x0 / d0 .

(
CB

i<n−1
d ′i xi+1

)
otherwise

where d ′ is a new distribution: d ′i = di+1/(1− d0)

y = 1
4x0 + 1

4x1 + 1
4x2 + 1

4x3
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Hull = set of barycenters

Let A be a convex space. For a subset X of A, its hull is CBi<n−1
dixi

∣∣∣∣∣∣∣
(n ∈ N)

∧ (d : n-point distribution)

∧ (x : sequence of n points in X )


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Convex space

• Carrier set X

• Convex combination operations ( / p . ) : X × X → X
indexed by p ∈ [0, 1]

• Unit law: x / 1 . y = x

• Idempotence law: x / p . x = x

• Skewed commutativity law: x / 1−p . y = y / p . x

• Quasi-associativity law:
x / p . (y / q . z) = (x / r . y) / s . z , where

s = 1− (1− p)(1− q) and r =

{
p/s if s 6= 0

0 otherwise

Note: r is irrelevant to the value of (x / r . y) / s . z if
s = 0.
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A hell of a quasi-associativity

• s = 1− (1− p)(1− q) and r = p
s

• Zero introduces a special case due to the division.

• Recursive barycenter is even more difficult to formally
reason about.
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The solution: conical
spaces [Flood, 1981]

A conical space is a semimodule over the semiring R≥0:

• Carrier set X

• Zero 0 : X .

• Addition operation + : X × X → X

• Scaling operations c : X → X indexed by c ∈ R≥0

• Associativity law for addition: x + (y + z) = (x + y) + z

• Commutativity law for addition: x + y = y + x

• Associativity law for scaling: c(dx) = (cd)x

• Left-distributivity law: (c + d)x = cx + dx

• Right-distributivity law: c(x + y) = cx + cy

• Zero law for addition: 0 + x = x

• Zero law for scaling: 0x = 0

• One law for scaling: 1x = x
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Embedding convex spaces into
cones [Flood, 1981]

A conical space is canonically made from convex space X :

SX := (R>0 × X ) ∪ {0}
with an accompanying embedding:

ι : X � SX
x 7→ (1, x)

Addition is defined for a, b ∈ SX ,

a + b :=


(r + q, x / r/(r+q) . y) if a = (r , x) and b = (q, y)

a if b = 0

b if a = 0

Scalar multiplication is for a ∈ SX and p ∈ R≥0,

pa :=

{
(pq, x) if p > 0 and a = (p, x)

0 otherwise
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Key lemma for barycenter
computation

Lemma (S1_convn)

ι(CB
i<n

dixi ) =
∑
i<n

di ι(xi )

Example (ι(w) = 1
2
ι(x) + 1

4
ι(y) + 1

4
ι(z))

wx

y

z

ι−→ wx

y

z

0

x/2
y/4

z/4

y/4+z/4
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Welcome to ——quasi-associativity
paradise!

The embedding moves weights from edges to leaves:

q 1− q

p 1− p

x

y z

/q.

/p.

(p, x) ((1− p)q, y) ((1− p)(1− q), z)

∑
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Proof of a typical property:
entropic identity

Lemma convACA (a b c d : T) p q :

(a / q . b) / p . (c / q . d) = (a / p . c) / q . (b / p . d).
apply S1_inj; rewrite ![in LHS]S1_conv !convptE.

rewrite !scalept_addpt !scalept_comp //.

rewrite !(mulRC p) !(mulRC p.~) addptA addptC

rewrite (addptC (scalept (q*p) _)) !addptA -addptA

rewrite !(addptC (scalept (_.~ * _.~) _)) {1}addptC.

by rewrite !S1_conv !convptE !scalept_addpt !scalept_comp.

Injectivity of ι:
ι((a / q . b) / p . (c / q . d)) = ι((a / p . c) / q . (b / p . d))
Key lemma:
LHS = ((pq)ι(a) + (pq)ι(b)) + ((pq)ι(c) + (pq)ι(d))
RHS = ((qp)ι(a) + (qp)ι(c)) + ((qp)ι(b) + (qp)ι(d))
Associativity and Commutativity:
LHS = RHS
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Multiary axiomatizations

Multiary axiomatizations take the barycenter operation
(CBi<n dixi ) as primitive.
Multiary is preferred in many work (e.g. [Bonchi et al., 2017]).
However,

• Different authors use different axiomatizations. How do
they compare?

• Their equivalence to the binary axiomatization is often
assumed without an explicit proof, citing a lemma by
Stone [Stone, 1949, Lemma 4].

We want to prove that these axiomatizations are really
equivalent.
This also ensures that our whole formalization is correctly done.

15 / 22



Formal
Adventures in
Convex and

Conical
Spaces

Idea and
definition of
convex spaces

Associativity
and conical
spaces

Multiary ax-
iomatizations
of convex
spaces

Conclusion
and future
work

Two multiary axiomatizations

Standard:

• Projection law: if dj = 1, CB
i<n

dixi = xj .

• Barycenter law: CB
i<n

di

(
CB
j<m

ei ,jxj

)
= CB

j<m

(∑
i<n

diei ,j

)
xj .

Beaulieu:

• Partition law: CB
i∈I

λixi = CB
j∈J

ρj

(
CB
k∈Kj

λk
ρj

xk

)
where

{Kj | j ∈ J} is a partition of I , and ρj =
∑

k∈Kj
λk 6= 0.

• Idempotence law: CB
i∈I

λiAi = A if Ai = A for all λi > 0.
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Standard ⇔ Beaulieu
Sketch of the proof

Equivalence between Standard and Beaulieu:

• Barycenter ` Partition

• Projection, Barycenter ` Idempotence

• Idempotence ` Projection

• Idempotence, Partition ` Barycenter (difficult)
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Binary ⇔ Standard
Bi-interpretability between Binary (convex space) and Standard:

[Binary � Standard]

• CBi<n dixi :=

{
x0 if d0 = 1

x0 / d0 . (CBi<n−1 d
′
i xi+1) otherwise

where d ′i = di+1/(1− d0)

• Prove Standard axioms for this definition

[Standard � Binary]

• x0 / p . x1 := CBi<2 dixi where d0 = p and d1 = 1− p

• Prove Binary axioms for this definition

[Interpretations are inverse to each other]

•
{

Binary /p.
Standard CBi

}
def−→
{
CBi

/p.

}
def−→
{
/p.
′

CB′i

}
• Prove /p. = /p.

′ and CBi = CB′i
18 / 22
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Overview of the equivalences

Beaulieu
Multiary operator <&>_
- Partition law
- Idempotence law

Standard
Multiary operator <&>_
- Projection law
- Barycenter lawBeaulieuToStandard

- Partition-barycenter law
- Injective map law

StandardToBeaulieu

Binary (convex space)
Binary operator <| |>

- Binary laws
NaryToBin

- Map law
BinToNary
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Conclusion
We formalized:

• Convex spaces with several interfaces

• Equivalence lemmas connecting them

• Further useful constructions such as convex sets and hulls

On-going work includes:

• Convexity of information theoretic functions [Infotheo,
2020]

• Category of convex spaces and probabilistic
programming [Affeldt et al., 2019]

Future work:

• What is the true difference between conical and convex
spaces?

• Ordered convex spaces with monotonicity

• Topological convex spaces

• Affine Lie algebras
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