
A Certified Implementation of ML with Structural
Polymorphism and Recursive Types

Jacques Garrigue

Graduate School of Mathematical Sciences,
Nagoya University, Chikusa-ku, Nagoya 464-8602

garrigue@math.nagoya-u.ac.jp

Abstract. The type system of Objective Caml has many unique features, which
make ensuring the correctness of its implementation difficult. One of these fea-
tures is structurally polymorphic types, such as polymorphic object and variant
types, which have the extra specificity of allowing recursion. We implemented in
Coq a certified interpreter for Core ML extended with structural polymorphism
and recursion. Along with type soundness of evaluation, soundness and princi-
pality of type inference, and correctness of a stack-based interpreter, are also
proved.1

1 Introduction

While many results have already been obtained in the mechanization of metatheory for
ML [15, 6, 5, 13, 24] and pure type systems [3, 1], Objective Caml [14] has unique fea-
tures which are not covered by existing works. For instance, polymorphic object and
variant types require some form of structural polymorphism [9], combined with recur-
sive types, and both of them do not map directly to usual type systems. Among the many
other features, let us just cite the relaxed valued restriction [10], which accommodates
side-effects in a smoother way, first class polymorphism [12] as used in polymorphic
methods, labeled arguments [7], structural and nominal subtyping (the latter obtained
through private abbreviations). There is plenty to do, and we are interested not only
in type safety, but also in the correctness of type inference, as it gets more and more
involved with each added feature.

Since it seems difficult to ensure the correctness of the current implementation, it
would be nice to have a fully certified reference implementation at least for a subset
of the language, so that one could check how it is supposed to work. As a first step,
we certified type inference and evaluation for Core ML extended with local constraints,
a form of structural polymorphism which allows inference of recursive types, such as
polymorphic variants or objects. The formal proofs cover soundness of evaluation, both
through rewriting rules and using a stack-based abstract machine, and soundness and
completeness of the type inference algorithm.

While we based our developments on the “Engineering metatheory” methodol-
ogy [1], our interest is in working on a concrete type system, with advanced typing

1 This article is an extended version of [11]; it also partly subsumes [9].

2 Jacques Garrigue

features, like in the mechanized metatheory of Standard ML [13]. We are not so much
concerned about giving a full specification of the operational semantics, as in [19].

The contribution of this article is two-fold. First, the proofs presented here are orig-
inal, and in particular it is to our knowledge the first proof of correctness of type infer-
ence for a type system containing recursive types, and even of type soundness for a sys-
tem combining recursive types and a form of structural subsumption. Second, we have
used extensively the techniques proposed in [1] to handle binding, and it is interesting
to see how they fare in a system containing recursion, or when working on properties
other than soundness. On the one hand we have been agreeably surprised by the com-
patibility of these techniques with explicit renaming (as necessary for type inference),
but on the other hand one can easily get entangled in the plethora of quantifiers.

This article is organized as follows. In sections 2 and 3 we give examples of struc-
tural polymorphism, and define the notion of constraint domain which is central to our
local constraint framework. In section 4 we define the type system, which is parameter-
ized over constraint domains. Sections 5, 6 and 7 describe proofs for respectively type
soundness, correctness of type inference, and safety and completeness of a stack-based
interpreter. In section 8 we discuss our use of dependent types in proofs. Section 9 dis-
cusses the extraction process, and gives some examples using the extracted typechecker.
Finally we discuss related works in section 10, before concluding.

The Coq proof scripts and the extracted code can be found at:

http://www.math.nagoya-u.ac.jp/~garrigue/papers/#certint1009

Having them at hand while reading this article should clarify many points. In particular,
due to the size of some definitions, we could only include part of them in this article,
and we refer the reader to the proof scripts for all the missing details.

2 Structural polymorphism

Before getting into the details of the type system, we give a short account of what
we mean by structural polymorphism, how it can be formalized using a kind-based
approach [18, 8], and how it applies to Objective Caml. We assume that the reader is
already familiar with Core ML and its type system.

We present here various forms of structural polymorphism, on a gradual scale of
increasing complexity. In order to uniformize the presentation, we write K.τ for types,
where K is a kinding environment, containing constraints for individual type vari-
ables, under which the open type τ is to be understood. We use a few built-in func-
tions, to obtain interesting types: integer addition +, string concatenation ↑, conversions
string of int : string → int and float : int → float.

2.1 Records à la Ohori

Arguably this is the simplest form of structural polymorphism considered in the lit-
erature. Record values have monomorphic types, and polymorphism is only used for

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 3

typing field access.

{name = "Jacques",age = 40} : {name : string,age : int}
fun x → x.age+1 : α :: {age : int}.α → int
fun x → x.name ↑ " is " ↑ string of int x.age

: α :: {name : string,age : int}.α → string

Intuitively, the kinding α :: {age : int} means that α should at least have a field age, and
this field should have type int. Accessing several fields result in a kind containing all of
them. Two kinds are compatible if they agree on the types of their common fields. A
type satisfies a kind if all the required fields are provided, with the correct types.

Note that the above formulation is a direct adaptation of Ohori’s. Fitting it inside
the local constraint framework of section 3 will require a small change in presentation,
without changing expressive power.

Objective Caml objects can be seen as a direct application of Ohori’s record poly-
morphism (eventhough the implementation is based on Rémy’s work [21].) The con-
crete syntax inlines kinds inside types.

object method name = "Jacques" method age = 40 end;;
- : < age : int; name : string > = <obj>
let show x = x#name ^ " is " ^ string_of_int x#age;;
val show : < age : int; name : string; .. > -> string

2.2 Records and variants with masking

Ohori’s records are weak in that record values have only structurally monomorphic
types. We might want to allow building lists of records containing different fields, with
only part of them common to all members. This requires giving polymorphic types
not only to field access, but also to record values. A type system allowing it was first
proposed by Rémy [21], but here we use a more intuitive formalism [8], which is also
closer to Ohori’s.

{name = "Jacques",age = 40}
: α :: ({name : string,age : int}, /0,{name,age}).α

fun x → x.age+1 : α :: ({age : int},{age},L).α → int
let l1 = [{name = "Jacques",age = 40},{name = "Marie",weight = 16}]
l1 : α :: ({name : string,age : int,weight : int}, /0,{name}).α list

Kinds are now represented by a triple (T,L,U). Along with the type of each field, we
have two sets of labels. Required labels L (union of all field accesses, a lower bound)
form a subset of available labels U (intersection of the possible record values, an upper
bound). L is the set of all labels. You can see how fields are masked in the third ex-
ample: while we have types for the name, age and weight fields, only the name field is
accessible.

The combined type α :: ({name : string,age : int},{age}, {name,age}) is an ac-
ceptable description for both {name = "Jacques",age = 40}, which makes name and
age available, and fun x → x.age + 1, which only requires age. The need for two dis-
tinct sets of labels stems from the natural appearance of such combined types during

4 Jacques Garrigue

type inference. Since attempting to access an unavailable label would be a type error,
this also explains why, for a constraint kind to be meaningful (to have a solution), the
set of required labels should be included in the set of available labels.

By duality, the same types can be used to describe polymorphic variants. The basic
idea is that case-analysis of a variant can receive the same type as a record, while the
variant itself would get the type of a field accessor.

Number(5) : α :: ({Number : int},{Number},L).α
let l2 = [Number(5),Face(”King”)]
l2 : α :: ({Number : int,Face : string},{Number,Face},L).α list
let f1 = function Number(n) → string of int n

| Face(name) → name
f1 : α :: ({Number : int,Face : string}, /0,{Number,Face}).α → string

Our two sets of labels have now different meanings. The first one is the set of present
constructors, or required cases, which must be handled by case-analysis; the second
one is the set of handled constructors, or available cases, which is accepted by all case-
analyses.

An advantage of not using predefined sum types, is that we can make case analysis
modular. Consider the following function f2, which uses a special syntax for dispatch.
g (respectively h) will only receive A or B (respectively C or D). This can be reflected
at the type level by requiring them to handle only relevant cases.

let f2 = fun g → fun h → function (A|B) as x → g x | (C|D) as x → h x
f2 : α1 :: ({A : αA,B : αB},{A,B},L),α2 :: ({C : αC,D : αD},{C,D},L),

α3 :: ({A : αA,B : αB,C : αC,D : αD}, /0,{A,B,C,D})
. (α1 → α) → (α2 → α) → α3 → α

Our choice of keeping all constraints local (constraining only one variable) makes
our system slightly weaker than Rémy’s, which has row and presence variables. For
instance we have no way to relate the set of required cases in α1 and α3, which forces
us to make the safe assumption {A,B} in α1. Rémy’s system handles requirement for
each constructor as an independent presence variable, which may be shared between
two different variant types. This allows more precise typing, but at the cost of harder
to understand types, with lots of variables, of different sorts. Experience suggests that
kinded variables, by reducing the number of variables to one by record or variant type,
and keeping only one sort of type variables, make reading types much easier.

2.3 Discarding masked types

One may wonder about why one should keep all field types in the type of l1, a list of
records with some masked fields. If fields age and weight are actually unavailable, why
should their types matter? Clearly, this is not the case with subtyping, which would
allow to discard not only the fields, but also their types. However, our requirement of
principal type inference makes impossible to simply forget the type.

For instance, let us consider the list:

let l3 = [{name = "Jacques",age = 40},{name = "Marie",age = 4.5}]

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 5

The two records disagree on the type for age, either int or float. This should trigger a
type error. Yet, if we choose to discard the type for age in l1, we would be able to type
l1@[{name = "Marie",age = 4.5}], which contains the untypable l3 as a sublist.

A solution to this problem is to only trigger an error when a field with conflicting
types is used. This amounts to allowing conjunctive types in the types of non-required
fields, only forcing them to be equal when they are required. Then we can give the
following type to l3.

l3 : α :: ({name : string,age : int∧float}, /0,{name,age}).α

Since the two types for the field age are incompatible, it cannot be accessed. And if
it disappears from the list of available fields, we can just drop these types as useless
information.

While the absence of error may seem strange in the above case (even though it is
necessary for coherence), it is a natural way to allow the construction of heterogeneous
collections of objects in a system without subtyping.

The same mechanism also applies to polymorphic variants, and is used in Objective
Caml since version 3. This allows principal type inference of f5 for the following case,
solving the long lasting problem of “masked but not discarded” types.

let f3 = function Number(n) → n | Face() → 15
f3 : α :: ({Number : int,Face : unit}, /0,{Number,Face}).α → int
let f4 = function Number(n) → n/2
f4 : α :: ({Number : int}, /0,{Number}).α → int
let f5 = fun x → (f1(x), f3(x), f4(x))
f5 : α :: ({Number : int}, /0,{Number}).α → (string× int× int)

Here is the corresponding Objective Caml syntax for the above examples.

let f1 = function ‘Number n -> string_of_int n | ‘Face nm -> nm;;
val f1 : [< ‘Face of string | ‘Number of int] -> string
let f2 g h = function ‘A|‘B as x -> g x | ‘C|‘D as x -> h x;;
val f2 : ([> ‘A | ‘B] -> ’a) ->

([> ‘C | ‘D] -> ’a) -> [< ‘A | ‘B | ‘C | ‘D] -> ’a
let f3 = function ‘Number n -> n | ‘Face -> 15;;
val f3 : [< ‘Face | ‘Number of int] -> int
let f4 = function ‘Number n -> n/2
val f4 : [< ‘Number of int] -> int
let f5 x = (f1 x, f3 x, f4 x);;
val f5 : [< ‘Number of int] -> string * int * int

2.4 Recursive types

While structural polymorphism in itself does not require recursive types, many appli-
cations do. For instance, one might want to define a map function on lists defined as
polymorphic variants.

let map f = function Nil() → Nil() | Cons(a, l) → Cons(f a,map f l)
map : γ :: ({Nil : unit,Cons : α × γ}, /0,{Nil,Cons}),

δ :: ({Nil : unit,Cons : β ×δ},{Nil,Cons},L). (α → β) → γ → δ

6 Jacques Garrigue

Note that, thanks to the kinding environment, we don’t need to explicitly introduce
recursive types to obtain recursion. It is sufficient to make the kinding environment
implicitly recursive.

Another application of recursion is to have methods returning the object itself.

let rec point x = {current = x, move = fun d → point(x+d)}
point : α :: ({current : int,move : int → α},{current,point},{current,point})

. int → α

In the Objective Caml syntax, the keyword “as” is used to express kind sharing,
which is not limited to recursive types.

let rec map f =
function ‘Nil -> ‘Nil | ‘Cons(a,l) -> ‘Cons(f a, map f l);;

val map : (’a -> ’b) ->
([< ‘Cons of ’a * ’c | ‘Nil] as ’c) ->
([> ‘Cons of ’b * ’d | ‘Nil] as ’d)

let rec point x =
object method current = x method move d = point (x+d) end;;

val point : int -> (< current : int; move : int -> ’a > as ’a)

3 Constraint domains

The examples of the previous section should have demonstrated that a number of type
system based on structural polymorphism share the same basic formulation, with some
technical differences. An important point, which becomes apparent in examples with
masking, is that one can split the kind information into two parts: a constraint part
C, which indicates which labels (fields or constructors) the constrained type variable
should contain, and a relational part R, which associate types with these labels. The
notion of constraint domain, central to our formalization of structural polymorphism,
attempts to abstract from those differences in the most general possible way.

Contrary to usual constraint-based type systems such as HM(X) [16], our local con-
straints are grafted on top of the Hindley-Milner type system, rather than mixing con-
straints and types at the same level. This means that we can reduce requirements on
constraints to a minimum: their interaction with the rest of the type system will be min-
imal anyway. In particular, we do not introduce any syntax for constraints: they are
black boxes, and need just be able to answer some questions. While not essential, we
think this freedom is important, as the choice of how to represent constraints is rele-
vant to their understanding. Except for this extra freedom, nothing would prevent one
to formalize our constraint domains as special kinds of cylindric algebras, which can be
plugged into HM(X).

A constraint domain describes a class of constraints, and how they interact with the
type system. A particular instance of the type system may contain several constraint do-
mains, as long as all their operations and values are clearly distinguished. For simplicity,
we will only consider type systems operating on a single constraint domain.

Definition 1. A constraint domain C is composed of the following items.

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 7

1. A theory TC with an entailment relation |= satisfying the following properties
(a) There is a constraint ⊥, such that for any C we have ⊥|= C.
(b) A constraint C is said to be invalid when C |=⊥. Validity is decidable.
(c) Entailment is reflexive and transitive: C |= C; if C |= C′ and C′ |= C′′ then

C |= C′′.
(d) For any two constraints C and C′, there is a constraint C ∧C′ such that C ∧

C′ |= C, C∧C′ |= C′, and for all C′′ such that C′′ |= C and C′′ |= C′, we have
C′′ |= C∧C′.

2. A set L of labels, and an observation relation ` checking some atomic properties
of a constraint: C ` p(a) where p and a are respectively a predicate and a label for
the domain. Observation should be compatible with entailment:

If C |= C′ and C′ ` p(a) then C ` p(a).

3. A specific predicate unique which requires coherence, i.e. the type associated to a
label must be unique. Any kind (C,R) must satisfy the rule:

∀xτ1τ2, x : τ1 ∈ R∧ x : τ2 ∈ R∧C ` unique(x) ⇒ τ1 = τ2

i.e. if a label x exhibits unique(x), then R can only associate a single type to x.

Our requirements on the entailment relation |= are as free as one can get. Basically,
we only need a way to distinguish valid constraints from invalid ones, and build the
intersection of two constraints.

The observation relation ` is a consequence of the representation independence of
our constraints: we need an explicit way to relate them to the rest of the world. In par-
ticular unique interfaces constraints, which are semantic, with syntactic type equality.

To form a kind, each constraint will be coupled with a relation R associating types
to observable labels. R need not always describe a function: coherence is only enforced
on labels exhibiting the unique property.

We say that a constraint is exact if it cannot be further refined, i.e. if it is only
entailed by itself and ⊥ (modulo equivalence with respect to entailment). This is equiv-
alent to a ground type in the world of constraints. Whether a constraint is exact or not
does not impact anything in the theory, but knowing it may be helpful when reading
types.

Note that the definition of constraint domain we give here is simpler but weaker
than the one in [9]. The extra power of the original definition was needed to handle a
form of dependent typing of pattern-matching, which we have omitted here since it is
not used in Objective Caml.

We now consider the constraint domains associated to examples in the previous
sections.

Records à la Ohori The original formulation did mix required fields and their types
together. We have to distinguish the two, to adapt to our framework. Moreover, since
we do not extend monomorphic types themselves, monomorphic records should also be
described by exact constraints.

8 Jacques Garrigue

A constraint is a pair (L,x) of a finite set of labels L, together with a mark x dis-
tinguishing exact types (1) from refinable ones (0). Entailment on refinable types is
containment: (L,x) |= (L′,0) iff L ⊃ L′, which makes set union the conjunction opera-
tion. For exact types entailment is only reflexive. All such constraints are valid, so we
must add a ⊥ element. We do not need to observe anything particular, so we just use
C ` true(l) for any C and l, requiring coherence for all labels.

Records with maskable fields Constraints are represented by a pair of sets (L,U), L
a finite set of accessed labels, and U either the set of all labels L , or a finite set of
available labels. Entailment is defined by (L,U) |= (L′,U ′) iff L ⊃ L′ and U ⊂ U ′. We
can choose (L , /0) as ⊥. The validity check is (L,U) |=⊥ when L 6⊂ U . One can ob-
serve required labels: (L,U) ` req(l) iff l ∈ L. We can either require coherence for all
labels, and obtain records without discarding, or only for required ones, which allows
conjunctive typing, by delaying the equality constraint until the field is accessed.

Since the constraint domain for records with maskable fields also applies to poly-
morphic variants, and subsumes Ohori-style records, one may wonder why we do not
choose it as canonical constraint domain, avoiding the extra complexity of abstraction.
Independently of the advantage of clearer reasoning provided by abstraction, experience
tells us that we practically need the freedom it provides. Indeed, when adding polymor-
phic variants to Objective Caml, we have experimented with different variations. A first
one is that the constraint (/0, /0), while meaningful for records (it denotes a record with
no fields), should be invalid for polymorphic variants, as it denotes the empty type, and
allowing it would delay the detection of some errors. A second variation, on top of the
first one, was to add an extra predicate for lone labels, i.e. polymorphic variants with
only one possible case. Since this label cannot disappear (as it would result in an empty
type), it is principal to require it to be coherent. This second variation was eventually
dropped in Objective Caml for other reasons (the first one is kept), but it demonstrates
how hard it is to know in advance what exact specification of the constraint domain will
be right in practice.

4 Type system

We now present the type system we will work with. While this description is intended to
be self-contained, the original formalization of local constraints [9] may provide more
explanations.

Terms are the usual ones: variables, constants, functions, application and let-binding.
We intend to provide all other constructs through constants and δ -rules.

e ::= x | c | λx.e | e e | let x = e in e

Types are less usual.

τ ::= α | τ1 → τ2 type
κ ::= • | (C,{l1 : τ1, . . . , ln : τn}) kind
K ::= α1 :: κ1, . . . ,αn :: κn kinding environment
σ ::= ∀ᾱ.K. τ polytype

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 9

VARIABLE
K,K0 ` θ : K dom(θ) ⊂ B
K;Γ,x : ∀B.K0 . τ ` x : θ(τ)
ABSTRACTION
K;Γ,x : τ ` e : τ ′

K;Γ ` λx.e : τ → τ ′

LET
K;Γ ` e1 : σ K;Γ,x : σ ` e2 : τ
K;Γ ` let x = e1 in e2 : τ

CONSTANT
K0 ` θ : K Tconst(c) = K0 . τ
K;Γ ` c : θ(τ)
APPLICATION
K;Γ ` e1 : τ → τ ′ K;Γ ` e2 : τ
K;Γ ` e1 e2 : τ ′

GENERALIZE
K;Γ ` e : τ B = FVK(τ)\FVK(Γ)
K|K\B;Γ ` e : ∀B.K|B . τ

Fig. 1. Typing rules (original)

VARIABLE
K ` τ̄ :: κ̄ τ̄

K;Γ,x : κ̄ . τ1 ` x : τ τ̄
1

ABSTRACTION
∀x /∈ L K;Γ,x : τ ` ex : τ ′

K;Γ ` λe : τ → τ ′

LET
K;Γ ` e1 : σ ∀x /∈ L K;Γ,x : σ ` ex

2 : τ
K;Γ ` let e1 in e2 : τ

CONSTANT
K ` τ̄ :: κ̄ τ̄ Tconst(c) = κ̄ . τ1

K;Γ ` c : τ τ̄
1

APPLICATION
K;Γ ` e1 : τ → τ ′ K;Γ ` e2 : τ
K;Γ ` e1 e2 : τ ′

GENERALIZE
∀ᾱ /∈ L K, ᾱ :: κ̄ ᾱ ;Γ ` e : τ ᾱ

K;Γ ` e : κ̄ . τ

Fig. 2. Typing rules using cofinite quantification

A type is either a type variable or a function type. This may seem not expressive enough,
but in this system type variables need not be abstract, as a kinding environment asso-
ciates them with their respective kinds. When they are associated with a concrete kind,
they actually denote structural types, like records or variants. Such types are described
by a pair (C,R) of a local constraint C and a relation R between labels and types. On
the other hand • just denotes an (abstract) type variable. As you can see, type variables
may appear inside kinds, and since kinding environments are allowed to be recursive,
we can use them to define recursive types (where the recursion must necessarily go
through kinds.) Since type variables only make sense in presence of a kinding environ-
ment, polytypes have to include a kinding environment for the variables they quantify;
i.e., in ∀ᾱ .K.τ , K is such that dom(K) = {ᾱ}, and the variables of ᾱ may appear both
inside the kinds of K and in τ . A good way to understand these definitions is to see
types as directed graphs, where variables are just labels for nodes.

This type system is actually a framework, where the concrete definition of local
constraints, and how they interact with types, is kept abstract. One can then apply this
framework to an appropriate constraint domain to implement various flavours of poly-
morphic variants and records, as described in sections 2 and 3. Note that the type system
only needs to know about entailment, and whether a kind is valid or not, i.e. whether
the constraint is valid and coherence is satisfied. By extension we also use the notation
κ ′ |= κ for kinds, i.e. (C′,R′) |= (C,R) iff C′ |= C and R ⊂ R′.

10 Jacques Garrigue

R-ABS

(λe1) v2 −→ ev2
1

R-LET

let v1 in e2 −→ ev1
2

R-DELTA
e = Delta.reduce c [v1; . . . ;vn]
c v1 . . . vn −→ e
R-LET1
e1 −→ e′1
let e1 in e2 −→ let e′1 in e2

R-APP1
e1 −→ e′1
e1 e2 −→ e′1 e2

R-APP2
e2 −→ e′2
v1 e2 −→ v1 e′2

Fig. 3. Reduction rules

Kinding environments are used in two places: in polytypes where they associate
kinds to quantified type variables, and in typing judgments, which are of the form K;Γ`
e : τ , where the variables kinded in K may appear in both Γ and τ .

The typing rules are given in Fig. 1. K ` θ : K′ means that the substitution θ (de-
fined as usual) preserves kinds between K and K′ (it is admissible between K and K′).
Formally, if α has a concrete kind in K (α :: κ ∈ K, κ 6= •), then θ(α) = α ′ is a vari-
able, and it has a more concrete kind in K′ (α ′ :: κ ′ ∈ K′ and κ ′ |= θ(κ)). Tconst assigns
closed type schemes to constants.

The main difference with Core ML is that GENERALIZE has to split the kinding
environment into a generalized part, which contains the kinds associated to generalized
type variables (denoted by K|B), and a non-generalized part for the rest (denoted by
K|K\B). When determining which type variables can be generalized, we must be careful
that for any type variable accessible from Γ, the type variables appearing in its kind
(inside K) are also accessible. For this reason FV takes K as parameter.

FVK(∀α1 . . .αn.K′ . τ) = FVK,K′(τ)\{α1, . . . ,αn}
FVK(α) = {α}∪FVK(R) α :: (C,R) ∈ K
FVK(α) = {α} α :: • ∈ K

FVK(τ1 → τ2) = FVK(τ1)∪FVK(τ2)

It may be difficult to understand this type system in abstract form. We have already
given examples of concrete constraint domains in sections 2 and 3. Types for specific
constants corresponding to usual syntactic constructs appear in Fig. 7.

5 Type soundness

The first step of our mechanical proof, using Coq [22], was to prove type soundness for
the system described in the previous section, starting from Aydemir and others’ proof
for Core ML included in [1], which uses locally nameless cofinite quantification. This
proof uses de Bruijn indices for local quantification inside terms and polytypes, and
quantifies over an abstract avoidance set for avoiding name conflicts.

Fig. 2 contains the typing rules adapted to locally nameless cofinite quantification,
and the reduction rules are in Fig. 3. They both use locally nameless terms and types.

e ::= n | x | c | λe | e e | let e in e term
τ ::= n | α | τ1 → τ2 type
κ ::= • | (C,{l1 : τ1, . . . , ln : τn}) kind
σ ::= κ̄ . τ polytype

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 11

Module Type CstrIntf.
Parameter cstr attr : Set. (* types for abstract constraints and labels *)
Parameter valid : cstr → Prop. (* validity of a constraint *)
Parameter valid dec : ∀c,{valid c}+{¬valid c}. (* validity is decidable *)
Parameter eq dec : ∀xy : attr,{x = y}+{x 6= y}. (* label equality is decidable *)
Parameter unique : cstr → attr → bool. (* uniqueness of a label *)
Parameter u : cstr → cstr → cstr. (* conjunction *)
Parameter |= : cstr → cstr → Prop. (* entailment between constraints *)
Parameter entails refl : ∀c,c |= c. (* properties of entailment *)
Parameter entails trans : ∀c1c2c2,c1 |= c2 → c2 |= c3 → c1 |= c3.
Parameter entails lub : ∀cc1c2,c |= c1 ∧ c |= c2 ↔ c |= c1 u c2.
Parameter entails unique : ∀vc1c2,c1 |= c2 → unique c2 v = true → unique c1 v = true.
Parameter entails valid : ∀c1c2,c1 |= c2 → valid c1 → valid c2.

Module Type CstIntf.
Parameter const : Set. (* constants *)
Parameter arity : const → nat. (* their arity *)

Fig. 4. Interfaces for constraints and constants

τ̄ and κ̄ represent sequences of types and kinds. When we write ᾱ , we also assume
that all type variables inside the sequence are distinct. Polytypes are now written κ̄ . τ ,
where the length of κ̄ is the number of generalized type variables, represented as de
Bruijn indices 1 . . .n inside types2. τ τ̄

1 is τ1 where de Bruijn indices were substituted
with types of τ̄ , accessed by their position. Similarly κ̄ τ̄ substitute all the indices inside
the sequence κ̄ . ex only substitutes x for the index 1. K ` τ :: κ is true when either
κ = •, or τ = α , α :: κ ′ ∈ K and κ ′ |= κ . K ` τ̄ :: κ̄ enforces this for every member of τ̄
and κ̄ at identical positions, which is just equivalent to our condition K ` θ : K′ for the
preservation of kinds.

∀x /∈ L and ∀ᾱ /∈ L are cofinite quantifications, with scope the hypotheses on the
right of the quantifier. Each L appearing in a derivation is existentially quantified (i.e.
one chooses a concrete L when building the derivation), but has to be finite, to allow an
infinite number of variables outside of L. At first, the rules may look very different from
those in Fig. 1, but they coincide if we instantiate L appropriately. For instance, if we
use dom(Γ) for L in ∀x /∈ L, this just amounts to ensuring that x is not already bound.
Inside GENERALIZE, we could use dom(K)∪FVK(Γ) for L to ensure that the newly in-
troduced variables are locally fresh. This may not be intuitive, but this is actually a very
clever way to encode naming constraints implicitly. Moreover, when we build a new
typing derivation from an old one, we can avoid renaming variables by just enlarging
the avoidance sets.

Starting from an existing proof was a tremendous help, but many new definitions
were needed to accommodate kinds, and some existing ones had to be modified. For in-
stance, in order to accommodate the mutually recursive nature of kinding environments,
we need simultaneous type substitutions, rather than the iterated ones of the original
proof. The freshness of individual variables (or sequences of variables: ᾱ /∈ L) becomes
insufficient, and we need to handle disjointness conditions on sets (L1 ∩ L2 = /0). As

2 The implementation has indices starting from 0, but we will start from 1 in this explanation.

12 Jacques Garrigue

Module MkDefs (Cstr : CstrIntf) (Const : CstIntf).
Inductive typ : Set := . . . (* our types *)
Inductive type : typ → Prop := . . . (* well-formed types *)
Definition sch := typ * list kind. (* type schemes *)
Inductive trm : Set := . . . (* our terms *)
. . .

Module Type DeltaIntf.
Parameter Tconst : Const.const → sch. (* types of constants *)
Parameter reduce : ∀cel,(list for n value (1+Const.arity c) el) → trm. (* δ -rules *)
. . . (* 3 more properties *)

Module MkJudge (Delta : DeltaIntf).
Inductive ` : kenv → env → trm → typ → Prop := . . . (* the typing judgment *)
Inductive −→ : trm → trm → Prop := . . . (* the reduction relation *)
Inductive value : trm → Prop := . . . (* values *)
. . .

Module Type SndHypIntf.
Parameter delta typed : ∀c el vl K Γ τ,

(K;Γ ` const app c el : τ) → (K;Γ ` Delta.reduce c el vl : τ).

Module MkSound (SH : SndHypIntf).
Theorem preservation : ∀KΓee′ τ,(K;Γ ` e : τ) → (e −→ e′) → (K;Γ ` e′ : τ).
Theorem progress : ∀Keτ,(K; /0 ` e : τ) → (value e∨∃e′,e −→ e′).

Fig. 5. Module structure

a result, the handling of freshness, which was almost fully automatized in the proof
of Core ML, required an important amount of work with kinds, even after developing
some tactics for disjointness.

We also added a formalism for constants and δ -rules, which are needed to give
an operational semantics to structural types. Overall, the result was a doubling of the
size of the proof, from 1000 lines to more than 2000, but the changes were mostly
straightforward. This does not include the extra metatheory lemmas and set inclusion
tactics that we use for all proofs.

The formalism of local constraints was defined as a framework, able to handle var-
ious flavours of variant and object types, just by changing the constraint part of the
system. This was formalized through the use of functors. The signature for constraints
and constants is in Fig. 4, and an outline of the module structure of the soundness proof
(including the statements proved) is in Fig. 5. We omit here the definitions of terms,
types, typing derivations, and reduction, as they just implement the locally nameless
definitions we described above. A value is either a λ -abstraction, or a constant applied
to a list of values of length less than its arity.

This approach worked well, but there are some drawbacks. One is that since some
definitions depend on parameters of the framework, and some of the proofs required by
the framework depend on those definitions, we need nested functors, and the instantia-
tion of the framework with a constraint domain looks like a “dialogue”: we repeatedly
alternate domain-specific definitions, and applications of framework functors to those
definitions, each new definition using the result of the previous functor application. The

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 13

Module Cstr.
Definition attr := nat.
Inductive ksort : Set := Ksum | Kprod | Kbot.
Record cstr : Set := C {sort : ksort; low : list nat;high : option(list nat)}.
Definition valid c := sort c 6= Kbot∧ (high c = 〈〉∨ low c ⊂ high c).
Definition s1 ≤ s2 := s1 = Kbot∨ s1 = s2.
Definition c1 |= c2 :=

sort s2 ≤ sort s1 ∧ low c2 ⊂ low c1 ∧ (high c2 = 〈〉∨high c1 ⊂ high c2).
Definition unique c v := set mem eq nat dec v (low c).
. . .

Fig. 6. Constraint domain for polymorphic variants and records

Tconst(tagl) = α :: (〈Ksum,{l},〈〉〉,{l : β}).β → α
Tconst(matchl1...ln) = α :: (〈Ksum, /0,{l1, ..., ln}〉,{l1 : α1, . . . , ln : αn})

. (α1 → β) → . . . → (αn → β) → α → β
Tconst(recordl1...ln) = α :: (〈Kprod, /0,{l1, ..., ln}〉,{l1 : α1, . . . , ln : αn})

. α1 → . . . → αn → α
Tconst(getl) = α :: (〈Kprod,{l},〈〉〉,{l : β}).α → β
Tconst(recf) = ((α → β) → (α → β)) → (α → β)

matchl1...ln f1 . . . fn (tagli e) −→ fi e
getli (recordl1...ln e1 . . . en) −→ ei

recf f e −→ f (recf f) e

Fig. 7. Types and δ -rules for constants

problem appears not so much with constraints themselves, but rather with constants and
δ -rules. In order to obtain the definitions for typing judgments, one has to provide im-
plementations for constraints and constants, extract the definition of types and terms,
and use them to provide constant types and δ -rules. We enforce the completeness of
δ -rules by requiring a function reduce which will be applied to a list of values of length
(1 + Const.arity c); through well-typedness they will be only used if Const.arity c is
smaller than the arity of type c. Type soundness itself is another functor, that requires
some lemmas whose proofs may use infrastructure lemmas on type judgments, and re-
turns proofs of preservation and progress. The real structure is even more complex,
because the proofs span several files, and each file must mimick this structure. The
same problem is known to occur in programs using heavily ML functors, so this is not
specific to Coq. But the level of stratification of definitions we see in this proof rarely
occurs in programs.

This instantiation has been done for a constraint domain containing both polymor-
phic variants and records, and a fixpoint operator. We show the constraint domain in
Fig. 6. A constraint combines a sort — whether the constraint denotes a variant (Ksum),
a record (Kprod), or is invalid (Kbot) —, a lower bound (low), and an upper bound
(high) of the set of used labels. We write 〈〉 for None, which denotes here the set of

14 Jacques Garrigue

KIND GC
K,K′;Γ ` e : τ FVK(Γ,τ)∩dom(K′) = /0
K;Γ ` e : τ

CO-FINITE KIND GC
∀ᾱ 6∈ L K, ᾱ :: κ̄ ᾱ ;Γ ` e : τ
K;Γ ` e : τ

Fig. 8. Kind discarding

all possible labels. Validity requires the sort not to be Kbot, and the lower bound to
be included in the upper bound. unique is true for all the labels in the lower bound.
Constants and δ -rules are in Fig. 7, using the nameful syntax for types. You can see the
duality between variants and records, at least for tag and get.

Proofs for the constraint domain were somewhat lengthy. As indicated in Fig. 5,
one must prove delta typed for each δ -rule, and the constants involved are n-ary, with
rather complex types. This requires very boring lemmas, to handle all cases. The clear
separation between the type system and the constraint domain avoided polluting the
soundness proof with those details.

Both in the framework and domain proofs, cofinite quantification demonstrated its
power, as no renaming of type or term variables was needed at all. It helped also in
an indirect way: in the original rule for GENERALIZE, one has to close the set of free
variables of a type with the free variables of their kinds; but the cofinite quantification
takes care of that implicitly, without any extra definitions.

While cofinite quantification may seem perfect, there is a pitfall in this perfection
itself. One forgets that some proof transformations intrinsically require variable renam-
ing. Concretely, to make typing more modular, I added a rule that discards irrelevant
kinds from the kinding environment. Fig. 8 shows both the normal and cofinite forms.
Again one can see the elegance of the cofinite version, where there is no need to specify
which kinds are irrelevant: just the ones whose names have no impact on typability.
Proofs went on smoothly, until I realized that I needed the following inversion lemma,
relating derivations using it (`GC is ` extended with the rule KIND GC), and those with-
out it.

∀KΓeτ, (K;Γ `GC e : τ) →∃K′, (K,K′;Γ ` e : τ)

Namely, by putting back the kinds we discarded, we shall be able to obtain a derivation
that does not rely on KIND GC. This is very intuitive, but since this requires making
KIND GC commute with GENERALIZE, we end up commuting quantifiers in the cofinite
version. And this is just impossible without a true renaming lemma. I got stuck there for
a while, unable to see what was going wrong3. Even more confusing, the same problem
occurs when we try to make KIND GC commute with ABSTRACTION, whereas intuitively
the choice of names for term variables is independent of the choice of names for type
variables. Finally this lemma required about 1000 lines to prove it, including renaming
lemmas for both term and type variables.

Lemma typing rename : ∀KΓxyσ Γ′ eτ ,
K;Γ,x:σ ,Γ′ ` e : τ → y /∈ dom(Γ,Γ′)∪{x}∪FV(e) → K;Γ,y:σ ,Γ′ ` [y/x]e : τ.

3 Thanks to Arthur Charguéraud for opening my eyes.

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 15

Lemma typing rename typ : ∀KΓκ̄ τ ᾱ ᾱ ′ e,
ᾱ /∈ FV(Γ)∪FV(κ̄ . τ)∪dom(K)∪FV(K) → ᾱ ′ /∈ dom(K)∪{ᾱ}→
K, ᾱ :: κ̄ ᾱ ;Γ ` e : τ ᾱ → K, ᾱ ′ :: κ̄ ᾱ ′

;Γ ` e : τ ᾱ ′
.

The renaming lemmas were harder to prove than expected (100 lines each). Contrary to
what was suggested in [1], we found it rather difficult to prove these lemmas starting
from the substitution lemmas of the soundness proof; while renaming for types used
this approach, renaming for terms was proved by a direct induction, and they ended
up being of the same length. On the other hand, one could argue that the direct proof
was easy precisely thanks to cofinite quantification, which eschews the need for extra
machinery.

Once the essence of the problem (i.e. commutation of quantifiers) becomes clear,
one can see a much simpler solution: in most situations, it is actually sufficient to have
KIND GC occur only just above ABSTRACTION and GENERALIZE, and the canonization
lemma is just 100 lines, as it doesn’t change the quantifier structure of the proof. This
also raises the issue of how to handle several variants of a type system in the same
proof. Here this was done by parameterizing the predicate ` with the canonicity of the
derivation, and whether KIND GC is allowed at this point. This gives 4 cases for the
availability of KIND GC: allowed nowhere, allowed everywhere, or inside a canonical
derivation where it is allowed or not at the current point. Functions gc ok, gc raise and
gc lower, which are used by the definitions themselves, allow to manipulate this state
transparently.

6 Type inference

The main goal of using local constraints was to keep the simplicity of unification-based
type inference. Of course, unification has to be extended in order to handle kinding, but
the algorithms for unification and type inference stay reasonably simple.

6.1 Unification

Unification has been a target of formal verification for a long time, with formal proofs
as early as 1985 [20]. Here we just wrote down the algorithm in Coq, and proved both
correctness and completeness. A rule-based version of the algorithm can be found in
[9]. The following statements were proved:

Definition unifies θ l := ∀τ1τ2, In(τ1,τ2) l → θ(τ1) = θ(τ2).
Theorem unify types : ∀hl Kθ , unify h l K θ = 〈K′,θ ′〉 → unifies θ ′ l.

Theorem unify kinds : ∀hl Kθ ,
unify h l K θ = 〈K′,θ ′〉 → dom(θ)∩dom(K) = /0 →
K ` θ ′ : θ ′(K′)∧dom(θ ′)∩dom(K′) = /0.

Theorem unify mgu : ∀hl K0 Kθ ,
unify h l K0 id = 〈K,θ〉 → unifies θ ′ l → K0 ` θ ′ : K′ → θ ′ w θ ∧K ` θ : K′.

Theorem unify complete : ∀Kθ K0 l h,
unifies θ l → K0 ` θ : K → size pairs id K0 l < h → unify h l K0 id 6= 〈〉.

16 Jacques Garrigue

[ᾱ]τ = τ∗ such that τ ᾱ
∗ = τ

and FV(τ∗)∩ ᾱ = /0
[ᾱ](κ̄ . τ) = ([ᾱ]κ̄ . [ᾱ]τ)

Definition generalize(K,Γ,L,τ) :=
let A = FVK(Γ) and B = FVK(τ) in
let K′ = K|K\A in

let ᾱ :: κ̄ = K′|B in
let ᾱ ′ = B\ (A∪ ᾱ) in
let κ̄ ′ = map (λ .•) ᾱ ′ in
〈(K|A,K′|L), [ᾱᾱ ′](κ̄ κ̄ ′ . τ)〉.

Definition typinf(K,Γ, let e1 in e2,τ,θ ,L) :=
let α = fresh(L) in
match typinf(K,Γ,e1,α,θ ,L∪{α}) with
| 〈K′,θ ′,L′〉 ⇒
let K1 = θ ′(K′) and Γ1 = θ ′(Γ) in
let L1 = FV(θ ′(dom(K))) and τ1 = θ ′(α) in
let 〈KA,σ〉 = generalize(K1,Γ1,L1,τ1) in
let x = fresh(dom(Γ)∪FV(e1)∪FV(e2)) in
typinf(KA,(Γ,x : σ),ex

2,τ,θ ′,L′)
| 〈〉 ⇒ 〈〉
end.

Fig. 9. Type inference algorithm

The first argument to unify is the number of type variables, which is used to enforce
termination. Then comes a list of type pairs to unify and the original kinding environ-
ment. Last is a starting substitution, so that the algorithm is tail-recursive. To keep the
statement clear, well-formedness conditions are omitted here. The proof is rather long,
as kinds need particular treatment, but there was no major stumbling block. The proof
basically follows the algorithms, but there are two useful tricks. One concerns substitu-
tions. Rather than using the relation “θ is more general than θ ′” (∃θ1, θ ′ = θ1 ◦θ), we
used the more direct “θ ′ extends θ” (∀α, θ ′(θ(α)) = θ ′(α)). In the above theorem it
is noted θ ′ w θ . When θ is idempotent, the two definitions are equivalent, but the latter
can be used directly through rewriting. The other idea was to define a special induc-
tion lemma for successful unification, which uses symmetries to reduce the number of
cases to check. Unification being done on first-order terms, the types we are unifying
shall contain no de Bruijn indices, but only global variables. Since we started with a
representation allowing both kinds of variables, there was no need to change it.

6.2 Inference

The next step is type inference itself. Again, correctness has been proved before for Core
ML [15, 6, 24], but to our knowledge never for a system containing equi-recursive types.
Proving both soundness and principality was rather painful. This time one problem was
the complexity of the algorithm itself, in particular the behaviour of type generalization.
The usual behaviour for ML is just to find the variables that are not free in the typing
environment and generalize them, but with a kinding environment several extra steps
are required. First, the free variables should be closed transitively using the kinding
environment. Then, the kinding environment also should be split into generalizable and
non-generalizable parts. Last, some generalizable parts of the kinding environment need
to be duplicated, as they might be used independently in some other parts of the typing
derivation. The definitions for generalize and the let case of typinf are shown in Fig. 9.
[ᾱ]τ stands for the generalization of τ with respect to ᾱ , obtained by replacing the
occurrences of variables of ᾱ in τ by their indices.

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 17

Theorem soundness : ∀KΓeτ θ LK′ θ ′ L′,
typinf(K,Γ,e,τ,θ ,L) = 〈K′,θ ′,L′〉 →
dom(θ)∩dom(K) = /0 →
FV(θ ,K,Γ,τ) ⊂ L →
θ ′(K′);θ ′(Γ) ` e : θ ′(τ) ∧
K ` θ ′ : θ ′(K′)∧θ ′ w θ ∧
FV(θ ′,K′,Γ)∪L ⊂ L′ ∧
dom(θ ′)∩dom(K′) = /0.

Theorem principality : ∀KΓeτ θ K1 θ1 L,
K;θ(Γ) ` e : θ(τ) → K1 ` θ : K →
θ w θ1 → dom(θ1)∩dom(K1) = /0 →
dom(θ)∪FV(θ1,K1,Γ,τ) ⊂ L →
∃K′θ ′L′,
typinf(K1,Γ,e,τ,θ1,L) = 〈K′,θ ′,L′〉 ∧
∃θ ′′, K′ ` θθ ′′ : K∧θθ ′′ w θ ′ ∧

dom(θ ′′) ⊂ L′ \L.

Fig. 10. Properties of type inference

Due to the large number of side-conditions required, the statements for the in-
ductive versions of soundness of principality become very long. In Fig. 10 we show
slightly simplified versions, omitting well-formedness properties. These statements can
be proved directly by induction. From those, we can derive the following corollaries
for a simplified version of typinf, taking only a term and a closed environment as argu-
ments.

Corollary soundness’ : ∀KΓeτ, FV(Γ) = /0 → typinf’ Γ e = 〈K,τ〉 → K;Γ ` e : τ.

Corollary principality’ : ∀KΓeτ, FV(Γ) = /0 → K;Γ ` e : τ →
∃K′,∃T ′, typinf’ Γ e = 〈K′,T ′〉∧∃θ , K′ ` θ : K∧ τ = θ(τ ′).

While principality is clearly more difficult, both proofs are somewhat comparable
in length. As already pointed out by other authors, a painful aspect is the need to track
fresh type variables. Here it is exacerbated by the complexity of the algorithm and of
the data structures involved. We end up needing lots of lemmas about inclusion of free
variable sets, such as the following two, for soundness and principality.

Lemma fv in compose : ∀θθ ′,FV(θ ◦θ ′) ⊂ FV(θ ′)\dom(θ)∪FV(θ).
Lemma close fvk ok : ∀KΓακ ,α ∈ FVK(Γ) → α :: κ ∈ K → FV(κ) ⊂ FVK(Γ).

It is relatively difficult to pinpoint the presence of equi-recursive types as a direct cause
of extra complexity, since the ability to infer equi-recursive types is just a side-effect of
using a kinding environment. However, the need to compute a closure for free variables,
which is a consequence of the kinding environment, is certainly a source of complexity.
Another direct consequence of kinds is the need for proofs of admissibility of substitu-
tions, but those are relatively short.

A more ironical problem is that I had to prove again the substitution lemma for
types. The version proved for type soundness was easier but too specialized, and ended
up not being sufficient here. The general version is just a little harder to prove.

As usual, the proof of principality requires the following lemma, which states that
if a term e has a type τ under an environment Γ, then we can give it the same type under
a more general environment Γ1.

Lemma typing moregen : ∀KΓΓ1 eτ, K;Γ ` e : τ → K ` Γ1 ≤ Γ → K;Γ1 ` e : τ.

18 Jacques Garrigue

Inductive clos : Set :=
| clos abs : trm → list clos → clos
| clos const : Const.const → list clos → clos.

Fixpoint clos2trm(c : clos) : trm :=
match c with
| clos abs e l ⇒ trm inst (λe) (map clos2trm l)
| clos const c l ⇒ const app c (map clos2trm l)
end.

Record frame : Set := Frame {frm benv : list clos; frm app : list clos; frm trm : trm}.
Inductive eval res : Set :=
| Result : nat → clos → eval res
| Inter : list frame → eval res.

Fixpoint eval (h : nat) (benv : list clos) (app : list clos) (e : trm) (stack : list frame)
{struct h} : eval res := . . .

Theorem eval sound : ∀hKeτ,
(K;Γ ` e : τ) → (K;Γ ` res2trm (eval h nil nil t nil) : τ).

Theorem eval complete : ∀Kee′ τ,

(K;Γ ` e : τ) → (e ∗−→ e′) → value e′ →
∃h,∃cl, eval h nil nil t nil = Result 0 cl ∧ e′ = clos2trm cl.

Fig. 11. Definitions and theorems for stack-based evaluation

K ` Γ1 ≤ Γ means that the polytypes of Γ are instances of those in Γ1. Due to the
presence of kinds, the definition of the instantiation order gets a bit complicated.

K ` κ̄1 . τ1 ≤ κ̄ . τ def= ∀ᾱ,dom(K)∩ ᾱ = /0 →∃τ̄, K, ᾱ :: κ̄ ᾱ ` τ̄ :: κ̄ τ̄
1 ∧ τ τ̄

1 = τ ᾱ .

It may be easier to consider the version without de Bruijn indices.

K ` ∀ᾱ1.K1 . τ1 ≤ ∀ᾱ2.K2 . τ2
def= ∃θ , dom(θ) ⊂ ᾱ1 ∧K,K1 ` θ : K,K2 ∧θ(τ1) = τ2.

Another difficulty is that, since we are building a derivation, cofinite quantification
appears as a requirement rather than a given, and we need renaming for both terms and
types in many places. This is true both for soundness and principality, since in the latter
the type variables of the inferred derivation and of the provided derivation are different.
As a result, while we could finally avoid using the renaming lemmas for type soundness,
they were ultimately needed for type inference.

7 Interpreter

Type soundness ensures that evaluation according to a set of source code rewriting
rules cannot go wrong. However, programming languages do not evaluate a program by
rewriting it, but rather interpreting it with a virtual machine. We defined a stack-based
abstract machine, and first proved that at every step the state of the abstract machine

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 19

Parameter reduce clos : Const.const → list clos → clos× list clos.

Variable fenv : env clos.

Definition trm2clos (benv : list clos) e :=
match e with
| n ⇒ nth n benv clos def
| x ⇒ match get x fenv with〈v〉 ⇒ v | 〈〉 ⇒ clos def end
| c ⇒ clos const c nil
| λe1 ⇒ clos abs e1 benv
| ⇒ clos def
end.

Definition trm2app e :=
match e with
| (e1 e2) ⇒ 〈e1,e2〉
| let e2 in e1 ⇒ 〈λe1,e2〉
| ⇒ 〈〉
end.

Fixpoint eval (h : nat) (benv : list clos) (app : list clos) (e : trm) (stack : list frame)
{struct h} : eval res :=

match h with
| 0 ⇒ Inter(Frame benv app e :: stack)
| S h ⇒
let result cl := match stack with

| nil ⇒ Result h cl
| Frame benv′ app′ e :: rem ⇒ eval h benv′ (cl :: app′) e rem
end in

match trm2app e with
| 〈e1,e2〉 ⇒ eval h benv nil e2 (Frame benv app e1 :: stack)
| 〈〉 ⇒
let cl := trm2clos benv e in
match app with
| nil ⇒ result cl
| cl1 :: rem ⇒
match cl with
| clos abs e1 benv ⇒ eval h (cl1 :: benv) rem e1 stack
| clos const c1 app1 ⇒
let nargs := length app1 + length app in
let nred := S (Const.arity c1) in
if nred ≤ nargs then
let (args,app′) := cut nred (app1 ++app) in
match reduce clos c1 args with
| (clos const c2 app2,app3) ⇒ eval h nil (app2 ++app3 ++app′) c1 stack
| (clos abs e2 benv,app3) ⇒ eval h benv (app3 ++app′) (λe2) stack
end

else result (clos const c1 (app1 ++app))
end

end end
end.

Fig. 12. Stack-based evaluation

20 Jacques Garrigue

could be converted back to a term whose typability was a direct consequence of the ty-
pability of the reduced program. This ensures that evaluation cannot go wrong, and the
final result, if reached, shall be either a constant or a function closure. Once the relation
between program and state was properly specified, the proof was mostly straightfor-
ward.

The basic definitions and the statements for soundness (described above) and eval-
uation completeness are in Fig. 11. The concrete definition of eval is in Fig. 12. A
closure is either a function body paired with its environment, or a partially applied con-
stant. clos2trm converts back a closure to an equivalent term, trm inst instantiating all
de Bruijn indices at once with a list of terms, and const app building the curried appli-
cation of c to a list of terms. Since evaluation may not terminate, eval takes as argument
the number h of reduction steps to compute. The remaining arguments are the environ-
ment benv, accessed through de Bruijn indices, the application stack app which contains
the arguments to the term being evaluated, the term e itself, which provides an efficient
representation of code thanks to de Bruijn indices, and the control stack stack. Here the
nameless representation of terms was handy, as it maps naturally to a stack machine.
The result of eval is either a closure, with the number of evaluation steps remaining, or
the current state of the machine.

Completeness was proved with respect to the rewriting rules, i.e. if the rewriting
based evaluation reaches a normal form, then evaluation by the abstract machine ter-
minates with the same normal form. This required building a bisimulation between the
two evaluations, and was trickier than expected. Namely we need to prove the following
lemma:

Definition inst t benv := trm inst t (map clos2trm benv).
Lemma complete rec : ∀argsargs′ fl fl′ ee′ benvbenv′ τ,

args ≡ args′ → fl ≡ fl′ → (inst e benv −→ inst e′ benv′) →
K;Γ ` stack2trm (app2trm (inst e benv) args) fl : τ →
∃h,∃h′, eval h benv args e fl ≡ eval h′ benv′ args′ e′ fl′.

where ≡ denotes the equality of closures after substitution by their environment, i.e.
clos abs e benv ≡ clos abs e′ benv′ iff inst (λe) benv = inst (λe′) benv′. What it basi-
cally says is that if inst e benv reduces to inst e′ benv′ in one step, and converting back
the whole state of the stack machine with code e, variable environment benv, applica-
tion stack args, and contral stack fl, gives a well-typed term, then the evaluation of this
stack machine and that of the machine with respective state e′, benv′, args′ and fl′ (for
any application stack args′ equivalent to args and control stack fl′ equivalent to fl), will
eventually either reach the same result, or an identical state if they do not terminate.
This ensures that evaluation properly simulates reduction. Combined with eval value
—evaluation of a value produces a closure representing that value—, this allows to
prove eval complete.

Lemma eval value : ∀benv t, value (inst t benv) →
∃h,∃cl,eval h benv nil t nil = Result 0 cl∧ clos2trm cl = inst t benv.

Both eval value and eval complete are easy, but proving complete rec by case analysis
on e and e′ ended up being very time consuming. The proofs being rather repetitive,
they may profit from better lemmas.

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 21

8 Dependent types

As we pointed in section 6, the statements of many lemmas and theorems include lots
of well-formedness properties, which are expected to be true of any value of a given
type. For instance, substitutions should be idempotent, environments should not bind
the same variable twice, de Bruijn indices should not escape, kinds should be valid,
etc. . . A natural impulse is to use dependent types to encode these properties. Yet proofs
from [1] only use dependent types for the generation of fresh variables. The reason is
simple enough: as soon as a value is defined as a dependent sum, using rewriting on
it becomes much more cumbersome. I attempted using it for the well-formedness of
polytypes, but had to abandon the idea because there were too many things to prove
upfront. On the other hand, using dependent types to make sure that kinds are valid
and coherent was not so hard, and helped to streamline the proofs. This is due to the
abstract nature of constraint domains, which limits interactions between kinds and other
features. The definition of kinds becomes:

Definition coherent kc kr := ∀x(τ τ ′ : typ),
Cstr.unique kc x = true → In (x,τ) kr → In (x,τ ′) kr → τ = τ ′.

Record ckind : Set := Kind{
kind cstr : Cstr.cstr;
kind valid : Cstr.valid kind cstr;
kind rel : list (Cstr.attr× typ);
kind coherent : coherent kind cstr kind rel}.

Definition kind := option ckind.

We still need to apply substitutions to kinds, but this is not a problem as substitutions
do not change the constraint, and preserve the coherence. We just need the following
function.

Definition ckind map spec : ∀(f : typ → typ)(k : ckind),
{k′ : ckind | kind cstr k = kind cstr k′∧kind rel k′ = map snd f (kind rel k)}.

We also sometimes have to prove the equality of two kinds obtained independently.
This requires the following lemma, which can be proved using proof irrelevance4.

Lemma ckind pi : ∀k k′ : ckind,
kind cstr k = kind cstr k′ → kind rel k = kind rel k′ → k = k′.

Another application of dependent types is ensuring termination for the unification
and type inference algorithms. In Coq all functions must be total. Originally, this was
ensured by adding a step counter, and proving separately that one can choose a number
of steps sufficient to obtain a result. This is the style used in section 6.1. This approach is
simple, but this extra parameter stays in the extracted code. In a first version of the proof,
the parameter was so big that the unification algorithm would just take forever trying
to compute the number of steps it needed. I later came up with a smaller value, but it
would be better to have it disappear completely. This is supported in Coq through well-
founded recursion. In practice this works by moving the extra parameter to the universe

4 Since both validity and coherence are decidable, proof irrelevance could be avoided here by
slightly changing definitions.

22 Jacques Garrigue

of proofs (Prop), so that it will disappear during extraction. The Function command au-
tomates this, but there is a pitfall: while it generates dependent types, it doesn’t support
them in its input. The termination argument for unification being rather complex, this
limitation proved problematic. Attempts with Program Fixpoint didn’t succeed either.
Finally I built the dependently typed function by hand. While this requires a rather in-
tensive use of dependent types, the basic principle is straightforward, and it makes the
proof of completeness simpler. As a result the overall size of the proof for unification
didn’t change. However, since the type inference algorithm calls unification, it had to be
modified too, and its size grew by about 10%. An advantage of building our functions
by hand is that we control exactly the term produced; since rewriting on dependently
typed terms is particularly fragile, this full control proves useful.

9 Program extraction

Both the type checker and interpreter can be extracted to Objective Caml code. This
lets us build a fully certified5 implementation for a fragment of Objective Caml’s type
system. Note that there is no parser or read-eval-print loop yet, making it just a one-
shot interpreter for programs written directly in abstract syntax. Moreover, since Coq
requires all programs to terminate, one has to indicate the number of steps to be evalu-
ated explicitly. Well-founded recursion cannot be used here, as our language is Turing-
complete. (Actually, Objective Caml allows one to define cyclic constants, so that we
can build a value representing infinity, and remove the need for an explicit number of
steps. However, this is going around the soundness of Coq.)

Here is an example of program written in abstract syntax (with a few abbreviations),
and its inferred type (using lots of pretty printing).

let rev_append =
recf (abs (abs (abs
(matches [0;1]
[abs (bvar 1);
abs (apps (bvar 3) [sub 1 (bvar 0); cons (sub 0 (bvar 0)) (bvar 1)]);
bvar 1])))) ;;

val rev_append : trm = ...
typinf2 Nil rev_append;;
- : (var * kind) list * typ =

([(10, <Ksum, {}, {0; 1}, {0 => tv 15; 1 => tv 34}>);
(29, <Ksum, {1}, any, {1 => tv 26}>);
(34, <Kprod, {1; 0}, any, {0 => tv 30; 1 => tv 10}>);
(30, any);
(26, <Kprod, {}, {0; 1}, {0 => tv 30; 1 => tv 29}>);
(15, any)],

tv 10 @> tv 29 @> tv 29)

Here recf is an extra constant which implements the fixpoint operator. Our encoding
of lists uses 0 and 1 as labels for both variants and records, but we could have used
any other natural numbers: their meaning is not positional, but associative. Since de

5 The validity of our certification relies on the correctness of Coq and Objective Caml, which
are rather strong assumptions.

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 23

Bruijn indices can be rather confusing, here is a version translated to a syntax closer to
Objective Caml, with meaningful variable names and labels.

let rec rev_append l1 l2 =
match l1 with
| ‘Nil _ -> l2
| ‘Cons c ->
rev_append c.tl (‘Cons {hd=c.hd; tl=l2})

val rev_append :
([< ‘Nil of ’15 | ‘Cons of {hd:’30; tl:’10; ..}] as ’10) ->
([> ‘Cons of {hd:’30; tl:’29}] as ’29) -> ’29

10 Related works

The mechanization of type safety proofs for programming languages has been exten-
sively studied. Existing works include Core ML using Coq [5], Java using Isabelle/HOL
[17], and more recently full specification of OCaml light using HOL-4 [19] and Stan-
dard ML using Twelf [13, 4]. The main difference in our system is the presence of
structural polymorphism and recursion. In particular, among the above works, only [13]
handles inclusion problems for iso-recursive types (in a simpler setting than ours, since
when checking signature subtyping no structural polymorphism is allowed). It is also
the work closest to our goal of handling advanced type features (it already handles fully
Standard ML). OCaml-light rather focuses on subtle points in the dynamic semantics
of the language. Typed Scheme [23] has a type system remarkably similar to ours, and
part of the soundness proof was mechanized in Isabelle/HOL, but the mechanized part
does not contain recursive types.

Concerning unification and type inference, we have already mentioned the works
of Paulson in LCF [20], Dubois and Ménissier-Morain in Coq [6], and Naraschewski
and Nipkow in Isabelle [15], and the more recent Isabelle/Nominal proof by Urban
and Nipkow [24]. The main difference is the introduction of structural polymorphism,
which results in much extended statements to handle admissible substitutions. Even in
the absence of structural polymorphism, just handling equi-recursive types makes type
inference more complex, and we are aware of no proof of principality including them.
It might be interesting to compare these different proofs of W in more detail, as the first
two use de Bruijn indices [6, 15], the latter nominal datatypes [24], and ours cofinite
quantification. However, as Urban and Nipkow already observed, while there are clear
differences between the different approaches, in the case of type inference lots of low-
level handling of type variables has to be done, and as a result clever encodings do not
seem to be that helpful.

More generally, all the literature concerning the PoplMark challenge [2] can be
seen as relevant here, at least for the type soundness part. In particular, one could argue
that structural polymorphism being related to structural subtyping, challenges 1B and
2B (transitivity of subtyping with records, and type safety with records and pattern
matching) should be relevant. However, in the case of structural polymorphism, the
presence of recursive types requires the use of a graph structure to represent types,
which does not seem to be necessary for those challenges, where trees are sufficient.
We believe that this changes the complexity of the proof.

24 Jacques Garrigue

File Lines Contents
Lib ∗ 1706 Auxiliary lemmas and tactics from [1]
Metatheory 1376 Metatheory lemmas and tactics from [1]
Metatheory SP 1304 Additional lemmas and tactics
Definitions 458 Definition of the type system
Infrastructure 1152 Common lemmas
Soundness 633 Soundness proof
Rename 985 Renaming and inversion lemmas
Eval 2935 Stack-based evaluation
Unify 1832 Unification
Inference 3159 Type inference
Domain 1085 Constraint domain specific proofs
Unify wf 1827 Unification using dependent measure
Inference wf 3443 Inference using dependent measure

Table 1. Components of the proof

11 Conclusion

We have reached our first goal, providing a fully certified type checker and interpreter.
We show the size and contents of the various components of the proof in table 1. While
this is a good start, it currently handles only a very small subset of Objective Caml.
The next goal is of course to add new features. A natural next target would be the
addition of side-effects, with the relaxed value restriction. Note that since the relaxed
value restriction relies on subtyping, it would be natural to also add type constructors,
with variance annotations, at this point. Considering the difficulties we have met up to
now, we do not expect it to be an easy task.

References

1. B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering formal
metatheory. In Proc. ACM Symposium on Principles of Programming Languages, pages
3–15, 2008.

2. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The
PoplMark challenge. In Proc. of the International Conference on Theorem Proving in Higher
Order Logics, volume 3603 of Springer LNCS, pages 50–65, 2005.

3. B. Barras. Auto-validation d’un système de preuves avec familles inductives. Thèse de
doctorat, Université Paris 7, Nov. 1999.

4. K. Crary and B. Harper. Mechanized definition of Standard ML alpha release. Twelf proof
scripts, Aug. 2009.

5. C. Dubois. Proving ML type soundness within Coq. In Proc. of the International Conference
on Theorem Proving in Higher Order Logics, volume 1869 of Springer LNCS, pages 126–
144, 2000.

6. C. Dubois and V. Ménissier-Morain. Certification of a type inference tool for ML: Damas-
Milner within Coq. Journal of Automated Reasoning, 23(3):319–346, Nov. 1999.

A Certified Implementation of ML with Structural Polymorphism and Recursive Types 25

7. J. P. Furuse and J. Garrigue. A label-selective lambda-calculus with optional arguments and
its compilation method. RIMS Preprint 1041, Research Institute for Mathematical Sciences,
Kyoto University, Oct. 1995.

8. J. Garrigue. Programming with polymorphic variants. In ML Workshop, Baltimore, Sept.
1998.

9. J. Garrigue. Simple type inference for structural polymorphism. In The Ninth International
Workshop on Foundations of Object-Oriented Languages, Portland, Oregon, 2002.

10. J. Garrigue. Relaxing the value restriction. In Proc. International Symposium on Functional
and Logic Programming, volume 2998 of Springer LNCS, Nara, Apr. 2004.

11. J. Garrigue. A certified implementation of ML with structural polymorphism. In Proc.
Asian Symposium on Programming Languages and Systems, volume 6461 of Springer-
Verlag LNCS, pages 360–375, Shanghai, Nov. 2010.

12. J. Garrigue and D. Rémy. Extending ML with semi-explicit higher order polymorphism.
Information and Computation, 155:134–171, Dec. 1999.

13. D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of standard ML.
In Proc. ACM Symposium on Principles of Programming Languages, pages 173–184, Jan.
2007.

14. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system
release 3.11, Documentation and user’s manual. Projet Gallium, INRIA, Nov. 2008.

15. W. Naraschewski and T. Nipkow. Type inference verified: Algorithm W in Isabelle/HOL.
Journal of Automated Reasoning, 23:299–318, 1999.

16. M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types. Theory
and Practice of Object Systems, 5(1):35–55, 1999.

17. D. v. Oheimb and T. Nipkow. Machine-checking the Java specification : Proving type-safety.
In J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of Springer
LNCS, pages 119–156. Springer, 1999.

18. A. Ohori. A polymorphic record calculus and its compilation. ACM Trans. Prog. Lang. Syst.,
17(6):844–895, Nov. 1995.

19. S. Owens. A sound semantics for OCaml light. In Proc. European Symposium on Program-
ming, volume 4960 of Springer LNCS, pages 1–15, Apr. 2008.

20. L. Paulson. Verifying the unification algorithm in LCF. Science of Computer Programming,
5:143–169, 1985.

21. D. Rémy. Typechecking records and variants in a natural extension of ML. In Proc. ACM
Symposium on Principles of Programming Languages, pages 77–87, 1989.

22. The Coq Team. The Coq Proof Assistant, Version 8.2. INRIA, 2009.
23. S. Tobin-Hochstadt and M. Felleisen. The design and implementation of typed scheme. In

Proc. ACM Symposium on Principles of Programming Languages, 2008.
24. C. Urban and T. Nipkow. Nominal verification of algorithm W. In G. Huet, J.-J. Lévy, and

G. Plotkin, editors, From Semantics to Computer Science. Essays in Honour of Gilles Kahn,
pages 363–382. Cambridge University Press, 2009.

