
A Certified Implementation of ML with
Structural Polymorphism

Jacques Garrigue

Graduate School of Mathematical Sciences,
Nagoya University, Chikusa-ku, Nagoya 464-8602

garrigue@math.nagoya-u.ac.jp

Abstract. The type system of Objective Caml has many unique fea-
tures, which make ensuring the correctness of its implementation diffi-
cult. One of these features is structurally polymorphic types, such as
polymorphic object and variant types, which have the extra specificity
of allowing recursion. I implemented in Coq a certified interpreter for
Core ML extended with structural polymorphism and recursion. Along
with type soundness of evaluation, soundness and principality of type
inference are also proved.

1 Introduction

While many results have already been obtained in the mechanization of metathe-
ory for ML [1–4] and pure type systems [5, 6], Objective Caml [7] has unique
features which are not covered by existing works. For instance, polymorphic ob-
ject and variant types require some form of structural polymorphism [8], com-
bined with recursive types, and both of these do not map directly to usual type
systems. Among the many other features, let us just cite the relaxed valued
restriction [9], which accommodates side-effects in a smoother way, first class
polymorphism [10] as used in polymorphic methods, labeled arguments [11],
structural and nominal subtyping (the latter obtained through private abbrevi-
ations). There is plenty to do, and we are interested not only in type safety, but
also in the correctness of type inference, as it gets more and more involved with
each added feature.

Since it seems difficult to ensure the correctness of the current implementa-
tion, it would be nice to have a fully certified reference implementation at least
for a subset of the language, so that one could check how it is supposed to work.
As a first step, I certified type inference and evaluation for Core ML extended
with local constraints, a form of structural polymorphism which allows inference
of recursive types, such as polymorphic variants or objects. The formal proofs
cover soundness of evaluation, both through rewriting rules and using a stack-
based abstract machine, and soundness and completeness of the type inference
algorithm.

While we based our developments on the “Engineering metatheory” method-
ology [6], our interest is in working on a concrete type system, with advanced



2 Jacques Garrigue

typing features, like in the mechanized metatheory of Standard ML [4]. We are
not so much concerned about giving a full specification of the operational se-
mantics, as in [12].

The contribution of this paper is two-fold. First, the proofs presented here are
original, and in particular it is to our knowledge the first proof of correctness of
type inference for a type system containing recursive types. Second, we have used
extensively the techniques proposed in [6] to handle binding, and it is interesting
to see how they fare in a system containing recursion, or when working on
properties other than soundness.

2 Structural polymorphism

Structural polymorphism, embodied by polymorphic variants and objects, en-
riches types with both a form of width subsumption, and mutual recursive types.
Structural polymorphism was formalized on paper in [8], by introducing a notion
of recursive kinding environment. To help understand what we are working with,
we give here the basic definitions.

Terms are the usual ones: variables, constants and functions. We intend to
provide all other constructs through constants and δ-rules.

e ::= x | c | λx.e

Types are less usual.

τ ::= α | τ1 → τ2 type
κ ::= • | (C, {l1 7→ τ1, . . . , ln 7→ τn}) kind

K ::= α1 :: κ1, . . . , αn :: κn kinding environment
σ ::= ∀ᾱ.K . τ polytype

A type is either a type variable or a function type. This may seem not expressive
enough, but in this system type variables need not be abstract. When they
are associated with a concrete kind, they actually denote structural types, like
records or variants. Such types are described by the pairing of a local constraint
C and a mapping1 from labels to types. On the other hand • just denotes an
(abstract) type variable. As you can see, type variables may appear inside kinds,
and since kinding environments associate type variables to kinds, we can use
them to define recursive types (where the recursion must necessarily go through
kinds.) A good way to understand this definition is to see types as directed
graphs, where variables are just labels for nodes.

This type system is actually a framework, where the concrete definition of
local constraints, and how they interact with types, is kept abstract. One can
then apply this framework to an appropriate constraint domain to implement
various flavours of polymorphic variants and records. A constraint domain C is a
set of constraints combined with an entailment relation |= on these constraints,
1 In order to make type inference principal, this “mapping” is not always a function;

this will not matter much in this paper.



A Certified Implementation of ML with Structural Polymorphism 3

Variable
K, K0 ` θ : K dom(θ) ⊂ B

K; Γ, x : ∀B.K0 . τ ` x : θ(τ)
Abstraction
K; Γ, x : τ ` e : τ ′

K; Γ ` λx.e : τ → τ ′

Application
K; Γ ` e1 : τ → τ ′ K; Γ ` e2 : τ

K; Γ ` e1 e2 : τ ′

Generalize
K; Γ ` e : τ B = FVK(τ) \ FVK(Γ )

K|
B

; Γ ` e : ∀B.K|B . τ
Let
K; Γ ` e1 : σ K; Γ, x : σ ` e2 : τ

K; Γ ` let x = e1 in e2 : τ
Constant
K0 ` θ : K Tconst(c) = K0 . τ

K; Γ ` c : θ(τ)

Fig. 1. Typing rules (original)

Variable
K ` τ̄ :: κ̄τ̄

K; Γ, x : κ̄ . τ1 ` x : τ τ̄
1

Abstraction
∀x /∈ L K; Γ, x : τ ` ex : τ ′

K; Γ ` λe : τ → τ ′

Application
K; Γ ` e1 : τ → τ ′ K; Γ ` e2 : τ

K; Γ ` e1 e2 : τ ′

Generalize
∀ᾱ /∈ L K, ᾱ :: κ̄ᾱ; Γ ` e : τ ᾱ

K; Γ ` e : κ̄ . τ
Let
K; Γ ` e1 : σ ∀x /∈ L K; Γ, x : σ ` ex

2 : τ

K; Γ ` let e1 in e2 : τ
Constant
K ` τ̄ :: κ̄τ̄ Tconst(c) = κ̄ . τ0

K; Γ ` c : τ τ̄
0

Fig. 2. Typing rules using cofinite quantification

and a predicate unique(C, l), satisfying some properties. By extension we also
use the notation κ′ |= κ for kinds, i.e. (C ′, R′) |= (C, R) iff C ′ |= C and R ⊂ R′.

Kinding environments are used in two places: in polytypes where they asso-
ciate kinds to quantified type variables, and in typing judgments, which are of
the form K;Γ ` e : τ , where the variables kinded in K may appear in both Γ
and τ . The typing rules are given in figure 1. K ` θ : K ′ means that θ preserves
kinds between K and K ′ (it is admissible between K and K ′). Formally, if α
has a concrete kind in K (α :: κ ∈ K, κ 6= •), then θ(α) = α′ is a variable,
and it has a more concrete kind in K ′ (α′ :: κ′ ∈ K ′ and κ′ |= θ(κ)). The main
difference with Core ML is that Generalize has to split the kinding environ-
ment into a generalized part, which contains the kinds associated to generalized
type variables, and a non-generalized part for the rest; since the generalized
part shall not be accessible from the non-generalized part, we need to look into
the kinding environment when deciding which variables can be generalized. For
this reason FV takes a kinding environment as parameter; if α :: κ ∈ K, then
FVK(α) = {α} ∪ FVK(κ). We refer the reader to [8] for further details.

3 Type soundness

The first step of our mechanical proof, using Coq [13], was to prove type sound-
ness for the system described in the previous section, starting from Aydemir and
others proof for Core ML included in [6], which uses locally nameless cofinite



4 Jacques Garrigue

quantification. This proof uses de Bruijn indices for local quantification inside
terms and polytypes, and quantifies over an abstract avoidance set for avoiding
name conflicts.

Figure 2 contains the typing rules adapted to locally nameless cofinite quan-
tification, using a modified definition of terms and types.

e ::= n | x | c | λe term
τ ::= n | α | τ1 → τ2 type
σ ::= κ̄ . τ polytype

τ̄ and κ̄ represent sequences of types and kinds. When we write ᾱ, we also
assume that all type variables inside the sequence are distinct. Polytypes are now
written κ̄ . τ , where the length of κ̄ is the number of generalized type variables,
represented as de Bruijn indices 1 . . . n inside types. The actual implementation
has indices starting from 0, but we will start from 1 in this explanation. τ τ̄

1 is
τ1 where de Bruijn indices were substituted with types of τ̄ , accessed by their
position. Similarly κ̄τ̄ substitute all the indices inside the sequence κ̄. ex only
substitutes x for the index 1. K ` τ :: κ is true when either κ = •, or τ = α,
α :: κ′ ∈ K and κ′ |= κ. K ` τ̄ :: κ̄ enforces this for every member of τ̄ and κ̄ at
identical positions, which is just equivalent to our condition K ` θ : K ′ for the
preservation of kinds.

∀x /∈ L and ∀ᾱ /∈ L are cofinite quantifications. At first, the rules may
look very different from those in figure 1, but they coincide if we instantiate
L appropriately. For instance, if we use dom(Γ ) for L in ∀x /∈ L, this just
amounts to ensuring that x is not already bound. Inside Generalize, we could
use dom(K) ∪ FVK(Γ ) for L to ensure that the newly introduced variables are
locally fresh. This may not be intuitive, but this is actually a very clever way
to encode naming constraints implicitly. Moreover, when we build a new typing
derivation from an old one, we can avoid renaming variables by just enlarging
the avoidance sets.

Starting from an existing proof was a tremendous help, but many new def-
initions were needed to accommodate kinds, and some existing ones had to be
modified. For instance, in order to accommodate the mutually recursive nature
of kinding environments, we need simultaneous type substitutions, rather than
the iterated ones of the original proof. The freshness of individual variables
(or sequences of variables: ᾱ /∈ L) becomes insufficient, and we need to handle
disjointness conditions on sets (L1 ∩ L2 = ∅). As a result, the handling of fresh-
ness, which was almost fully automatized in the proof of Core ML, required an
important amount of work with kinds, even after developing some tactics for
disjointness.

I also added a formalism for constants and δ-rules, which are needed to give
an operational semantics to structural types. Overall, the result was a doubling
of the size of the proof, from 1000 lines to more than 2000, but the changes were
mostly straightforward. This does not include the extra metatheory lemmas and
set inclusion tactics that we use for all proofs.

The formalism of local constraints was defined as a framework, able to handle
various flavours of variant and object types, just by changing the constraint part



A Certified Implementation of ML with Structural Polymorphism 5

Module Type CstrIntf.
Parameter cstr attr : Set.
Parameter valid : cstr → Prop.
Parameter valid dec : ∀c, {valid c} + {¬valid c}.
Parameter eq dec : ∀xy : attr, {x = y} + {x 6= y}.
Parameter unique : cstr → attr → bool.
Parameter t : cstr → cstr → cstr.
Parameter |= : cstr → cstr → Prop.
Parameter entails refl : ∀c, c |= c.
Parameter entails trans : ∀c1c2c2, c1 |= c2 → c2. |= c3 → c1 |= c3.
Parameter entails lub : ∀cc1c2, c |= c1 ∧ c |= c2 ↔ c |= c1 t c2.
Parameter entails unique : ∀vc1c2, c1 |= c2 → unique c2 v = true → unique c1 v = true.
Parameter entails valid : ∀c1c2, c1 |= c2 → valid c1 → valid c2.

End CstrIntf.

Module Type CstIntf.
Parameter const : Set.
Parameter arity : const → nat

End CstIntf.

Fig. 3. Interfaces for constraints and constants

of the system. This was formalized through the use of functors. The signature
for constraints and constants is in figure 3.

This worked well, but there are some drawbacks. One is that since some type
definitions depend on parameters, and some required proofs depend on those
definitions, we need nested functors, and the instantiation of the framework
with a constraint domain looks like a “dialogue”. The problem comes not so
much for constraints themselves, but rather from constants and delta-rules. We
show the basic module structure of the proof in figure 4. In order to obtain
the definitions for typing judgments, one has to provide implementations for
constraints and constants, extract the definition of types and terms, and use
them to provide constant types and δ-rules. We enforce the completeness of δ-
rules by requiring a function reduce which will be applied to a list of values
of length (1 + Const.arity c); through well-typedness they will be only used if
Const.arity c is smaller than the arity of type c. Type soundness itself is another
functor, that requires some lemmas whose proofs may use infrastructure lemmas
on type judgments, and returns proofs of preservation and progress. The real
structure is even more complex, because the proofs span several files, and each
file must mimick this structure.

This instantiation has been done for a constraint domain containing both
polymorphic variants and records, and a fixpoint operator. We show the con-
straint domain in figure 5; we write 〈〉 for None, which denotes here the set of all
possible labels. Constants and δ-rules are in figure 6, using the nameful syntax
for types. You can see the duality between variants and records, at least for tag
and get.



6 Jacques Garrigue

Module Type CstrIntf . . .
Module Type CstIntf . . .
Module MkDefs(Cstr:CstrIntf)(Const:CstIntf).
Inductive typ : Set := . . .
Inductive type : Set := . . .
Inductive trm : Set := . . .
. . .

Module Type DeltaIntf.
Parameter type : Const.const → sch.
Parameter closed : ∀c, sch fv(type c) = ∅.
Parameter scheme : ∀c, scheme(type c).
Parameter reduce : ∀c tl, (list for n value (1 + Const.arity c) tl) → trm.
Parameter term : ∀c tl vl, term(reduce c tl vl).

End DeltaIntf.

Module MkJudge(Delta:DeltaIntf).
Inductive ` : kenv → env → trm → typ → Prop := . . .
Inductive −→ : trm → trm → Prop := . . .
Inductive value : trm → Prop := . . .
. . .

Module Type SndHypIntf.
Parameter delta typed : ∀c tl vl K Γ gc τ,

(K; Γ ` const app c tl : τ) → (K; Γ ` Delta.reduce c tl vl : τ).
End SndHypIntf.

Module MkSound(SH:SndHypIntf).
Theorem preservation : ∀K Γ e e′ τ, (K; Γ ` e : τ) → (e −→ e′) → (K; Γ ` e′ : τ).
Theorem progress : ∀K e τ, (K; ∅ ` e : τ) → (value e ∨ ∃e′, e −→ e′).

End MkSound.
End MkJudge.
End MkDefs.

Fig. 4. Module structure

Both in the framework and domain proofs, cofinite quantification demon-
strated its power, as no renaming of type or term variables was needed at all.
It helped also in an indirect way: in the original rule for Generalize, one has
to close the set of free variables of a type with the free variables of their kinds;
but the cofinite quantification takes care of that implicitly, without any extra
definitions.

While cofinite quantification may seem perfect, there is a pitfall in this per-
fection itself. One forgets that some proof transformations intrinsically require
variable renaming. Concretely, to make typing more modular, I added a rule that
discards irrelevant kinds from the kinding environment. Figure 7 shows both the
normal and cofinite forms. Again one can see the elegance of the cofinite version,
where there is no need to say which kinds are irrelevant: just the ones whose
names have no impact on typability. Proofs went on smoothly, until I realized



A Certified Implementation of ML with Structural Polymorphism 7

Module Cstr.
Definition attr := nat.
Inductive ksort : Set := Ksum | Kprod | Kbot.
Record cstr : Set := C{sort : ksort; low : list nat; high : option(list nat)}.
Definition valid c := sort c 6= Kbot ∧ (high c = 〈〉 ∨ low c ⊂ high c).
Definition s1 ≤ s2 := s1 = Kbot ∨ s1 = s2.
Definition c1 |= c2 :=

sort s2 ≤ sort s1 ∧ low c2 ⊂ low c1 ∧ (high c2 = 〈〉 ∨ high c1 ⊂ high c2).
. . .

EndCstr.

Fig. 5. Constraint domain for polymorphic variants and records

type(tagl) = α :: (〈Ksum, {l}, 〈〉〉, {l 7→ β}) . β → α
type(matchl1...ln) = α :: (〈Ksum, ∅, {l1, ..., ln}〉, {l1 7→ α1, . . . , ln 7→ αn})

. (α1 → β) → . . . → (αn → β) → α → β
type(recordl1...ln) = α :: (〈Kprod, ∅, {l1, ..., ln}〉, {l1 7→ α1, . . . , ln 7→ αn})

. α1 → . . . → αn → α
type(getl) = α :: (〈Kprod, {l}, 〈〉〉, {l 7→ β}) . α → β
type(recf) = ((α → β) → (α → β)) → (α → β)

matchl1...ln f1 . . . fn (tagli
e) −→ fi e

getli
(recordl1...ln e1 . . . en) −→ ei

recf f e −→ f (recf f) e

Fig. 6. Types and δ-rules for constants

that I needed the following inversion lemma.

∀KΓeτ, (K;Γ `GC e : τ) → ∃K ′, (K, K ′; Γ ` e : τ)

Namely, by putting back the kinds we discarded, we shall be able to obtain a
derivation that does not rely on Kind GC. This is very intuitive, but since this
requires making Kind GC commute with Generalize, we end up commuting
quantifiers. And this is just impossible without a true renaming lemma. I got
stuck there for a while, unable to see what was going wrong. Even more con-
fusing, the same problem occurs when we try to make Kind GC commute with
Abstraction, whereas intuitively the choice of names for term variables is inde-
pendent of the choice of names for type variables. Finally this lemma required
about 1000 lines to prove it, including renaming lemmas for both term and
type variables. The renaming lemmas were harder to prove than expected (100
lines each). Contrary to what was suggested in [6], we found it rather difficult
to prove these lemmas starting from the substitution lemmas of the soundness
proof; while renaming for types used this approach, renaming for terms was
proved directly, and they ended up being of the same length. Once the prob-
lem becomes clear, one can see a much simpler solution: in most situations, it



8 Jacques Garrigue

Kind GC
K, K′; Γ ` e : τ FVK(E, τ) ∩ dom(K′) = ∅
K; Γ ` e : τ

Co-finite Kind GC
∀ᾱ 6∈ L K, ᾱ :: κ̄ᾱ; Γ ` e : τ

K; Γ ` e : τ

Fig. 7. Kind discarding

is actually sufficient to have Kind GC occur only just above Abstraction and
Generalize, and the canonicalization lemma is just 100 lines. This also raises
the issue of how to handle several variants of a type system in the same proof.
Here this was done by parameterizing the predicate ` with the canonicity of the
derivation, and whether Kind GC is allowed at this point. This gives 4 cases for
the availability of Kind GC: allowed nowhere, allowed everywhere, or inside a
canonical derivation where it is allowed or not at the current point. Functions
gc ok, gc raise and gc lower allow to manipulate this state transparently.

4 Type inference

The main goal of using local constraints was to keep the simplicity of unification-
based type inference. Of course, unification has to be extended in order to handle
kinding, but the algorithms for unification and type inference stay reasonably
simple.

4.1 Unification

Unification has been a target of formal verification for a long time, with formal
proofs as early as 1985 [14]. Here I just wrote down the algorithm in Coq, and
proved both partial-correctness and completeness. A rule-based version of the
algorithm can be found in [8]. The following statements were proved:

Definition unifies θ l := ∀τ1τ2, In (τ1, τ2) l → θ(τ1) = θ(τ2).

Theorem unify types : ∀h l K θ, unify h l K θ = 〈K′, θ′〉 → unifies θ′ l.

Theorem unify kinds : ∀h l K θ,
unify h l K θ = 〈K′, θ′〉 → dom(θ) ∩ dom(K) = ∅ →
K ` θ′ : θ′(K′) ∧ dom(θ′) ∩ dom(K′) = ∅.

Theorem unify mgu : ∀h l K0 K θ,
unify h l K0 id = 〈K, θ〉 → unifies θ′ l → K0 ` θ′ : K′ → θ′ w θ ∧ K ` θ : K′.

Theorem unify complete : ∀K θ K0 l h,
unifies θ l → K0 ` θ : K → size pairs id K0 l < h → unify h l K0 id 6= 〈〉.

The first argument to unify is the number of type variables, which is used to
enforce termination. Then come a list of type pairs to unify and the original
kind environment. Last is a starting substitution, so that the algorithm is tail-
recursive. To keep the statement clear, well-formedness conditions are omitted
here. The proof is rather long, as kinds need particular treatment, but there
was no major stumbling block. The proof basically follows the algorithms, but



A Certified Implementation of ML with Structural Polymorphism 9

[ᾱ]τ = τ∗ such that τ ᾱ
∗ = τ

and FV(τ∗) ∩ ᾱ = ∅
[ᾱ](κ̄ . τ) = ([ᾱ]κ̄ . [ᾱ]τ)

Definition generalize(K, Γ, L, τ) :=
let A = FVK(Γ ) and B = FVK(τ) in
let K′ = K|

A
in

let ᾱ :: κ̄ = K′|B in
let ᾱ′ = B \ (A ∪ ᾱ) in
let κ̄′ = map (λ .•) ᾱ′ in
〈(K|A, K′|L), [ᾱᾱ′](κ̄κ̄′ . τ)〉.

Definition typinf(K, Γ, let e1 in e2, τ, θ, L) :=
let α = fresh(L) in
match typinf(K, Γ, e1, α, θ, L ∪ {α}) with
| 〈K′, θ′, L′〉 ⇒

let K1 = θ′(K′) and Γ1 = θ′(Γ ) in
let L1 = θ′(dom(K)) and τ1 = θ′(τ ′) in
let 〈KA, σ〉 = generalize(K1, Γ1, L1, τ1) in
let x = fresh(dom(E) ∪ FV(e1) ∪ FV(e2)) in
typinf(KA, (Γ, x : σ), ex

2 , τ, θ′, L′)
| 〈〉 ⇒ 〈〉
end.

Fig. 8. Type inference algorithm

there are two useful tricks. One concerns substitutions. Rather than using the
relation “θ is more general than θ′” (∃θ1, θ′ = θ1 ◦ θ), I used the more direct
“θ′ extends θ” (∀α, θ′(θ(α)) = θ′(α)). In the above theorem it is noted θ′ w θ.
When θ is idempotent, the two definitions are equivalent, but the latter can be
used directly through rewriting. The other idea was to define a special induction
lemma for successful unification, which uses symmetries to reduce the number
of cases to check. Unification being done on first-order terms, the types we are
unifying shall contain no de Bruijn indices, but only global variables. Since we
started with a representation allowing both kinds of variables, there was no need
to change it.

4.2 Inference

The next step is type inference itself. Again, correctness has been proved before
for Core ML [1, 2], but to my knowledge never for a system containing equi-
recursive types. Proving both soundness and principality was rather painful.
This time one problem was the complexity of the algorithm itself, in particular
the behaviour of type generalization. The usual behaviour for ML is just to
find the variables that are not free in the typing environment and generalize
them, but with a kinding environment several extra steps are required. First,
the free variables should be closed transitively using the kinding environment.
Then, the kinding environment also should be split into generalizable and non-
generalizable parts. Last, some generalizable parts of the kinding environment
need to be duplicated, as they might be used independently in some other parts
of the typing derivation. The definitions for generalize and the let case of typinf
are shown in figure 8. [ᾱ]τ stands for the generalization of τ with respect to ᾱ,
obtained by replacing the occurrences of variables of ᾱ in τ by their indices.

Due to the large number side-conditions required, the statements for the
inductive versions of soundness of principality become very long. In figure 9
we show slightly simplified versions, omitting well-formedness properties. These
statements can be proved directly by induction. From those, we can derive the



10 Jacques Garrigue

Theorem soundness : ∀KΓeτθLK′θ′L′,
typinf(K, Γ, e, τ, θ, L) = 〈K′, θ′, L′〉 →
dom(θ) ∩ dom(K) = ∅ →
FV(θ, K, Γ, τ) ⊂ L →
θ′(K′); θ′(Γ ) ` e : θ′(τ) ∧
K ` θ′ : θ′(K′) ∧ θ′ w θ ∧
FV(θ′, K′, Γ ) ∪ L ⊂ L′ ∧
dom(θ′) ∩ dom(K′) = ∅.

Theorem principality : ∀KΓeτθK1θ1L,
K; θ(Γ ) ` e : θ(τ) → K1 ` θ : K →
θ w θ1 → dom(θ1) ∩ dom(K1) = ∅ →
dom(θ) ∪ FV(θ1, K1, Γ, τ) ⊂ L →
∃K′θ′L′,
typinf(K1, Γ, e, τ, θ1, L) = 〈K′, θ′, L′〉 ∧
∃θ′′, K′ ` θθ′′ : K ∧ θθ′′ w θ′ ∧

dom(θ′′) ⊂ L′ \ L.

Fig. 9. Properties of type inference

following corollaries for a simplified version of typinf, taking only a term and a
closed environment as arguments.

Corrolary soundness’ : ∀KΓeτ, FV(Γ ) = ∅ → typinf’ E e = 〈K, τ〉 → K; Γ ` e : τ.

Corollary principality’ : ∀KΓeτ, FV(Γ ) = ∅ → K; Γ ` e : τ →
∃K′, ∃T ′, typinf’ Γ e = 〈K′, T ′〉 ∧ ∃ θ, K′ ` θ : K ∧ τ = θ(τ ′).

As usual, the proof of principality requires the following lemma, which states
that if a term e has a type τ under an environment Γ , then we can give it the
same type under a more general environment Γ1.

Lemma typing moregen : ∀KΓΓ1eτ, K;Γ ` e : τ → Γ ` Γ1 ≤ Γ → K;Γ1 ` e : τ.

K ` Γ1 ≤ Γ means that the polytypes of Γ are instances of those in Γ1. Due
to the presence of kinds, the definition of the instantiation order gets a bit
complicated.

K ` κ̄1 . τ1 ≤ κ̄ . τ
def
=

∀ᾱ, dom(K) ∩ ᾱ = ∅ → ∃τ̄ , K, ᾱ :: κ̄ᾱ ` τ̄ :: κ̄τ̄
1 ∧ τ τ̄

1 = τ ᾱ.

It may be easier to consider the version without de Bruijn indices.

K ` ∀ᾱ1.K1 . τ1 ≤ ∀ᾱ2.K2 . τ2
def
=

∃θ, dom(θ) ⊂ ᾱ1 ∧ K, K1 ` θ : K, K2 ∧ θ(τ1) = τ2.

Another difficulty is that, since we are building a derivation, cofinite quan-
tification appears as a requirement rather than a given, and we need renaming
for both terms and types in many places. This is true both for soundness and
principality, since in the latter the type variables of the inferred derivation and
of the provided derivation are different. As a result, while we could finally avoid
using the renaming lemmas for type soundness, they were ultimately needed for
type inference.

5 Interpreter

Type soundness ensures that evaluation according to a set of source code rewrit-
ing rules cannot go wrong. However, programming languages do not evaluate



A Certified Implementation of ML with Structural Polymorphism 11

Inductive clos : Set :=
| clos abs : trm → list clos → clos
| clos const : Const.const → list clos → clos.

Fixpoint clos2trm(c : clos) : trm :=
match c with
| clos abs e l ⇒ trm inst (λe) (map clos2trm l)
| clos const c l ⇒ const app c (map clos2trm l)
end.

Record frame : Set := Frame {frm benv : list clos; frm app : list clos; frm trm : trm}.
Inductive eval res : Set :=
| Result : nat → clos → eval res
| Inter : list frame → eval res.

Fixpoint eval (h : nat) (benv : list clos) (app : list clos) (e : trm) (stack : list frame)
{struct h} : eval res := . . .

Theorem eval sound : ∀h K e τ,
(K; Γ ` e : τ) → (K; Γ ` res2trm (eval h nil nil t nil) : τ).

Theorem eval complete : ∀K e e′ τ,

(K; Γ ` e : τ) → (e
∗−→ e′) → value t′ →

∃h, ∃cl, eval h nil nil t nil = Result 0 cl ∧ e′ = clos2trm cl.

Fig. 10. Definitions and theorems for stack-based evaluation

a program by rewriting it, but rather interpreting it with a virtual machine. I
defined a stack-based abstract machine, and proved that at every step the state
of the abstract machine could be converted back to a term whose typability was
a direct consequence of the typability of the reduced program. This ensures that
evaluation cannot go wrong, and the final result, if reached, shall be either a
constant or a function closure. Once the relation between program and state
was properly specified, the proof was mostly straightforward.

The basic definitions and the statements for soundness and completeness are
in figure 10. A closure is either a function body paired with its environment, or a
partially applied constant. clos2trm converts back a closure to an equivalent term.
Since evaluation may not terminate, eval takes as argument the number h of
reduction steps to compute. The remaining arguments are the environment benv,
accessed through de Bruijn indices, the application stack app which contains the
arguments to the term being evaluated, the term e itself, which provides an
efficient representation of code thanks to de Bruijn variables, and the control
stack stack. Here the nameless representation of terms was handy, as it maps
naturally to a stack machine. The result of eval is either a closure, with the
number of evaluation steps remaining, or the current state of the machine.

I also proved completeness with respect to the rewriting rules, i.e. if the
rewriting based evaluation reaches a normal form, then evaluation by the ab-
stract machine terminates with the same normal form. This required building



12 Jacques Garrigue

a bisimulation between the two evaluations, and was trickier than expected.
Namely we need to prove the following lemma:

Definition inst t benv := trm inst t (map clos2trm benv).

Lemma complete rec : ∀args args ′ fl fl ′ e e ′ benv benv ′ τ,
args ≡ args ′ → fl ≡ fl ′ → (inst e benv −→ inst e ′ benv ′) →
K ;Γ ` stack2trm (app2trm (inst e benv) args) fl : τ →
∃h,∃h ′, eval h benv args e fl ≡ eval h ′ benv ′ args ′ e ′ fl ′.

where ≡ denotes the equality of closures after substitution by their environment,
i.e. clos abs e benv ≡ clos abs e ′ benv ′ iff inst (λe) benv = inst (λe ′) benv ′.
Proving this by case analysis on e and e′ ended up being very time consuming.
The proofs being rather repetitive, they may profit from better lemmas.

6 Dependent types

As we pointed in section 4, the statements of many lemmas and theorems in-
clude lots of well-formedness properties, which are expected to be true of any
value of a given type. For instance, substitutions should be idempotent, envi-
ronments should not bind the same variable twice, de Bruijn indices should not
escape, kinds should be valid, etc. . . A natural impulse is to use dependent types
to encode these properties. Yet proofs from [6] only use dependent types for the
generation of fresh variables. The reason is simple enough: as soon as a value
is defined as a dependent sum, using rewriting on it becomes much more cum-
bersome. I attempted using it for the well-formedness of polytypes, but had to
abandon the idea because there were too many things to prove upfront. On the
other hand, using dependent types to make sure that kinds are valid and co-
herent was not so hard, and helped streamline the proofs. This is probably due
to the abstract nature of constraint domains, which limits interactions between
kinds and other features. The definition of kinds becomes:

Definition coherent kc kr := ∀x (τ τ ′ : typ),
Cstr.unique kc x = true → In (x, τ) kr → In (x, τ ′) kr → τ = τ ′.

Record ckind : Set := Kind{
kind cstr : Cstr.cstr; kind valid : Cstr.valid kind cstr;
kind rel : list (Cstr.attr × typ); kind coherent : coherent kind cstr kind rel}.

Definition kind := option ckind.

We still need to apply substitutions to kinds, but this is not a problem as substi-
tutions do not change the constraint, and preserve the coherence. We just need
the following function.

Definition ckind map spec : ∀(f : typ → typ)(k : ckind),
{k′ : ckind | kind cstr k = kind cstr k′ ∧ kind rel k′ = map snd f (kind rel k)}.

We also sometimes have to prove the equality of two kinds obtained indepen-
dently. This requires the following lemma, which can be proved using proof
irrelevance.

Lemma kind pi : ∀k k′ : ckind,
kind cstr k = kind cstr k′ → kind rel k = kind rel k′ → Some k = Some k′.



A Certified Implementation of ML with Structural Polymorphism 13

Another application of dependent types is ensuring termination for the uni-
fication and type inference algorithms. In Coq all functions must be complete.
Originally, this was ensured by adding a step counter, and proving separately
that one can choose a number of steps sufficient to obtain a result. This is the
style used in section 4.1. This approach is simple, but this extra parameter stays
in the extracted code. In a first version of the proof, the parameter was so big that
the unification algorithm would just take forever trying to compute the number
of steps it needed. I later came up with a smaller value, but it would be better
to have it disappear completely. This is supported in Coq through well-founded
recursion. In practice this works by moving the extra parameter to the universe
of proofs (Prop), so that it will disappear during extraction. The Function com-
mand automates this, but there is a pitfall: while it generates dependent types, it
doesn’t support them in its input. The termination argument for unification be-
ing rather complex, this limitation proved problematic. Attempts with Program
Fixpoint didn’t succeed either. Finally I built the dependently typed function by
hand. While this requires a rather intensive use of dependent types, the basic
principle is straightforward, and it makes the proof of completeness simpler. As
a result the overall size of the proof for unification didn’t change. However, since
the type inference algorithm calls unification, it had to be modified too, and
its size grew by about 10%. An advantage of building our functions by hand is
that we control exactly the term produced; since rewriting on dependently typed
terms is particularly fragile, this full control proves useful.

7 Program extraction

Both the type checker and interpreter can be extracted to Objective Caml code.
This lets us build a fully certified implementation for a fragment of Objective
Caml’s type system. Note that there is no parser or read-eval-print loop yet,
making it just a one-shot interpreter for programs written directly in abstract
syntax. Moreover, since Coq requires all programs to terminate, one has to in-
dicate the number of steps to be evaluated explicitly. (Actually, Objective Caml
allows one to define cyclic constants, so that we can build a value representing
infinity, and remove the need for an explicit number of steps. However, this goes
around the soundness of Coq.)

Here is an example of program written in abstract syntax (with a few abbre-
viations), and its inferred type (using lots of pretty printing).

# let rev_append =

recf (abs (abs (abs

(matches [0;1]

[abs (bvar 1);

abs (apps (bvar 3) [sub 1 (bvar 0); cons (sub 0 (bvar 0)) (bvar 1)]);

bvar 1])))) ;;

val rev_append : trm = ...

# typinf2 Nil rev_append;;

- : (var * kind) list * typ =



14 Jacques Garrigue

([(10, <Ksum, {}, {0; 1}, {0 => tv 15; 1 => tv 34}>);
(29, <Ksum, {1}, any, {1 => tv 26}>);
(34, <Kprod, {1; 0}, any, {0 => tv 30; 1 => tv 10}>);
(30, any);

(26, <Kprod, {}, {0; 1}, {0 => tv 30; 1 => tv 29}>);
(15, any)],

tv 10 @> tv 29 @> tv 29)

Here recf is an extra constant which implements the fixpoint operator. Our
encoding of lists uses 0 and 1 as labels for both variants and records, but we
could have used any other natural numbers: their meaning is not positional,
but associative. Since de Bruijn indices can be rather confusing, here is a version
translated to a syntax closer to Objective Caml, with meaningful variable names
and labels.

let rec rev_append l1 l2 =

match l1 with

| ‘Nil _ -> l2

| ‘Cons c ->

rev_append c.tl (‘Cons {hd=c.hd; tl=l2})
val rev_append :

([< ‘Nil of ’15 | ‘Cons of {hd:’30; tl:’10; ..}] as ’10) ->

([> ‘Cons of {hd:’30; tl:’29}] as ’29) -> ’29

8 Related works

The mechanization of type safety proofs for programming languages has been
extensively studied. Existing works include Core ML using Coq [3], Java us-
ing Isabelle/HOL [15], and more recently full specification fo OCaml light using
HOL-light [12] and Standard ML using Twelf [4, 16]. The main difference in our
system is the presence of structural polymorphism and recursion. In particu-
lar, among the above works, only [4] handles iso-recursive types. It is also the
work closest to our goal of handling advanced type features (it already handles
fully Standard ML). OCaml-light rather focuses on subtle points in the dynamic
semantics of the language. Typed Scheme [17] has a type system remarkably sim-
ilar to ours, and part of the soundness proof was mechanized in Isabelle/HOL,
but the mechanized part does not contain recursive types.

Concerning unification and type inference, we have already mentioned the
works of Paulson in LCF [14], Dubois and Ménissier-Morain in Coq [2], and
Naraschewski and Nipkow in Isabelle [1]. The main difference is the introduc-
tion of structural polymorphism, which results in much extended statements
to handle admissible substitutions. Even in the absence of structural polymor-
phism, just handling equi-recursive types makes type inference more complex,
and I am aware of no proof of principality including them.



A Certified Implementation of ML with Structural Polymorphism 15

File Lines Contents

Lib ∗ 1706 Auxiliary lemmas and tactics from [6]
Metatheory 1376 Metatheory lemmas and tactics from [6]
Metatheory SP 1304 Additional lemmas and tactics
Definitions 458 Definition of the type system
Infrastructure 1152 Common lemmas
Soundness 633 Soundness proof
Rename 985 Renaming and inversion lemmas
Eval 2935 Stack-based evaluation
Unify 1832 Unification
Inference 3159 Type inference
Domain 1085 Constraint domain specific proofs
Unify wf 1827 Unification using dependent measure
Inference wf 3443 Inference using dependent measure

Table 1. Structure of the proof

9 Conclusion

We have reached our first goal, providing a fully certified type checker and in-
terpreter. We show the size and contents of the various components of the proof
in table 1. While this is a good start, it currently handles only a very small
subset of Objective Caml. The next goal is of course to add new features. A
natural next target would be the addition of side-effects, with the relaxed value
restriction. Note that since the value restriction relies on subtyping, it would be
natural to also add type constructors, with variance annotations, at this point.
Considering the difficulties we have met up to know, we do not expect it to be
an easy task.

All the proofs and the extracted code can be found at:

http://www.math.nagoya-u.ac.jp/~garrigue/papers/#certint1001

References

1. Naraschewski, W., Nipkow, T.: Type inference verified: Algorithm W in Is-
abelle/HOL. Journal of Automated Reasoning 23 (1999) 299–318

2. Dubois, C., Ménissier-Morain, V.: Certification of a type inference tool for ML:
Damas-Milner within Coq. Journal of Automated Reasoning 23 (1999) 319–346

3. Dubois, C.: Proving ML type soundness within Coq. In: Proc. of the International
Conference on Theorem Proving in Higher Order Logics. Volume 1869 of Springer
LNCS. (2000) 126–144

4. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard
ML. In: Proc. ACM Symposium on Principles of Programming Languages. (2007)
173–184

5. Barras, B.: Auto-validation d’un système de preuves avec familles inductives. Thèse
de doctorat, Université Paris 7 (1999)



16 Jacques Garrigue

6. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: Proc. ACM Symposium on Principles of Programming
Languages. (2008) 3–15

7. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system release 3.11, Documentation and user’s manual. Projet Gallium, INRIA.
(2008)

8. Garrigue, J.: Simple type inference for structural polymorphism. In: The Ninth
International Workshop on Foundations of Object-Oriented Languages, Portland,
Oregon (2002)

9. Garrigue, J.: Relaxing the value restriction. In: Proc. International Symposium on
Functional and Logic Programming. Volume 2998 of Springer LNCS., Nara (2004)

10. Garrigue, J., Rémy, D.: Extending ML with semi-explicit higher order polymor-
phism. Information and Computation 155 (1999) 134–171

11. Furuse, J.P., Garrigue, J.: A label-selective lambda-calculus with optional argu-
ments and its compilation method. RIMS Preprint 1041, Research Institute for
Mathematical Sciences, Kyoto University (1995)

12. Owens, S.: A sound semantics for OCaml light. In: Proc. European Symposium
on Programming. Volume 4960 of Springer LNCS. (2008) 1–15

13. The Coq Team: The Coq Proof Assistant, Version 8.2. INRIA. (2009)
14. Paulson, L.: Verifying the unification algorithm in LCF. Science of Computer

Programming 5 (1985) 143–169
15. Oheimb, D.v., Nipkow, T.: Machine-checking the Java specification : Proving type-

safety. In Alves-Foss, J., ed.: Formal Syntax and Semantics of Java. Volume 1523
of LNCS. Springer (1999) 119–156

16. Crary, K., Harper, B.: Mechanized definition of Standard ML alpha release. Twelf
proof scripts (2009)

17. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
scheme. In: Proc. ACM Symposium on Principles of Programming Languages.
(2008)


