The Multiple Zeta Value Algebra And The Stable Derivation Algebra

京大数理研 古庄英和 (Hidekazu Furusho)
Research Institute for Mathematical Sciences , Kyoto Univ

Abstract 多重ゼータ値 (multiple zeta value) で生成された個々の外域空間は積によって開いているが数列構造を持っています。これに多重値代数 (multiple zeta value algebra) を用いて安定導分Lie環 (stable derivation algebra) という形で GT (Grothendieck–Teichmüller 群) の上へのLie環 version に相当します。l進Galois環 (甲夢--[0,1],[0,1]) のpro-l基本群への外ガロア表現の像から作った(c上のLie環) は安定導分Lie環のl進化 (®) したものを canonical にうまく記述することが知られています。実はこの手法が模倣は同型であるという予想が伊藤先生に示されています。今回の私と主導者とのこのストーリーとHodge 側でパラレルに作ることで [単]。さらに説明する安定導分Lie環のdual 空間からnew g空間 (多重ゼータ値のalgebraic generator の空間) に向かって (同型かもしれないような) canonical な射をしたのです (ch2, 74 & 80)。逆に安定導分Lie環の構造予想から多重ゼータ値の次元予想の上限パートが従うことが実として出ます。
(実は最近多重ゼータ値とGT(の副代数群版)との関係が付けられました。)

目次
ch1 Galois Side
ch2 Hodge Side
ch3 proof of theorem
ch4 comparison
Ch1 Galois Side

profinite group world

\[
\begin{align*}
0 & \rightarrow \mathbb{N}_1(\mathbb{F}_\ell \rightarrow \{0,1,0\}) \\
& \rightarrow \mathbb{N}_1(\mathbb{F}_\ell \rightarrow \{0,1,0\}) \\
& \rightarrow \text{Gal}(\mathbb{Q}_\ell/\mathbb{Q}) \\
& \rightarrow 0
\end{align*}
\]

上のスキーム論的基底群のホモトピー完全列から外 Galois 表現

\[
\sigma: \mathcal{G}_\infty \rightarrow \text{Out} \hat{F}_2
\]

出先算として \(\mathcal{G}_\infty \) とがきます

自己同型群を内部自己同型群で際に包含単である。ここ外数を自己同型群といいます。

実は、Belyi により、これが単射であることが証明されています(1993年)。

“この Galois 形を Out で任意的に特徴付けよう！”

という試みが始まりました。Grothendieck–Teichmüller 群 \(\text{GT} \) というは Drinfeld により定義された Out \(\hat{F}_2 \) の部分群のことです (2009年)。そして実は \(\mathcal{G}_\infty \) の表がこれに含まれていることが知られています (2010年, Nakajima)。\(\mathcal{G}_\infty \) = \(\text{GT} \) かどうかはまだ未解決です。

では、次にこの世界のパラレルワールドに移ることにしましょう。

\[
\text{l-adic Lie algebra world}(\text{くわしくは [H99] を見て下さい。})
\]

実数 \(\mathbb{R} \) を 1 次元固定して先の \(\text{pro-\ell} \) 世代の Galois 表現 \(\mathbb{Q}_\ell: \mathcal{G}_\infty \rightarrow \text{Out} \hat{F}_2 \)

を考えましょう。

\(l \)-adic Galois 模環 \(\mathbb{Q}_\ell \) の元の一次元列で切った表現を考えることにより

拡大体の塔

\[
\mathbb{Q}_\ell(1) = \mathbb{Q}_\ell(\mathbb{Q}_\ell(\mathbb{Q}_\ell(\mathbb{Q}_\ell(\cdots))))
\]

が作れます。

\[
\mathbb{Q}_\ell^\infty = \bigoplus_{n=1}^{\infty} \mathbb{Q}_\ell^n, \quad \mathbb{Q}_\ell^m = \text{Gal}(\mathbb{Q}_\ell^{m+1}/\mathbb{Q}_\ell^{m}) \mathbb{Q}_\ell
\]

とおことにより、\(\mathbb{Q}_\ell^\infty \) には自然に \(\mathbb{Q}_\ell \) 上の \(\mathbb{Q}_\ell \) への \(\mathbb{Q}_\ell \) の列挙が入り終。
この環を OutDer \(L \otimes \mathbb{Q} \) の中で具体的に特徴付けその構造を明らかにしよう。

安定導分Lie環 (stable derivation algebra) \(D \) というのは OutDer \(L \) の部分Lie環です。伊藤先生によると定義されましたが (p.146)。これは \(\mathfrak{g} \) の上に定義された次数付Lie環になり、その像はこの \(\mathfrak{g} \) の \(\mathfrak{g} \otimes \mathbb{Q} \) に含まわれています。このため \(\mathfrak{g} \) は \(\mathfrak{g} \otimes \mathbb{Q} \) と写されます。

安定導分Lie環 (stable derivation algebra) の定義 (正確には Der \(L \) 上への持上げ) は以下の通りです。

定義 \(D = \{ D \in \text{Der} \ L \mid D \mathfrak{g} = 0, \quad D \mathfrak{g} = \mathfrak{g} \} \)

関係式 \(f \in \mathcal{L} \)

(1) \(f(x, y) = 0 \)

(2) \(f(x, y) + f(y, z) + f(z, x) = 0 \) for \(x + y + z = 0 \)

(3) \(\sum_{i=1}^{n} f(x_i y_i, x_i y_i + z) = 0 \) in \(\mathcal{L} \)

(\(\mathfrak{g} \) というのは \(\mathfrak{g} \) を含むLie環です。詳しくは (p.147) をご覧ください。)

附

(5.2.3) では \(\mathfrak{g} \) (resp. \(\mathfrak{g} \otimes \mathbb{Q} \)) は \(\mathfrak{g} \) (resp. \(\mathfrak{g} \otimes \mathbb{Q} \)) 則でなく \(\mathfrak{g} \otimes \mathbb{Q} \) (resp. \(\mathfrak{g} \otimes \mathbb{Q} \)) 則で考えています。実際の \(\mathfrak{g} \) が個々の \(\mathfrak{g} \) ですが、ここでは \(\mathfrak{g} \) (resp. \(\mathfrak{g} \otimes \mathbb{Q} \)) 則で考えることに
次数 は \(D_n = \mathbb{R}_n \cup \mathbb{Q}_n \) で一度、この "degree" を "weight" と呼んだりもします（[997]）。

さて、先の問題に関して、次の 2 つの予想がされております。

Conjecture A（[997]） 3 にのみ \(\mathbb{Q}_n : \mathbb{R}_n \to \mathbb{Q}_n \otimes \mathbb{Q}_n \) は同型だろう。

この予想は、\(G \) の Galois 環が各数体に対してもつくられたに存在するもので、
はなく、通じた構造をとれる。しかも、それがどのような combinatorially に定義され
ている安定差分分れ環であることを主張しています。

Conjecture B（[997]） \(\mathbb{Q}_n \) は次数が 3 以上の奇数の所について

生成元がとるような自由な分れ環である。

この予想は、R.Hain と松本真聖さんによって \(H_n \) の部分は正しけが示

させております（[997]）。Conj A と Conj B を組み合わせることで得られ
るのが安定差分分れ環の構造予想です。

Conjecture B'（[997]） \(\mathbb{Q}_n \) は次数が 3 以上の奇数の所に 1 つずつ生成元

がとるような自由な分れ環である。

角皆宏さんと松本真聖さんは計算機を用いて安定差分分れ環の \(\mathbb{Q}_n \)

weight の各次数を求めて Conj B' が weight 12 の所までは正しいことを確かめ

ました（[997]）。

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d \mathbb{Q}_n)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Ch.2. Hodge Side

多重値 (multiple zero value: 略して MZV とかいたします。)

既に大野さんとの報告で説明していると思っているので（あらゆる話はそろそろ、くわしくとも
よい文言です。）を参照してください。大略的ですが記号は以下のようにしておきましょう。

記号
\(k = (k_1, \ldots, k_m) \) : admissible index (i.e., \(k_i \in \mathbb{N}_{\geq 1} \))

\[\omega_k := k_1 + \cdots + k_m \quad \text{weight of } k \]

\[\mathcal{F}(k) := \frac{1}{m_1 \cdots m_m} \cdot \frac{1}{m_1 \cdots m_m} \quad \text{MZV of } k \in \mathbb{R} \]

\[Z_0 := \emptyset \]

\[Z_{\omega_k} := \left\{ \mathcal{F}(k) \mid \omega_k = \omega \right\} \subseteq \mathbb{R} \quad \text{で生成された \(\omega \)-個のMZV}

多重値代数 とは \(Z := \bigoplus_{\omega \in \mathbb{R}_+} Z_{\omega} \) のことです。これは実際、次の形

① 代数の構造をしています。この代数構造に関しては [Grub] の予想を見て下

さい。さて、金子昌信氏、大野泰生氏、M. Hoffman による（これらから Euler も！）など

などにより MZV 間に成り立つ関係式がいくつか見つかっています。今まで見

つかっているこの MZV の関係式をすべて統合すると多重値代数の Euler

weight 部分は以下のようになり生成系がとれます。

\[Z_0 = \langle 1 \rangle \]

\[Z_1 = 0 \]

\[Z_2 = \langle \pi \rangle \quad \text{Euler} \]

\[Z_3 = \langle s(3) \rangle \quad \text{Euler} \]

\[Z_4 = \langle \pi^4 \rangle \quad \text{Euler} \]

\[Z_5 = \langle \pi^4, s(5) \rangle \quad \text{Euler} \]
現在までの方、上記の生成系の間に対応する \mathbb{Q}-線型な関係式は（異なる weight 関数をとれて）見つかっていないです。

new 5 空間

上の表の [0] を見て下さい。まず、[0] が付いていない M2V は、それより weight の小さい M2V の product でかかっている old comer でです。一方、[0] が付いている M2V はそこでの weight になって初めて出現するから new comer です。この new comer はいわば 99 重複値代数の algebraic generator です。そこでこの new comer を取り出した次のような Z の商空間を new 5 空間と呼ぶことにしましょう。

\[
\mathbb{Z} / \mathbb{Z}_5 \to \mathbb{Z}_5 / \mathbb{Z}_5 \cong \mathbb{Z}_5 / \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 : \text{new 5 空間}
\]

これは、多重値代数を "modulo product" として考えた空間です。次数は 10. ベクトル空間になってきます。都合上では old にしておきました。何故でしょう？

Main Result

たち ch3 でみるとき

\[\varphi : \mathbb{Q}_5 \to \mathbb{Q}_5 \otimes \mathbb{Q}_5 \]

がありましたが、私の結果はこれと Hodge Side で作ったことです。（証明は ch3 を見て下さい）

Theorem

次のような（次数付ベクトル空間としての）canonical な全射が

を作りました。

\[\delta : \mathbb{Q}_5 \rightarrow N \mathbb{Q}_5. \]

\[\mathbb{Q}_5 \] は \[\mathbb{Q}_5 \] の nodal dual のことでしょう。

\[\mathbb{Q}_5 = \mathbb{Q}_5^* \otimes \mathbb{Q}_5, \mathbb{Q}_5^* = \mathbb{Q}_5^* \] の双対空間
これより $\dim \mathbb{N} \mathcal{Z}_w = \dim \mathcal{D}_w$ です。そこで

$$d'_w := \left\{ \begin{array}{ll}
\pi^2 : \deg \pi_2 = 2, & 2 \pi_k : \deg \pi_k = k \ (1 \leq k) \leq \dim \mathcal{D}_k, \ k \in \mathbb{N}
\end{array} \right\}
$$

とおきます。これは具体的に

$$
\sum_{k=0}^{\infty} d'_k \pi_k = \frac{1}{1-t} \sum_{w=1}^{\infty} \frac{1}{1-\dim \mathcal{D}_w t^w}
$$

です。計算をします。

すると次のような bound が得られます。

Corollary $\dim \mathbb{N} \mathcal{Z}_w \leq d'_w$ for all w

では、これが $\dim \mathbb{N} \mathcal{Z}_w$ の予想値 d''_w（この講義録の中の野村さんの記事をぜひ）にどの位近付いているのかなと思って、\mathcal{C}_2 の部分の表を用いて d''_w を計算してみた。すると

$$d''_w = d'_w \text{ for } w \leq 12$$

でした。つまり、計算機で計算されている所（$w \leq 12$）までは、上の bound は予想値になっていることが確認されたのです。

さて、一般的な weight w に対して、次のようなことまでいえていきました。

Proposition もし $\text{Conj} \mathbb{C} \text{ (Ch 1)}$ が正しいなら

$$d''_w = d'_w \text{ for all } w$$

実際、Galois Side で述べた安定分散分配の構造予想から多重多項式次元予想の bounding に関する部分の結論が得られてしまうのです。だから次のような予想をしてもよいと思います。

Conjecture C 全射 $\pi : \mathcal{D}' \rightarrow \mathbb{N} \mathcal{Z}$ は同型だろう。

Galois Side の予想 ConjA に対してこのような予想をHodge Side でも立てようにしました。
Ch3. Proof of the main theorem

材枓
ここでは必要的道具を紹介します。くれぐれも[PDF]をご覧ください。

KZ方程式
$A_2 := C \langle X, Y \rangle$ ①係数2変数非可換形の代数数環

$G_i(u)$: 全平面Cのある領域上定義されたA_2上に値をとる複素解析的関数

とします。次の微分方程式がKZ(Knizhnik-Zamolodchikov)方程式です。

$$G_i'(u) = \left(\frac{X}{u} + \frac{Y}{u-1} \right) \cdot G_i(u), \quad \text{for } u \in \mathbb{C} \setminus \{0, 1, \infty\}$$

これは$u = 0, 1, \infty$で確定特異点を持つFuchs型の

微分方程式であり初期条件を適当に決めることの

領域C上で定義された解が唯一に決まります。

基本解
時と次のような初期条件を満たす解がC上で唯一に定まります。

$$G_0(u) \approx u^x \ (u \to 0), \quad G_1(u) \approx (1-u)^y \ (u \to 1)$$

ただし

$$u^x := 1 + \frac{(x \log u)^2}{2!} + \frac{(x \log u)^3}{3!} + \cdots$$

$G_0(u)$の微分方程式がu^{-x}はuの近傍で解析的かつ

$u \to 0$で値1とすることがです。

$G_1(u) \approx (1-u)^y$の定義も同様にしてください。

$G_0(u)$のlower degree部分を計算しました。

\[\text{multiple poly logarithm を使} \]

たびにかけました。

$$G_0(u) = 1 + (\log u)^2 + \frac{3}{2} \log u \cdot \log^2 u + \frac{5}{3} \log^3 u + \cdots$$

京都大学数理解析研究所
Drinfeld associator とは、\[A_{2}^{2}(X,Y) = G_{2}^{2}(u) : G_{0}(u) \] のことです。
これにより、非多項式多項式多项式

関係式 で、Drinfeld は [1] において、\[\tilde{A}_{2}(x, y) = \frac{x}{2}, y \] は quasi-triangular
quasi-Hopf quantized universal enveloping algebra over Q[x,y] の C-universal
formal になることを、\[\tilde{A}_{2}(X,Y) \] 以下、関係が成り立つことを示して
それを導いています。

\[
\begin{align*}
(i) & \quad \frac{\partial}{\partial X} \tilde{A}_{2}(X,Y) = \frac{\partial}{\partial X} \tilde{A}_{2}(Y,X) = 0 \\
(ii) & \quad \tilde{A}_{2}(X,Y) \tilde{A}_{2}(Y,Z) = \tilde{A}_{2}(X,Z) \\
(iii) & \quad \tilde{A}_{2}(X_{1},X_{2}) \tilde{A}_{2}(X_{3},X_{4}) \tilde{A}_{2}(X_{5},X_{6}) = \tilde{A}_{2}(X_{1},X_{3}) \tilde{A}_{2}(X_{2},X_{4}) \tilde{A}_{2}(X_{5},X_{6})
\end{align*}
\]

構成法 定理の証明をします。

① まず reduction
\[A_{2}^{\infty} = \prod_{n=0}^{\infty} A_{n} = \prod_{n=0}^{\infty} \langle x, y \rangle \] が係数 2 变数非多項式多项式環
とします。Drinfeld associator は \[\prod_{n=0}^{\infty} \mathbb{Z}_{n} \otimes A_{n} \] に属しています。
ここの 'modular product' したもの \[\tilde{A}_{2}(X,Y) \] を考えることにしました。

\[\prod_{n=0}^{\infty} \mathbb{Z}_{n} \otimes A_{n} \cong \tilde{A}_{2}(X,Y) \]
\[\prod_{n=0}^{\infty} \mathbb{Z}_{n} \otimes A_{n} \cong \tilde{A}_{2}(X,Y) : \text{ reduction Drinfeld associator} \]
2 ここで、\(\widehat{e}_{0,2}(X, Y) \) と \(\overline{e}_{0,2}(Y, X) \) の関係

\(\widehat{e}_{0,2}(X, Y) \in \bigoplus_{w=0}^{\infty} N_{2w} \otimes \mathbb{R}_w \)

(i) \(\widehat{e}_{0,2}(X, Y) + \overline{e}_{0,2}(Y, X) = 0 \)

(ii) \(\widehat{e}_{0,2}(X, Y) + \overline{e}_{0,2}(Y, Z) + \overline{e}_{0,2}(Z, X) = 0 \) for \(X + Y + Z = 0 \)

(iii) \(\sum_{w=0}^{\infty} \overline{e}_{0,2}(X, Y) = 0 \) for \(\sum_{w=0}^{\infty} N_{2w} \otimes \mathbb{R}_w \)

これらより、\(\overline{e}_{0,2} \in \bigoplus_{w=0}^{\infty} N_{2w} \otimes \mathbb{R}_w \) であることがわかります。

3 最後に、

\[d_\mathbb{R} : M_{2n} \rightarrow \bigoplus_{w=0}^{\infty} N_{2w} \otimes \mathbb{R}_w \]

\[\bigoplus_{w=0}^{\infty} \rightarrow \bigoplus_{w=0}^{\infty} N_{2w} \]

この元に対して、\textit{reduction Drinfel'd associator} \(\overline{e}_{0,2} \) で取る値

と対応する。射が元の構成で射 \(\overline{e}_{0,2} \) です（実はこの \(\overline{e}_{0,2} \) は de Rham

と Drinfel'd の２人をかけています！）。これが全射になっていることも

すぐ判明します。

問題　さて、\textit{Ch}2 Prop より CLOSE の Hyper が正しいとすると \(M_{2n} \) の次元予想

（即 \textit{dim} \(M_{2n} \) が正）であるとすると \(\overline{e}_{0,2} \) の関係式が Drinfel'd associator

\(\overline{e}_{0,2}(X, Y) \) の関係式 (0) ～ (ii) から得られる \(M_{2n} \) の関係式だけでは全て含ま

っていることになります。実は (iii) から (i) が導かれます。ということは、(0) ～ (iii) だけで

今まで発見されている \(M_{2n} \) の既存の関係式（\textit{duality relation}, \textit{double shuffle relation}, \textit{Okino relation} \ldots）が全て導けることになります。（本当では？）\textit{Euler} の公

式

\[\frac{B_{2n}}{2(2n)!} = -\frac{(2\pi i)^{2n}}{2(2n)!} \]

\(B_{2n} \) は (0) ～ (iii) を使って示せます。（De3）
Ch 4. Comparison

今までの Galois Side と Hodge Side の話を比べてみましょう。

2-adic

$\mathbb{Q}_p^\sim \rightarrow \mathbb{Q}_p^\sim$

ConjA これは同型だろう

ConjC これも同型だろう

de Rham

$\mathbb{Q}_p \rightarrow \mathbb{Q}_p$

至R

$\rightarrow \mathbb{Q}_p$

至R

$\rightarrow NZ$

$m = 3, 5, 7, \ldots$

Riemann

Soulé

Ihara

\[m = 3, 5, 7, \ldots \text{に対して } \mathbb{Q}_m \rightarrow \mathbb{Q} \text{ という } \mathbb{Q}_m \text{ の canonicalな元が伊原先生によって構成されています [IH97].}\]

\[\text{うめとみ 真: } \mathbb{Q}_p^\sim \rightarrow \mathbb{Q}_p^\sim \text{ と dual などをとれば}
\text{全射}
\]

\[\text{金も "同型だろうというのか" ConjA でした。なぜ？}
\text{次が "同型だろうというのか" ConjA でした。なぜ？}
\]

\[H^1_{\acute{e}t}(\text{Spec } \mathbb{Q}, \mathbb{Q}_p(m)) = \mathbb{Q}_p^\sim \text{ m = 3, 5, 7, \ldots}
\text{ m = 3, 5, 7, \ldots}
\text{ other (21)}
\]

です。Soulé 指標 \mathbb{Q}_m (m = 3, 5, 7, ...) はこの生成元になっており、具体的に以下のようにかけます。

$K_m : Gal(\mathbb{Q}(\zeta_m)) \rightarrow \mathbb{Z}_p$

\[\langle a^m \rangle = \langle 0, 0^n \rangle \text{ 内で}
\text{を満たす自然数のこと}
\]

\[\text{for all } m \in \mathbb{N}\]
この \mathcal{X} は C_m の射影平面における像になっていました。

$$\mathcal{X} = \frac{K_m}{(m-1)! (\ell^m - 1)}$$

一方、C_m は \mathcal{FR} による像は Riemann の値になっていました。

$$\mathcal{FR} (C_m) = \sum (m)$$

最後に、実は、\mathcal{F} と \mathcal{NZ} には depth filtration という更なる付加構造が入っており、\mathcal{FR} はこの付加構造を考慮していきます。しかし、紙面の都合上割愛しました。ごめんねは (F) を見て下さい。

REFERENCES

[Pur] Purushato, H.; The multiple zeta value algebra and the stable derivation algebra; available from http://xxx.yukawa.kyoto-u.ac.jp/abs/math.NT/0011261

[Ih99] ——— Some arithmetic aspects of Galois actions on the pro-p fundamental group of $\mathbb{P}^1 – \{0, 1, \infty \}$. RIMS-1229 preprint

E-mail address: furusho@kurims.kyoto-u.ac.jp