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Abstract. In this paper, we explain the subtleties of various
kinds of log terminal singularities. We focus on the notion of
divisorial log terminal singularities, which seems to be the most
useful one. We explain Szabó’s resolution lemma, the notion of
log resolution, adjunction formula for divisorial log terminal pairs,
and so on. We also collect miscellaneous results and examples on
singularities of pairs in the log MMP that help us understand log
terminal singularities.
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1. What is log terminal?

This paper is a guide to go around the world of log terminal singu-

larities. The main purpose is to attract the reader’s attention to the
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subtleties of various kinds of log terminal singularities. Needless to say,
my opinion is not necessarily the best. We hope that this paper will
help the reader understand log terminal. Almost all the results in this
paper are known to experts but were not accessible for non-experts.
Note that this paper is not self-contained and contains only sketches of
proofs. For systematic treatments of singularities in the log MMP, see,
for example, [KM, Section 2.3]. We require that the reader is familiar
with the basic properties of singularities of pairs.

In the log MMP, there are too many variants of log terminal. We
sometimes have troubles when we treat log terminal singularities. We
already have four bibles on the log MMP: [KMM], [FA], [KM], and
[Ma]. It is unpleasant for us that each bible adopted different definitions
of log terminal and log resolutions. Historically, Shokurov introduced
various kinds of log terminal singularities in his famous paper [Sh1,
§1]. However, we do not mention [Sh1] anymore for simplicity. We
only treat the above four bibles. Before we come to the subject, we
note [Ma].

Remark 1.1. In [Ma, Chapter 4], Matsuki explains various kinds of
singularities in details. Unfortunately, he confused normal crossing

divisors with simple normal crossing divisors (see Definition 2.8 below)
in the definition of dlt (see Definition 7.1) and so on. Therefore, when
we read [Ma], we have to replace normal crossings with simple normal

crossings in [Ma, Definition 4-3-2 (2”)]. See also Remarks 7.6 and 10.4.

We summarize the contents of this paper: Sections 2 and 3 are pre-
liminaries. We recall well-known definitions and fix some notations.
In Section 4, we define the notion of divisorial log terminal singulari-

ties, which is one of the most important log terminal singularities. In
Section 5, we treat Szabó’s resolution lemma, which is very important
in the log MMP. Section 6 was suggested by Mori. Here, we explain
that Szabó’s resolution lemma is not true for normal crossing divisors
by using the Whitney umbrella. Section 7 deals with log resolutions.
Here, we explain subtleties of various kind of log terminal singularities.
In Section 8, we collects examples that help us understand singularities
of pairs. In Section 9, we describe adjunction formula for dlt pairs. It
will play important roles in the log MMP. We need it in [F4]. Finally,
section 10 collects miscellaneous comments.

Acknowledgements. I am grateful to Professor Kenji Matsuki and
Shigefumi Mori, who answered to my questions and told me their proofs
of Example 5.4. When I was a graduate student, I read drafts of the
bible [KM] to study the log MMP. I am grateful to the authors of
[KM]: Professors János Kollár and Shigefumi Mori. Some parts of this
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paper were written in the Institute for Advanced Study. I am grateful
to it for its hospitality. I was partially supported by a grant from the
National Science Foundation: DMS-0111298.

Notation. The set of integers (resp. rational numbers, real numbers)
is denoted by Z (resp. Q, R). We will work over an algebraically closed
field k of characteristic zero; my favorite is k = C.

2. Preliminaries on Q-divisors

Before we introduce singularities of pairs, let us recall the basic def-
initions about Q-divisors.

Definition 2.1 (Q-Cartier divisor). Let D =
∑

diDi be a Q-divisor
on a normal variety X, that is, di ∈ Q and Di is a prime divisor on X
for every i. Then D is Q-Cartier if there exists a positive integer m
such that mD is a Cartier divisor.

Definition 2.2 (Boundary and subboundary). Let D =
∑

diDi be a
Q-divisor on a normal variety X, where di ∈ Q and Di are mutually
prime Weil divisors. If 0 ≤ di ≤ 1 (resp. di ≤ 1) for every i, then we
call D a boundary (resp. subboundary).

The following Q-factoriality sometimes plays crucial roles in the log
MMP.

Definition 2.3 (Q-factoriality). A normal variety X is said to be Q-

factorial if every prime divisor D on X is Q-Cartier.

We treat one example to understand Q-factoriality.

Example 2.4 (cf. [Ka, p.140]). We consider

X := {(x, y, z, w) ∈ C4 | xy + zw + z3 + w3}.

Claim. The variety X is Q-factorial. More precisely, X is factorial,
that is,

R := C[x, y, z, w]/(xy + zw + z3 + w3)

is a UFD.

Proof. By Nagata’s lemma (see [Mu, p.196]), it is sufficient to check
that x · R is a prime ideal of R and R[1/x] is a UFD. It is an easy
exercise. �

Note that the Q-factoriality is not an analytically local condition.

Claim. Let Xan be the underlying analytic space of X. Then Xan is
not analytically Q-factorial at (0, 0, 0, 0).
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Proof. We consider a germ of Xan around the origin. Then Xan is
local analytically isomorphic to (xy − uv = 0) ⊂ C4. So, Xan is not
Q-factorial since two divisors (x = u = 0) and (y = v = 0) intersect
at a single point. Note that two Q-Cartier divisors must intersect each
other in codimension one. �

We recall an important property of Q-factorial varieties, which is
much more useful than we expect. For the proof, see [Ko].

Proposition 2.5 (cf. [Ko, VI.1, 1.5 Theorem]). Let f : X −→ Y be

a birational morphism between normal varieties. Assume that Y is Q-

factorial. Then the exceptional locus Exc(f) is of pure codimension

one in X.

We write the next definition for the reader’s convenience. We only
use the round down of Q-divisors in this paper.

Definition 2.6 (Operations of Q-divisors). Let D =
∑

diDi be a Q-
divisor on a normal variety X, where di are rational numbers and Di

are mutually prime Weil divisors. We define

bDc :=
∑

bdicDi, the round down of D,

dDe :=
∑

ddieDi = −b−Dc, the round up of D,

{D} :=
∑

{di}Di = D − bDc, the fractional part of D,

where for r ∈ R, we define brc := max{t ∈ Z; t ≤ r}.

Remark 2.7. In some literatures, for example, [KMM], [D] (resp. 〈D〉)
denotes bDc (resp. {D}). The round down bDc is sometimes called the
integral part of D.

We define (simple) normal crossing divisors, which will play impor-
tant roles in the following sections.

Definition 2.8 (Normal crossings and simple normal crossings). Let
X be a smooth variety. A reduced effective divisor D is said to be
a simple normal crossing divisor (resp. normal crossing divisor) if for
each closed point p of X, a local defining equation of D at p can be
written as f = z1 · · · zjp

in OX,p (resp. ÔX,p), where {z1, · · · , zjp
} is a

part of a regular system of parameters.

Remark 2.9. The notion of normal crossing divisors is local for the
étale topology (cf. [A, Section 2]). When k = C, it is also local for
the classical topology. On the other hand, the notion of simple normal
crossing divisors is not local for the étale topology.
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Remark 2.10. Let D be a normal crossing divisor. Then D is a simple
normal crossing divisor if and only if each irreducible component of D
is smooth.

Remark 2.11. Someone uses the word normal crossing to represent
simple normal crossing. For example, a normal crossing divisor in
[BEV] is a simple normal crossing divisor in our sense. See [BEV,
Definition 2.1]. So, we recommend the reader to check the definition
of (simple) normal crossing divisors whenever he reads papers on the
log MMP.

3. Singularities of pairs

In this section, we quickly review the definitions of singularities which
we use in the log MMP. For details, see, for example, [KM, §2.3]. First,
we define the canonical divisor.

Definition 3.1 (Canonical divisor). Let X be a normal variety with
dim X = n. The canonical divisor KX is defined so that its restriction
to the smooth part of X is a divisor of a regular n-form. The reflexive
sheaf of rank one ωX := OX(KX) corresponding to KX is called the
canonical sheaf.

Next, let us recall the definitions of the singularities for pairs.

Definition 3.2 (Discrepancies and singularities of pairs). Let X be a
normal variety and D =

∑
diDi a Q-divisor on X, where Di are distinct

and irreducible such that KX + D is Q-Cartier. Let f : Y −→ X be
a proper birational morphism from a normal variety Y . Then we can
write

KY = f ∗(KX + D) +
∑

a(E, X, D)E,

where the sum runs over all the distinct prime divisors E ⊂ Y , and
a(E, X, D) ∈ Q. This a(E, X, D) is called the discrepancy of E with
respect to (X, D). We define

discrep(X, D) := inf
E
{a(E, X, D) |E is exceptional over X}.

From now on, we assume that D is a boundary. We say that (X, D) is




terminal

canonical

klt

plt

lc

if discrep(X, D)





> 0,

≥ 0,

> −1 and bDc = 0,

> −1,

≥ −1.
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Here klt is an abbreviation for Kawamata log terminal, plt for purely

log terminal, and lc for log-canonical.

Remark 3.3. In [KM, Definition 2.34], D is not a boundary but only
a subboundary. In some literatures, (X, D) is called sub lc (resp. sub

plt, etc.) if discrep(X, D) ≥ −1 (resp. > −1, etc.) and D is only a
subboundary.

4. Divisorial log terminal

Let X be a smooth variety and D a reduced simple normal crossing
divisor on X. Then (X, D) is lc. Furthermore, it is not difficult to
see that (X, D) is plt if and only if every connected component of
D is irreducible. We would like to define some kind of log terminal
singularities that contain the above pair (X, D). So, we need a new
notion of log terminal.

Definition 4.1 (Divisorial log terminal). Let (X, D) be a pair where
X is a normal variety and D is a boundary. Assume that KX + D is
Q-Cartier. We say that (X, D) is dlt or divisorial log terminal if and
only if there is a closed subset Z ⊂ X such that

(1) X \Z is smooth and D|X\Z is a simple normal crossing divisor.
(2) If f : Y −→ X is a birational and E ⊂ Y is an irreducible

divisor such that centerXE ⊂ Z, then a(E, X, D) > −1.

So, the following example is obvious.

Example 4.2. If X is a smooth variety and D is a reduced simple
normal crossing divisor on X, then the pair (X, D) is dlt.

The above definition of dlt is [KM, Definition 2.37], which is useful for
many applications. However, it has a quite different flavor from other
log terminal singularities. We will explain the relationships between
dlt and other log terminal singularities in the following sections.

5. Resolution Lemma

We think that one of the most useful log terminal singularities is di-

visorial log terminal (dlt, for short), which was introduced by Shokurov
(see [FA, (2.13.3)]). We defined it in Definition 4.1 above. By Szabó’s
work [Sz], the notion of dlt coincides with that of weakly Kawamata log

terminal (wklt, for short). For the definition of wklt, see [FA, (2.13.4)].
This fact is non-trivial and based on the deep results about desingu-
larization theorem. For the details, see the original fundamental pa-
per [Sz]. The key result is Szabó’s resolution lemma [Sz, Resolution
Lemma]. The following is a weak version of Resolution Lemma, but it
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contains the essential part of Szabó’s result and is sufficient for applica-
tions. For the precise statement, see [Sz, Resolution Lemma] or [BEV,
Section 7]. By combining Theorem 5.1 with the usual desingularization
arguments, we can recover the original Resolution Lemma without any
difficulties. This means that, first, we use Hironaka’s desingulariza-
tion theorem suitably, next, we apply Theorem 5.1 below, then we can
recover Szabó’s results. The details are left to the reader as an easy
exercise (see the proof of Resolution Lemma in [Sz]). Note Example
5.4 below.

Theorem 5.1. Let X be a smooth variety and D a reduced divisor.

Then there exists a proper birational morphism f : Y −→ X with the

following properties:

(1) f is a composition of blowing ups of smooth subvarieties,

(2) Y is smooth,

(3) f−1

∗ D∪Exc(f) is a simple normal crossing divisor, where f−1

∗ D
is the strict transform of D on Y , and

(4) f is an isomorphism over U , where U is the largest open set

of X such that the restriction D|U is a simple normal crossing

divisor on U .

Note that f is projective and the exceptional locus Exc(f) is of pure

codimension one in Y since f is a composition of blowing ups.

Remark 5.2. Recently, it is reproved by the new canonical desingu-
larization algorithm. See [BEV, Theorem 7.11]. Note that in [BEV]
normal crossing means simple normal crossing in our sense. See Re-
mark 2.11 and Remark 7.4 below.

Remark 5.3. Szabó’s results depend on Hironaka’s paper [H], which
is very hard to read. Thus, we recommend the reader to see [BEV]
for proofs. Now there are many papers on desingularization theorems.
Sorry, I do not know which is the best.

The following example says that Szabó’s resolution lemma (and The-
orem 5.1) is not true if we replace simple normal crossing with normal
crossing. We will treat this example in detail in the next section.

Example 5.4. Let X := C3 and D the Whitney umbrella, that is,
W = (x2 − zy2 = 0). Then W is a normal crossing divisor outside the
origin. In this case, we can not make W a normal crossing divisor only
by blowing ups of smooth subvarieties over the origin.

Sketch of the proof. This is an exercise of how to calculate blow ups of
smooth centers. If we blow up W finitely many times along smooth
subvarieties over the origin, then we will find that the strict transform of
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W always has a pinch point, where a pinch point means a singular point
that is local analytically isomorphic to 0 ∈ (x2 − zy2 = 0) ⊂ C3. �

Theorem 5.1 and Hironaka’s desingularization imply the following
corollary. It is useful for proving vanishing theorems and so on (see
also Remark 6.11 below).

Corollary 5.5. Let X be a non-complete smooth variety and D a sim-

ple normal crossing divisor on X. Then there exists a compactifica-

tion X of X and a simple normal crossing divisor D on X such that

D|X = D. Furthermore, if X is quasi-projective, then we can make X
projective.

6. Whitney umbrella

We will work over k = C throughout this section. First, we define
normal crossing varieties.

Definition 6.1 (Normal crossing variety). Let X be a variety. We say
that X is normal crossing at x if and only if

ÔX,x ' C[[x1, x2, · · · , xl]]/(x1x2 · · ·xk)

for some k ≤ l. If X is normal crossing at any point, we call X a
normal crossing variety.

Remark 6.2. It is obvious that a normal crossing divisor (see Def-
inition 2.8) is a normal crossing variety. By [A, Corollary (2.6)], X
is normal crossing at x if and only if x ∈ X is locally isomorphic to
0 ∈ (x1x2 · · ·xk = 0) ⊂ Cl for the étale (or classical) topology. So, let U
be a small open neighborhood (by the classical topology) of X around
x and U ′ the normalization of U . Then each irreducible component V
of U ′ is smooth and V −→ U is an embedding.

Next, we introduce the notion of WU singularities.

Definition 6.3 (WU singularity). Let X be a variety and x a closed
point of X, and p : X ′ −→ X the normalization. If there exist a
smooth irreducible curve C ′ ⊂ X ′ and a point x′ ∈ C ′ ×X C ′ \ ∆C′ ∩
∆C′ ∩ p−1(x), where ∆C′ is the diagonal of C ′ ×X C ′, then we say that
X has a WU singularity at x, where WU is an abbreviation of Whitney
Umbrella.

Example 6.4. Let W = (x2 − zy2 = 0) ⊂ C3 be the Whitney um-
brella. Then the normalization of W is C2 = Spec C[u, v] such that
the normalization map C2 −→ W is given by (u, v) 7−→ (uv, u, v2).
Therefore, the line (u = 0) ⊂ C2 maps onto (x = y = 0) ⊂ W . Thus
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the origin is a WU singularity. Note that W is normal crossing outside
the origin.

We give one more example.

Example 6.5. Let V = (z3−x2yz−x4 = 0) ⊂ C3. Then V is singular
along the y-axis. By blowing up C3 along the y-axis, we obtain the
normalization p : V ′ −→ V such that V ′ is smooth and there exists a
smooth curve C ′ on V ′ that maps onto the y-axis with the mapping
degree two. It can be checked easily that the origin (0, 0, 0) is a WU
singularity of V .

Remark 6.6. Let x ∈ X be a WU singularity. We shrink X around
x (by the classical topology). Then there exists an isomorphism σ :
C ′ −→ C ′ with finite order such that σ 6= idC′, σ(x′) = x′, and p = p◦σ
on C ′. When X is the Whitney umbrella, σ corresponds to the graph
C ′ ×X C ′ \ ∆C′ and the order of σ is two.

Lemma 6.7. Let x ∈ X be a WU singularity. Then X is not normal

crossing at x.

Proof. Assume that X is normal crossing at x. Let X ′
1

be the irre-
ducible component of X ′ containing C ′. Since X ′

1
−→ X is injective in

a neighborhood of x′, C ′×X C ′ = ∆C′ near x′. It is a contradiction. �

The following theorem is the main theorem of this section.

Theorem 6.8. Let x ∈ X be a WU singularity and f : Y −→ X is a

proper birational morphism such that f : f−1(X \ {x}) −→ X \ {x} is

an isomorphism. Then Y has a WU singularity.

Proof. Let C ′, x′ be as in Definition 6.3, σ as in Remark 6.6. Let
q : Y ′ −→ Y be the normalization. Then there exists a proper bira-
tional morphism f ′ : Y ′ −→ X ′. By the assumption, Y −→ X is an
isomorphism over p(C ′) \ {x}. Thus Y ′ −→ X ′ is an isomorphism over
C ′ \ p−1(x). The embedding C ′ ⊂ X ′ induces an embedding C ′ ⊂ Y ′,
and p = p ◦ σ implies q = q ◦ σ. Therefore, Definition 6.3 implies that
g(x′) ∈ Y is a WU singularity. �

Proposition 6.9. Let x ∈ X be a WU singularity and Z a normal

crossing variety. Then there are no proper birational morphisms g :
X −→ Z such that p(C ′) 6⊂ Exc(g), where p, C ′ are as in Definition
6.3.

Proof. Assume that there exists a proper birational morphism as above.
We put C := g(p(C ′)). Then the mapping degree of C ′ −→ C is
greater than one by the definition of WU singularities. On the other
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hand, C ′ −→ C factors through the normalization Z ′ of Z. Thus, the
mapping degree of C ′ −→ C is one. This is a contradiction. �

The next corollary follows from Theorem 6.8 and Proposition 6.9.

Corollary 6.10. There are no proper birational maps (that is, bira-

tional maps such that the first and the second projections from the graph

are proper) between the Whitney umbrella W and a normal crossing va-

riety V that induce W \ {0} ' V \ E, where E is a closed subset of

V .

Therefore, we obtain

Remark 6.11. Corollary 5.5 does not hold for normal crossing divisors.

7. What is a log resolution?

We often use the words good resolution or log resolution without
defining them precisely. It sometimes causes some serious problems.
We will define our log resolution later (see Definition 7.3). Let us recall
another definition of dlt, which is equivalent to Definition 4.1. We do
not prove the equivalence of Definition 4.1 and Definition 7.1 in this
paper. However, it is not difficult if we understand how to use Theorem
5.1. For the details, see [Sz, Divisorial Log Terminal Theorem].

Definition 7.1 (Divisorial log terminal). Let X be a normal variety
and D a boundary on X such that KX + D is Q-Cartier. There exists
a log resolution f : Y −→ X such that a(E, X, D) > −1 for every
f -exceptional divisor E. Then we say that (X, D) is dlt or divisorial

log terminal.

7.2. There are three questions about the above definition.

• f is projective?
• the exceptional locus Exc(f) is of pure codimension one?
• Exc(f)∪Supp(f−1

∗ D) is a simple normal crossing divisor or only
a normal crossing divisor?

In [KM, Notaion 0.4 (10)], they assume that Exc(f) is of pure codi-
mension one and Exc(f) ∪ Supp(f−1

∗ D) is a simple normal crossing
divisor. We note that, in [FA, 2.9 Definition], Exc(f) is not necessarily
of pure codimenison one. So, the definition of lt in [FA, (2.13.1)] is the
same as Definition 7.1 above, but lt in the sense of [FA] is different from
dlt. See Remark 7.5 and Examples 8.3 and 9.3 below. The difference
exists in the definition of log resolutions!

Our definition of a log resolution is the following, which is [KM,
Notaion 0.4 (10)]. By Hironaka, log resolutions exist for varieties over
a field of characteristic zero (see [BEV]).
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Definition 7.3 (Log resolution). Let X be a variety and D a Q-divisor
on X. A log resolution of (X, D) is a proper birational morphism f :
Y −→ X such that Y is smooth, Exc(f) is a divisor and Exc(f) ∪
Supp(f−1

∗ D) is a simple normal crossing divisor.

Remark 7.4. In the definition of the log resolution in [BEV, Definition
7.10], they do not assume that the exceptional locus Exc(µ) is of pure
codimension one. However, if µ is a composition of blowing ups, then
Exc(µ) is always of pure codimension one.

We note lt in the sense of [FA] again. We do not repeat the definition
of lt in [FA, (2.13.1)] since it is not so useful.

Remark 7.5 (lt in the sense of [FA]). If we do not assume that Exc(f)
is a divisor in Definition 7.3, then Definition 7.1 is the definition of lt

in the sense of [FA] (see [FA, (2.13.1)]).

Remark 7.6 (Analytically local?). We assume that k = C. Then the
notion of terminal, canonical, klt, plt, and lc, is not only algebraically
local but also analytically local. For the precise statement, see [Ma,
Proposition 4-4-4]. However, the notion of dlt is not analytically lo-
cal. It is because the notion of simple normal crossing divisors is not
analytically local. So, [Ma, Exercise 4-4-5] is incorrect. To obtain an
analytically local notion of log terminal singularities, we remove the
word: simple from Definition 4.1 (2). However, this new notion of log
terminal singularities seems to be useless. Consider the pair (C3, W ),
where W is the Whitney umbrella (see Sections 5 and 6).

We note that, by Szabó’s resolution lemma, we do not need the
projectivity of f in the definition of dlt. It is because the log resolution
f in Definition 7.1 can be taken to be a composition of blowing ups
by Hironaka’s desingularization and Theorem 5.1 (see also Definition
4.1, [KM, Proposition 2.40 and Theorem 2.44], and [Sz, Divisorial Log
Terminal Theorem]). We summarize;

Proposition 7.7. The log resolution f in Definition 7.1 can be taken

to be a composition of blowing ups of smooth centers. In particular,

there exists an effective f -anti-ample divisor whose support coincides

with Exc(f). Thus, the notion of dlt coincides with that of wklt (see
[FA, (2.13.4)]).

So, we can omit the notion of wklt in the log MMP. In [KMM],
they adopted normal crossing divisors instead of simple normal crossing
divisors. So there is a difference between wklt and weak log-terminal.
We note that wklt is weak log-terminal in the sense of [KMM, Definition
0-2-10 (2)], but weak log-terminal is not necessarily wklt. See Section
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8, especially, Example 8.1. In my experience, dlt, which is equivalent
to wklt, is easy to treat and useful for inductive arguments, but weak
log-terminal is very difficult to use. We think that [KM, Corollary 5.50]
makes dlt useful. For the usefulness of dlt, see [F1], [F2], [F3], and [F4].
See also Example 8.1, Remark 8.2, and Section 9. We summarize;

Conclusion 7.8. The notion of dlt coincides with that of wklt by [Sz]
(see Proposition 7.7). In particular, dlt is weak log-terminal in the

sense of [KMM]. Therefore, we can freely apply the results that were

proved for weak log-terminal pairs in [KMM] to dlt pairs. We note

klt =⇒ plt =⇒ dlt ⇐⇒ wklt =⇒ weak log-terminal =⇒ lc.

For other characterizations of dlt, see [Sz, Divisorial Log Terminal
Theorem], which is an exercise of Theorem 5.1. See also [KM, Propo-
sition 2.40, and Theorem 2.44]. The notion of dlt is natural by the
following proposition.

Proposition 7.9 (cf. [KM, Proposition 5.51]). Let (X, D) be a dlt pair.

Then, any irreducible component of bDc is irreducible (resp. bDc = 0)
if and only if (X, D) is plt (resp. klt).

Thus, dlt is a natural generalization of plt. By the way, we have a
question about lt in the sense of [FA].

Question 7.10. Does [FA, (2.16.2)] hold without the projectivity as-
sumption? That is, the notion of Q-factorial lt in the sense of [FA] is
equivalent to that of Q-factorial dlt?

One solution of the above question is that we do not use lt in the
sense of [FA]. In my experience, this is one of the best solutions.

Conclusion 7.11. It is better not to use lt in the sense of [FA]. Exam-
ples 8.4 and 9.3 imply that the existence of small resolution causes many

unexpected phenomena. If the varieties are Q-factorial, then there are

no small resolution by Proposition 2.5. However, in this case, we do

not know if we need to assume the resolution f is projective or not (see
Proposition 7.7 and Question 7.10).

8. Examples

In this section, we collect some examples. The following example says
that weak log-terminal is not necessarily wklt. We omit the definition
of weak log-terminal since we do not use it in this paper. See [KMM,
Definition 0-2-10].
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Example 8.1 (Simple normal crossing vs normal crossing). Let X be
a smooth surface and D a nodal curve on X. Then the pair (X, D) is
not wklt but weak log-terminal.

The next fact is crucial for inductive arguments.

Remark 8.2. Let (X, D) be a dlt (resp. weak log-terminal) pair and S
an irreducible component of bDc. Then (S, Diff(D−S)) is dlt (resp. not
necessarily weak log-terminal), where the Q-divisor Diff(D − S) on S
is defined by the following equation:

(KX + D)|S = KS + Diff(D − S).

This is a so-called adjunction formula.

We will treat adjunction formula for dlt pairs in detail in Section
9. In Example 8.1, S := bDc is not normal. This makes weak log-
terminal difficult to use for inductive arguments. The next example
explains that we have to assume that Exc(f) is a divisor in Definition
7.1.

Example 8.3 (Small resolution). Let X := (xy − uv = 0) ⊂ C4. It is
well-known that this X is a toric variety. We take the torus invariant
divisor D; the complement of the big torus. Then (X, D) is not dlt but
lt in the sense of [FA]. Especially, it is lc. We note that there exists a
small resolution.

The following is a variant of the above example.

Example 8.4 ([FA, 17.5.2 Example]). Let X := (xy − uv = 0) ⊂ C4

and

D = (x = u = 0) + (y = v = 0) +
1

2

4∑

i=1

(x + 2iu = y + 2−iv = 0).

If we put

F =

2∑

i=1

(x + 2iu = 0) +

4∑

i=3

(y + 2−iv = 0),

then 2D = F ∩ X. Thus, 2(KX + D) is Cartier since X is Gorenstein.
We can check that (X, D) is lt in the sense of [FA] by blowing up C4

along the ideal (x, u). In particular (X, D) is lc. The divisor bDc is
two planes intersecting at a single point. Thus it is not S2. So, (X, D)
is not dlt.

Remark 8.5. If (X, D) is dlt, then bDc is seminormal and S2 by [FA,
17.5 Corollary].
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Remark 8.6. Example 8.4 says that [FA, (16.9.1)] is not true. The
problem is that S does not necessarily satisfy Serre’s condition S2.

9. Adjunction for dlt pairs

To treat pairs effectively, we have to understand adjunction. The
adjunction is explained nicely in [FA, Chapter 16]. We recommend the
reader to read it. In this section, we treat adjunction formula only
for dlt pairs. Let us recall the definition of center of log canonical
singularities.

Definition 9.1 (Center of lc singularities). Let X be a normal variety
and D a Q-divisor on X such that KX + D is Q-Cartier. A subvariety
W of X is said to be a center of log canonical singularities for the pair
(X, D), if there exists a proper birational morphism from a normal
variety µ : Y −→ X and a prime divisor E on Y with the discrepancy
coefficient a(E, X, D) ≤ −1 such that µ(E) = W .

The next proposition is the adjunction for a higher codimensional
center of log canonical singularities of a dlt pair. We use it in [F4]. For
the definition of the different Diff, see [FA, 16.6 Proposition].

Proposition 9.2 (Adjunction for dlt pairs). Let (X, D) be a dlt pair.

We put S = bDc and let S =
∑

i∈I Si be the irreducible decomposition

of S. Then, W is a center of log canonical singularities for the pair

(X, D) with codimXW = k if and only if W is an irreducible component

of Si1 ∩ Si2 ∩ · · · ∩ Sik for some {i1, i2, · · · , ik} ⊂ I. By adjunction, we

obtain

KSi1
+ Diff(D − Si1) = (KX + D)|Si1

,

and (Si1, Diff(D − Si1)) is dlt. Note that Si1 is normal, W is a center

of log canonical singularities for the pair (Si1, Diff(D − Si1)), Sij |Si1
is

a reduced part of Diff(D − Si1) for 2 ≤ j ≤ k, and W is an irreducible

component of (Si2|Si1
)∩(Si3 |Si1

)∩· · ·∩(Sik |Si1
). By applying adjunction

k times repeatedly, we obtain a Q-divisor ∆ on W such that

(KX + D)|W = KW + ∆

and (W, ∆) is dlt.

Sketch of the proof. Note that Si1 is normal by [KM, Corollary 5.52],
and [FA, 17.2 Theorem] and Definition 4.1 imply that (Si1 , Diff(D −
Si1)) is dlt. The other statements are obvious. �

The above proposition makes dlt more valuable than other kinds of
log terminal singularities.
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Example 9.3. Let (X, D) be as in Example 8.4. Recall that (X, D)
is lt in the sense of [FA] but not dlt. Then it is not difficult to see
that the centers of log canonical singularities for the pair (X, D) are
as follows: the origin (0, 0, 0, 0) ∈ X, two Weil divisors (x = u = 0)
and (y = v = 0) on X. So, there are no one dimensional center of log
canonical singularities.

The final proposition easily follows from the above proposition: Propo-
sition 9.2. It will play crucial roles in the proof of the special termina-
tion (see [F4]).

Proposition 9.4. Let (X, D) be as in Proposition 9.2. We write D =∑
djDj, where dj ∈ Q and Dj is a prime divisor on X. Let P be a

divisor on W . Then the coefficient of P is 0, 1, or 1 − 1

m
+

∑ rjdj

m

for suitable non-negative integers rjs and positive integer m. Note that

the coefficient of P is 1 if and only if P is a center of log canonical

singularities for the pair (X, D).

Sketch of the proof. Apply [FA, 16.7 Lemma] k times repeatedly as in
Proposition 9.2. We note that [FA, 7.4.3 Lemma]. �

10. Miscellaneous comments

In this section, we collect some comments.

10.1 (R-divisors). In the previous sections, we only use Q-divisors for
simplicity. We note that almost all the definitions and results are gen-
eralized for R-divisors by a little effort. In Shokurov’s proof of PL flips
(see [Sh2]), R-divisors appear naturally and is indispensable. Sorry, we
do not pursue R-generalizations here anymore. However, if the reader
understands the results in this paper, then R-generalizations are good
exercises.

10.2 (Comments on the four bibles). We give miscellaneous comments
on the four bibles.

• [KMM] is the oldest bible for the log MMP. The notion of log-

terminal in [KMM, Definition 0-2-10] is equivalent to that of
klt.

• [FA] is the only one bible that treats R-divisors and differents

(see [FA, Chapters 2 and 16]). In Chapter 2, five log terminal
singularities, that is, klt, plt, dlt, wklt, and lt, were introduced
according to Shokurov [Sh1].

• [KM] seems to be the best bible for singularities of pairs in
the log MMP. In the definitions of singularities of pairs, they
assume that D is only a subboundary (see [KM, Definition 2.34]
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and Remark 3.3). We have to take care of this fact. We note
lt in [KM, Definition 2.34 (3)]. If D = 0 in Definition 3.2,
then the notions klt, plt, and dlt coincide (see also Proposition
7.9) and they say that X has log terminal (abbreviated to lt)
singularities.

Remark 10.3 (Error). There is an error in [KM, Lemma 5.17
(2)]. We can construct a counterexample easily. We put X =
P2, ∆ = a line on X, and |H| = |OX(1)|. Then we have

−1 = discrep(X, ∆ + Hg) 6= min{0, discrep(X, ∆)} = 0,

since discrep(X, ∆) = 0.

• The latest bible [Ma] explains singularities in details (see Chap-
ter 4 in [Ma]). However, as we pointed out before (see Remark
1.1), Matsuki confused normal crossings with simple normal
crossings. In the definition of lt (see [Ma, Definition 4-3-2]),
he assumed that the resolution is projective. So, lt in [Ma] is
slightly different from lt in [FA]. Therefore, Q-factorial lt in the
sense of [Ma] is equivalent to Q-factorial dlt (see [FA, (2.16.2)],
Question 7.10, and Conclusion 7.11).

Remark 10.4 (Comment by Matsuki). In page 178, line 8–9,
”by blowing up only over the locus where σ−1(D) ∪ Exc(σ) is
not a normal crossing divisor, we obtain...” is incorrect. See
Example 5.4 and Section 6.

Conclusion 10.5. It is very difficult to understand subtleties of var-

ious kinds of log terminal singularities. My idea in this paper is not

necessarily the best. We recommend the reader to check definitions by

himself.

References

[A] M. Artin, Algebraic approximation of structures over complete local rings,

Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 23–58.
[BEV] A. Bravo, S. Encinas, O. Villamayor, A simplified proof of desingulariza-

tion and applications, to appear in Revista Matematica Iberoamericana.
[F1] O. Fujino, Abundance theorem for semi log canonical threefolds, Duke

Math. J. 102 (2000), no. 3, 513–532.
[F2] O. Fujino, Base point free theorem of Reid-Fukuda type, J. Math. Sci.

Univ. Tokyo 7 (2000), no. 1, 1–5.
[F3] O. Fujino, The indices of log canonical singularities, Amer. J. Math. 123

(2001), 229–253.
[F4] O. Fujino, Special termination and reduction theorem, in this volume.



WHAT IS LOG TERMINAL ? 17

[H] H. Hironaka, Resolution of singularities of an algebraic variety over a field
of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid.
(2) 79 (1964), 205–326.

[Ka] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singular-
ities and its application to degenerations of surfaces, Ann. of Math. (2)
127 (1988), no.1, 93–163.

[KMM] Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the Minimal
Model Problem, in Algebraic Geometry, Sendai 1985, Advanced Studies
in Pure Math. 10, (1987) Kinokuniya and North-Holland, 283–360.

[Ko] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A
Series of Modern Surveys in Mathematics], 32. Springer-Verlag, Berlin,
1996.

[FA] J. Kollár, et al, Flips and Abundance for Algebraic Threefolds, Astérisque
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