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Abstract. We characterize non-Q-factorial affine toric 3-folds with
terminal singularities. As applications, we investigate 3-dimensional
terminal toric flops and non-Q-factorial terminal toric flips.

In this short note, we characterize non-Q-factorial affine toric 3-
folds with terminal singularities. As applications, we investigate 3-
dimensional terminal toric flops and non-Q-factorial terminal toric flips.
We will use the same notation as in [YPG], which is an excellent ex-
position on terminal singularities.

Let X be an affine toric 3-fold over an algebraically closed field k.
First, let us recall the following well-known theorem of G. K. White,
D. Morrison, G. Stevens, V. Danilov, and M. Frumkin (see [YPG, (5.2)
Theorem])1.

Theorem 1. Assume that X is Q-factorial. Then X is terminal if

and only if (up to permutations of (x, y, z) and symmetries of µr) X '
A3/µr of type 1

r
(a,−a, 1) with a coprime to r, where µr is the cyclic

group of order r. In particular, if X is Gorenstein and terminal, then

X is non-singular.

The next statement seems to be missing in the literatures2. So, we
prove it here.
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1Sorry, I am not familiar with the history of this theorem (terminal lemma). I

just copied the names from [YPG].
2Hiroshi Sato informed me that Professor Masa-Nori Ishida proved Theorem

2. Sorry, I did not check where the statement is. It may be contained in his
paper: On the terminal toric singularities of dimension 3, in Commutative Algebra,
Karuizawa, Japan, 1982 (S. Goto, ed.), 54–70. Unfortunately, this article seems to
be difficult to obtain outside Japan. I can not find it in the library in the IAS nor on
MathSciNet. I found that the paper: M. Ishida, and N. Iwashita, Canonical cyclic
quotient singularities of dimension three, Complex analytic singularities, 135–151,
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Theorem 2. Assume that X is not Q-factorial. Then X is terminal

if and only if X ' Spec k[x, y, z, w]/(xy − zw).3

By the above theorems, we classified all the 3-dimensional terminal
toric singularities. Related topics are [Fj] and [FS], where we studied
the toric Mori theory for non-Q-factorial varieties.

Remark. Mori classified 3-dimensional terminal singularities. For the
details, see [YPG, (6.1) Theorem]. We do not use his classification
table in this paper. We think that we need some arguments to obtain
Theorem 2 from Mori’s result.

Proof. Let N = Z3 and ∆ = 〈e1, · · · , ek〉 the cone in N such that
X = X(∆), where each ei is primitive. First, we prove

Claim 1. If X is non-Q-factorial terminal 3-fold, then k = 4.

Proof of the claim. It is obvious that k ≥ 4. Since X is Q-Gorenstein,
there is a hyperplane H ⊂ N that contains every ei. On H ' Z2,
eis span two dimensional convex polygon P . By renumbering eis, we
can assume that they are arranged counter-clockwise. Since X(∆) is
terminal, all the lattice points in P are eis. In particular, the triangle
on H spanned by e1, e2, and e3 contains only three lattice points ei

(1 ≤ i ≤ 3) of H. So, after changing the coordinate of H, we can
assume that e1 = (0, 1), e2 = (0, 0), and e3 = (1, 0) in H ' Z2. This
is an easy consequence of the two dimensional terminal lemma. This
means that two dimensional terminal singularities are non-singular. It
can be checked easily that (1, 1) ∈ P since k ≥ 4. Thus, we obtain that
k = 4 and e4 = (1, 1). We finished the proof of the lemma. �

Claim 2. Assume that X is Gorenstein and terminal. Then X is

isomorphic to Spec k[x, y, z, w]/(xy − zw).

Proof of the claim. On this assumption, the cones 〈e1, e2, e3〉, 〈e1, e2, e4〉,
〈e1, e3, e4〉, and 〈e2, e3, e4〉 define Q-factorial Gorenstein affine toric 3-
folds with terminal singularities. By Theorem 1, every cone listed above
is non-singular. So, by changing the coordinate of N and easy compu-
tations, we can assume that e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
and e4 = (1, 1,−1). In particular, e1 + e2 = e3 + e4. Thus, X '
Spec k[x, y, z, w]/(xy − zw). �

Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, treated the similar
problem. Though it was not stated explicitly, the main theorem of this paper
(Theorem 2) follows immediately from Theorem 3.6 in the above mentioned paper.
Since they treat canonical singularities, their proof is much harder than ours. Of
course, their results are much more general. Anyway, Theorem 2 is more or less
known to experts.

3We call this an ODP (ordinary double point).
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By the above claim, it is sufficient to prove

Claim 3. All the non-Q-factorial toric affine 3-folds with terminal

singularities are Gorenstein.

Proof of the claim. We assume that X is not Gorenstein and obtain a
contradiction.

Let N be the sublattice of N spanned by all the lattice points on
H and the origin of N . In N , ∆ = 〈e1, e2, e3, e4〉 defines a Gorenstein
terminal 3-fold. So, we can assume that e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1), and e4 = (1, 1,−1) ∈ Z3 ' N by the proof of Claim
2. First, we consider 〈e1, e2, e3〉 in N and N . By Theorem 1, we
obtain that N = N + Z · 1

r
(α, β, γ), where (α, β, γ) is one of the follow-

ings: (a,−a, 1), (a, 1,−a), (−a, a, 1), (−a, 1, a), (1, a,−a), (1,−a, a)
such that 0 < a < r with a coprime to r. Next, we use the terminality
of 〈e1, e2, e4〉. We consider the linear transform T : N −→ N such that
Te1 = e1, Te2 = e2, Te4 = e3. Then TN = TN + Z · 1

r
(α′, β ′, γ′),

where (α′, β ′, γ′) is one of the followings: (1+a, 1−a,−1), (0, 1−a, a),
(1− a, 1 + a,−1), (0, 1 + a,−a), (1− a, 0, a), (1 + a, 0,−a). Note that





α′

β ′

γ′



 =





1 0 1
0 1 1
0 0 −1









α
β
γ



 .

We treat the first case, that is, (α′, β ′, γ′) = (1 + a, 1 − a,−1). By the
terminal lemma (see [YPG, [(5.4) Theorem]), r divides (1+a)+(1−a) =
2 since it does not divide (1 + a) + (−1) nor (1− a) + (−1). So, r = 2
and a = 1. Thus 1

r
(α′, β ′, γ′) = 1

2
(0, 0, 1). It is a contradiction (see

Theorem 1). We leave the other cases for the reader’s exercise. So,
there are no non-Gorenstein non-Q-factorial affine toric 3-folds with
terminal singularities. �

Therefore, we completed the proof of the theorem. �

Theorem 2 has a beautiful corollary.

Corollary. Let
X 99K X+

↘ ↙
W

be a 3-dimensional toric flopping diagram such that W is affine. As-

sume that X has only terminal singularities. Then it is the simplest
flop4, where the simplest flop means the flop described in [Fl, p.49–p.50].

4This flop is sometimes called Atiyah’s flop. I do not know what name is the
best.
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Proof. By the assumption, W is a non-Q-factorial affine toric 3-fold
with terminal singularities. Thus, X ' Spec k[x, y, z, w]/(xy − zw) by
Theorem 2. So, the above diagram must be the simplest flop. �

Remark. This corollary describes the behavior of the 3-dimensional
terminal flops locally. For a global example, see [FS].

By the next proposition, we know what 3-dimensional non-Q-factorial
terminal flipping contractions are. It is interesting that the flipped va-
riety X+ is always Q-factorial.

Proposition. Let

X 99K X+

↘ ↙
W

be a 3-dimensional toric flipping diagram such that W is affine. As-

sume that X has only terminal singularities and ρ(X/W ) = 1. We

assume that the (unique) flipping curve passes through an ODP of X.

Then it passes through a quotient singularity5of X, ρ(X+/W ) = 2, and

X+ is always Q-factorial.

Sketch of the proof. First, note that there are no flipping contractions
whose flipping curves pass through no singular points6. Next, let Y −→
X be a small resolution of an ODP on X. Then ρ(Y/W ) = 2. So, there
exists another contraction f : Y −→ Z over W . It is easy to see that
f is a flipping contraction such that the (unique) flipping curve passes
through at most one singular point. By repeating the above argument,
this singularity is not an ODP. So, it is a quotient singularity. Thus, we
know that the (unique) flipping curve has to pass through a quotient
singularity. Finally, we recommend the reader to draw pictures to
understand the latter statements. It is an easy exercise. �
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