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Abstract. In this paper, we prove (1) Special termination mod-
ulo the log MMP for lower dimensional varieties, and (2) Reduction
theorem. Moreover, we explain the log MMP for non-Q-factorial
varieties. These results will play crucial roles in Shokurov’s proof
of pl flips.
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1. Introduction

This paper is a supplement of [S3, Section 2]. First, we give a simple
proof of the special termination modulo the log MMP for lower dimen-
sional varieties (see Theorem 2.1). The special termination claims that
the flipping locus is disjoint from the reduced part of the boundary
after finitely many flips. It will be repeatedly used in Shokurov’s proof
of pl flips [S3]. Next, we explain the reduction theorem: Theorem 3.7.
Roughly speaking, the existence of pl flips and the special termination
imply the existence of all the log flips. This reduction theorem was
well-known for experts (cf. [FA, Chapter 18]). It grew out of [S1].
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Let us recall the two big conjectures in the log MMP.

Conjecture 1.1 ((Log) Flip Conjecture I: The existence of a (log)
flip). Let ϕ : (X, B) −→ W be an extremal flipping contraction of an

n-dimensional pair, that is,

(1) ϕ is small projective and ϕ has only connected fibers,

(2) −(KX + B) is ϕ-ample,

(3) ρ(X/W ) = 1, and

(4) X is Q-factorial.

Then there should exist the following diagram

X 99K X+

↘ ↙
W

which satisfies the following conditions:

(i) X+ is a normal variety,

(ii) ϕ+ : X+ −→W is small projective, and

(iii) KX+ +B+ is ϕ+-ample, where B+ is the strict transform of B.

We note that to prove Conjecture 1.1 we can assume that B is a
Q-divisor by perturbing B slightly.

Conjecture 1.2 ((Log) Flip Conjecture II: The termination of a se-
quence of (log) flips). A sequence of (log) flips

(X, B) =: (X0, B0) 99K (X1, B1) 99K (X2, B2) 99K · · ·

terminates after finitely many steps. Namely there does not exists an

infinite sequence of (log) flips.

In this paper, we sometimes write as follows: Assume the log MMP

for Q-factorial dlt (resp. klt) n-folds. This means the log flip conjec-
tures I and II hold for n-dimensional dlt (resp. klt) pairs. For the
details of the log MMP, see [KM, 3.31]. Note that in this paper we run
the log MMP only for birational morphisms. Namely, we apply the log
MMP to some pair (X, B) over Y , where f : X −→ Y is a projective
birational morphism.

We summarize the contents of this paper: In Section 2, we give a
simple proof of the special termination. In Section 3, we explain the
reduction theorem. This section is essentially the same as [FA, Chapter
18]. Finally, in Section 4, we give a remark on the log MMP for non-
Q-factorial varieties.

Acknowledgements. Each section was circulated separately as my
private notes. Section 4 was written for an answer to Takagi’s question.
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I am grateful to those who gave me comments to my notes. Some parts
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Notation. We use the basic notations and definitions in [KM] freely
(see also [F4]). We will work over an algebraically closed field k through-
out this paper; my favorite is k = C.

2. Special termination

The following special termination is in [S3, Theorem 2.3]. Shokurov
wrote a sketch of proof in dimension four in [S3, Section 2]. Here, we
give a simple proof, which is based on the idea of [FA, Chapter 7]. Note
that [FA, Chapter 7] grew out of [S1]. The key point of our proof is
adjunction formula for dlt pairs, which is explained in [F4, Section 9].
Let us state the main theorem of this section.

Theorem 2.1 (Special Termination). We assume that the log MMP for

Q-factorial dlt pairs holds in dimension ≤ n − 1. Let X be a normal

n-fold and B an effective R-divisor such that (X, B) is dlt. Assume

that X is Q-factorial. Consider a sequence of log flips starting from

(X, B) = (X0, B0):

(X0, B0) 99K (X1, B1) 99K (X2, B2) 99K · · · ,

where φi : Xi −→ Zi is a contraction of an extremal ray Ri with (KXi
+

Bi) · Ri < 0, and φi
+ : Xi

+ = Xi+1 −→ Zi is the log flip. Then after

finitely many flips, flipping locus (and thus the flipped locus) is disjoint

from bBic.

Remark 2.2. If B is a Q-divisor in Theorem 2.1, then the log flip
conjectures I and II for Q-divisors are sufficient for the proof of the
theorem. It is because S(b) ⊂ Q (see Definition 2.7 below). We note
that when we use the special termination in Section 3 and [F3], B is a
Q-divisor. If B is not a Q-divisor, then we need the log flip conjecture
II for R-divisors. For the details, see [S2, 5.2 Theorem].

First, we recall the definition of flipping and flipped curves.

Definition 2.3. A curve C on Xi is called flipping (resp. flipped) if
φi(C) (resp. φ+

i−1(C)) is a point.

We quickly review adjunction for dlt pairs. For the details, see [F4,
Section 9].
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Proposition 2.4 (cf. [F4, Proposition 9.2]). Let (X, B) be a dlt pair

such that bBc =
∑

i∈I Di, where Di is a prime divisor on X for every

i. Then S is a center of log canonical singularities (CLC, for short)
of the pair (X, B) with codimXS = k if and only if S is an irreducible

component of Di1 ∩Di2 ∩ · · · ∩Dik for some {i1, i2, · · · , ik} ⊂ I. Let S
be a CLC of the pair (X, B). Then (S, BS) is also dlt, where KS +BS =
(KX +B)|S. We note that BS is defined by applying adjunction k times

repeatedly.

Next, we introduce the notion of crepant isomorphism.

Definition 2.5. Let ϕ : (X, B) −→ (X ′, B′) be a morphism between
two dlt pairs. We call ϕ a crepant isomorphism if ϕ is an isomorphism
and KX + B = ϕ∗(KX′ + B′).

We need the following definition since the restriction of a log flip to
a higher codimensional CLC is not necessarily a log flip.

Definition 2.6. Let f : V −→ W be a birational contraction with
dim V ≥ 2. We say that f is type (S) if f is an isomorphism in
codimension one. We say that f is type (D) if f contracts at least one
divisor. Let

V
f

−−−→ W
g

←−−− U
be a pair of birational contractions. We call this type (SD) if f is type
(S) and g is type (D). We can define (SS), (DS), and (DD) similarly.

Definition 2.7. Let B =
∑

bjB
j be the irreducible decomposition.

We define a finite set of positive numbers b = {bj}. We define

S(b) :=

{
1−

1

m
+

∑ rjbj

m

∣∣∣∣ m ∈ Z>0, rj ∈ Z≥0

}
.

Let P be a prime divisor on S. Then the coefficient of P in BS is an
element of S(b). See [F4, Propositon 9.4].

Definition 2.8 ([FA, 7.5.1 Definition]). Let S be a CLC of the dlt pair
(X, B). we define

db(S, BS) :=
∑

α∈S(b)

]
{
E

∣∣∣ a(E, S, BS) < −α, CenterS(E) 6⊂ bBSc
}

.

This is a precise version of difficulty. It is obvious that db(S, BS) <∞.
We note that (U, BS|U) is klt, where U = S \ bBSc, and [FA, 7.4.4
Lemma].

Let us go to the proof of Theorem 2.1.

Proof of Theorem 2.1.
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Step 1. After finitely many flips, the flipping locus contains no CLC’s.

Proof. We note that the number of CLC’s is finite. If the flipping
locus contains a CLC, then the number of CLC’s decreases by [FA,
(2.28)]. �

So we can assume that the flipping locus contains no CLC’s of the
pair (Xi, Bi) for every i. On this assumption, ϕi : Xi 99K Xi+1 induces
a birational map ϕi|Si

: Si 99K Si+1, where Si is a CLC of (Xi, Bi)
and Si+1 is the corresponding CLC of (Xi+1, Bi+1). We will omit the
subscript |Si

if there is no danger of confusion.

Remark 2.9. By adjunction, we have

a(E, Si, BSi
) ≤ a(E, Si+1, BSi+1

),

for every valuation E. In particular,

totaldiscrep(Si, BSi
) ≤ totaldiscrep(Si+1, BSi+1

)

for every i.

Step 2. Assume that ϕi : Xi 99K Xi+1 induces a crepant isomorphism

on every (d − 1)-dimensional CLC for all i. Then after finitely many

flips, ϕi induces a crepant isomorphism on every d-dimensional CLC.

Remark 2.10. The above statement is slightly weaker than Shokurov’s
claim (Bd). See the proof of the special termination 2.3 in [S3].

Remark 2.11. It is obvious that ϕi induces a crepant isomorphism on
every 0-dimensional CLC. When d = 1, Step 2 is obvious by [FA, 7.4.4
Lemma] and Remark 2.9.

So we can assume that d ≥ 2.

Remark 2.12. Let (Si, BSi
) be a CLC. Assume that ϕi : (Si, BSi

) −→
(Si+1, BSi+1

) is a crepant isomorphism. Then Si contains no flipping
curves and Si+1 contains no flipped curves. This is obvious by ap-
plying the negativity lemma to Si −→ Ti ←− Si+1, where Ti is the
normalization of φi(Si).

Proposition 2.13. The inequality db(Si, BSi
) ≥ db(Si+1, BSi+1

) holds.

Moreover, if Si −→ Ti ←− S+
i = Si+1 is type (SD) or (DD), then

db(Si, BSi
) > db(Si+1, BSi+1

), where Ti is the normalization of φi(Si).
We note that there exists a φ+

i |Si+1
-exceptional divisor E on Si+1. By

adjunction and the negativity lemma,

a(E, Si, BSi
) < a(E, Si+1, BSi+1

) = −α

for some α ∈ S(b). Therefore, after finitely many flips, Si −→ Ti ←−
Si+1 is type (SS) or (DS).
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Proof. See [FA, 7.5.3 Lemma, 7.4.3 Lemma]. We note that ϕi is a
crepant isomorphism on bBSi

c by the assumption. Therefore,

CenterSi
(E) ⊂ bBSi

c if and only if CenterSi+1
(E) ⊂ bBSi+1

c.

More precisely, if CenterSi
(E) (resp. CenterSi+1

(E)) is contained in
bBSi
c (resp. bBSi+1

c), then ϕi is an isomorphism at the generic point of
CenterSi

(E) (resp. CenterSi+1
(E)) by the negativity lemma. Therefore,

we obtain db(Si, BSi
) ≥ db(Si+1, BSi+1

) by Remark 2.9. �

So we can assume that every step is type (SS) or (DS) by shifting
the index i. Let f : S0

0 −→ S0 be a Q-factorial dlt model, that is,
(S0

0 , BS0
0
) is Q-factorial and dlt such that KS0

0
+ BS0

0
= f ∗(KS0

+ BS0
).

Note that we need the log MMP in dimension d to construct a dlt
model. Applying the log MMP to S0

0 −→ T0, we obtain a sequence of
divisorial contractions and log flips over T0

S0
0 99K S1

0 99K · · · ,

and finally a relative log minimal model Sk0

0 . Since S1 −→ T0 is the
lc model of S0

0 −→ S0 −→ T0, we have a unique natural morphism
g : Sk0

0 −→ S1 (see [FA, 2.22 Theorem]). We note that K
S

k0
0

+ B
S

k0
0

=

g∗(KS1
+ BS1

). Applying the log MMP to S0
1 := Sk0

0 −→ S1 −→ T1

over T1, we obtain a sequence

S0
1 99K · · · 99K Sk1

1 −→ S2

by the same reason. Run the log MMP to S0
2 := Sk1

1 −→ S2 −→
T2. Repeating this procedure, we obtain a sequence of log flips and
divisorial contractions. This sequence terminates by the log MMP in
dimension d. Thus we obtain the required results.

Remark 2.14. In Step 2, we obtain no information about flipping
curves that are not contained in bBic but intersect with bBic.

Step 3. After finitely many flips, we can assume that bBic contains

no flipping curves and no flipped curves by Step 2. If the flipping

locus intersects bBic, then there exists a flipping curve C such that

C · bBic > 0. Note that Xi is Q-factorial. Then bBi+1c intersects with

every flipped curve negatively. So bBi+1c contains a flipped curve. This

is a contradiction.

Therefore, we finished the proof of Theorem 2.1. �

Remark 2.15. Our proof heavily relies on adjunction formula for
higher codimensional CLC’s of a dlt pair. It is treated in [F4, Sec-
tion 9]. In the final step (Step 3), Q-factoriality plays crucial roles. As
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explained in [F4], Q-factoriality and the notion of dlt are not analyti-
cally local.

Remark 2.16. In [F2], we prove that any sequence of log flips of
canonical pairs terminates in dimension four. By combining [F2] with
Theorem 2.1, we obtain the termination of 4-fold semi-stable log flips.
For the details, see [F2] and [F3].

3. Reduction theorem

In this section, we prove the reduction theorem [S3, Reduction The-
orem 1.2]. It says that the existence of pl flips and the special termi-
nation implies the existence of all the log flips. The following is the
definition of an (elementary) pre limiting contraction.

Definition 3.1 (Pre limiting contractions). We call f : (X, D) −→ Z
an pre limiting contraction (pl contraction, for short) if

(1) (X, D) is a dlt pair,
(2) f is small and −(KX + D) is f -ample, and
(3) there exists an irreducible component S ⊂ bDc such that S is

f -negative.

Furthermore, if the above f satisfies

(4) ρ(X/Z) = 1, and
(5) X is Q-factorial,

then f : (X, D) −→ Z is called an elementary pre limiting contraction
(elementary pl contraction, for short).

Caution 3.2. I do not know what is the best definition of (elementary)
pre limiting contractions. Compare Definition 3.1 with [S3, 1.1] and
[FA, 18.6 Definition]. We adopt the above definition in this paper.
The reader has to check the definition of pl contractions when he reads
other papers.

The following is the definition of log flips in this section, which is
much more general than log flips in Conjecture 1.1.

Definition 3.3 (Log flips). By a log flip we mean the (KX + D)-flip
of a contraction f : (X, D) −→ Z assuming that

(a) (X, D) is klt,
(b) f is small,
(c) −(KX + D) is f -nef, and
(d) D is a Q-divisor.
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A log flips of f is a log canonical model f+ : (X+, D+) −→ Z of (X, D)
over Z, that is, the diagram

X 99K X+

↘ ↙
Z

which satisfies the following conditions:

(i) X+ is a normal variety,
(ii) f+ : X+ −→ Z is small projective, and
(iii) KX+ + D+ is f+-ample, where D+ is the strict transform of D.

Note that a log canonical model exists then it is unique.

Remark 3.4. For the definitions of log minimal models and log canon-

ical models, see [KM, Definition 3.50]. There, they omit ”log” for
simplicity. So, a log canonical (resp. log minimal) model is called a
canonical (resp. minimal) model in [KM].

Let us introduce the notion of PL-flips.

Definition 3.5 (PL-flips). A (elementary) pl-flip is a flip of f , where
f is a (elementary) pl contraction as in Definition 3.1. Note that if a
flip exists then it is unique up to isomorphisms over Z.

We use the next definition in the proof of the reduction theorem.

Definition 3.6 (Birational transform). Let f : X 99K Y be a birational
map. Let {Ei} be the set of exceptional divisors of f−1 and D an R-
divisor on X. The birational transform of D is defined as

(D)Y := f∗D +
∑

Ei.

The following is the main theorem of this section. This is essentially
the same as [FA, Chapter 18].

Theorem 3.7 (Reduction Theorem). Log flips exist in dimension n
provided that:

(PLF )el
n elementary pl-flips exist in dimension n, and

(ST )n special termination holds in dimension n.

Proof. Let (X, D) be a klt pair and let f : X −→ Z be a contraction
as in Definition 3.3. We define T := f(Exc(f)) ⊂ Z. We can assume
that Z is affine without loss of generality.

Step 1. Let H ′ be a Cartier divisor on Z such that

(i) H := f ∗H ′ = f−1
∗ H ′ contains Exc(f).

(ii) H ′ is reduced and contains Sing(Z) and the singular locus of

Suppf(D).
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(iii) Fix a resolution π : Z ′ −→ Z. Let Fj ⊂ Z ′ be divisors that gen-

erate N1(Z ′/Z). We assume that H ′ contains π(Fj) for every

j. (This usually implies that H ′ is reducible.) We note that we

can assume that Suppπ(Fj) contains no irreducible components

of Suppf(D) for every j without loss of generality. Therefore,

we can assume that H and D have no common irreducible com-

ponents.

The main consequence of the last assumption is the following:

(iv) Let h : Y −→ Z be any proper birational morphism such that Y
is Q-factorial. Then the irreducible components of the proper

transform of H ′ and the h-exceptional divisors generate N 1(Y/Z).

Step 2. By Hironaka’s desingularization theorem, there is a log reso-

lution h : Y −→ X −→ Z for (X, D + H) that is an isomorphism over

Z \H ′.

Then KY + (D + H)Y is a Q-factorial dlt pair, where (D + H)Y is a

birational transform of D+H (see Definition 3.6). Observe that h∗(H ′)
contains h−1(T ) and h∗(H ′) contains all h-exceptional divisors.

Step 3. Run the log MMP with respect to KY +(D +H)Y over Z. We

successively construct the objects (hi : Yi −→ Z, (D + H)Yi
) such that

b(D + H)Yi
c contains the support of h∗

i H
′, and every flipping curve for

hi is contained in Supph∗
i H

′. If Ci is a flipping curve, then Ci ⊂ h∗
i H

′

and Ci · h
∗
i H

′ = 0. By Step 1 (iv) and Step 2, there is an irreducible

component Fi ⊂ h∗
i H

′ such that Ci ·Fi 6= 0. Thus a suitable irreducible

component of h∗
i H

′ intersects Ci negatively. This means that all flips

that we need are elementary pl-flips. By the special termination, we

end up with a Q-factorial dlt pair h : (Y , (D + H)Y ) −→ Z such that

KY + (D + H)Y is h-nef.

Step 4 (cf. [KM, Theorem 7.44]). This step is called “subtracting

H”. It is independent of other steps. So we use the different nota-

tion throughout Step 4. Of course, we assume (PLF )el
n and (ST )n

throughout this step.

Theorem 3.8 (Subtracting Theorem). Let (X, S + B + H) be an n-

dimensional Q-factorial dlt pair with effective Q-divisors S, B, and H
such that bSc = S, bBc = 0. Let f : X −→ Y be a projective birational

morphism. Assume the following:

(i) H ≡f −
∑

bjSj, where bj ∈ Q≥0, and Sj is an irreducible com-

ponent of S for every j.
(ii) KX + S + B + H is f -nef.

Then (X, S + B) has a log minimal model over Y .
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Proof. We give a proof in the form of several lemmas by running the
log MMP over Y guided by H. The notation and the assumptions of
Theorem 3.8 are assumed in these lemmas. �

Lemma 3.9. There exists a rational number λ ∈ [0, 1] such that

(1) KX + S + B + λH is f -nef, and

(2) if λ > 0, then there exists a (KX + S + B)-negative extremal

ray R over Y such that R · (KX + S + B + λH) = 0.

Proof. This follows from Cone Theorem. See, for example, [KM, Com-
plement 3.6]. We note that [KM, §3.1] assumes that the pair has only
klt singularities. However, Rationality Theorem holds for dlt pairs.
Therefore, [KM, Complement 3.6] is true for dlt pairs. See [KM, The-
orem 3.15, Remark 3.16]. �

If λ = 0, then the theorem is proved. Therefore, we assume that
λ > 0 and let φ : X −→ V be the contraction of R.

Lemma 3.10. If φ contracts a divisor E, then the above conditions

(i) and (ii) in Theorem 3.8 still hold if we replace f : X −→ Y with

V −→ Y and B, S, H with φ∗B, φ∗S, λφ∗H.

Proof. It is obvious. We note that φ is a divisorial contraction. �

Lemma 3.11. If φ is a flipping contraction, then φ is an elementary pl

contraction (see Definition 3.1). If p : X 99K X+ is the flip of φ, then

the above conditions (i) and (ii) still hold if we replace f : X −→ Y
with f+ : X+ −→ Y and B, S, H with p∗B, p∗S, λp∗H.

Proof. One has to prove that φ is an elementary pl contraction. By
hypothesis R · (KX + S + B + λH) = 0 and R · (KX + S + B) < 0,
one sees R · H > 0. Hence by condition (i), there exists j0 such that
R · Sj0 < 0. The latter part is obvious. �

Lemma 3.12. We can apply the above procedure to the new set up in

the cases Lemma 3.10 and Lemma 3.11 if H 6= 0. After repeating this

finitely many times, H becomes 0, and one obtain a log minimal model

of (X, S + B) over Y . In particular, Theorem 3.8 holds.

Proof. It is obvious that Lemma 3.10 does not occur infinitely many
times. The flip in Lemma 3.11 is a (KX + S + B)-flip with the flipping
curve on S. Hence it cannot repeat infinitely many times by the special
termination (see Theorem 2.1). Therefore, we obtain a log minimal
model. �

Step 5. We go back to the original setting. Apply Theorem 3.8 to

h : (Y , (D+H)Y ) −→ Z, which was obtained in Step 3. More precisely,
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we put f = h, X = Y , Y = Z, S+B+H = (D+H)Y , B = {(D+H)Y },
and H = the strict transform of H ′, and apply Theorem 3.8. Then we

obtain

h̃ : (Ỹ , DeY ) −→ Z

such that Ỹ is Q-factorial, KeY +DeY is dlt and h̃-nef. By the negativity

lemma ([KM, Lemma 3.38]), we can easily check that h̃ is small and

(Ỹ , DeY ) is klt. This is a log minimal model of (X, D) over Z.

Step 6. By the base point free theorem over Z, we obtain the log canon-

ical model of the pair (X, D) over Z, which is the required flip.

Therefore, we finish the proof of the reduction theorem. �

Corollary 3.13. In dimension n ≤ 4, (PLF )el
n implies the existence

of all the log flips.

Proof. The special termination (ST )n holds if n ≤ 4 since the log MMP
is true in dimension ≤ 3. Thus, this corollary is obvious by Theorem
3.7. �

4. A remark on the log MMP

In this section, we explain the log MMP for non-Q-factorial varieties.
We need this generalized version of the log MMP in Takagi’s article.
For simplicity, we treat only klt pairs and Q-divisors in this section.

Theorem 4.1 (Log MMP for non-Q-factorial varieties). Assume that

the log MMP holds for Q-factorial klt pairs in dimension n. Then the

following modified version of the log MMP works for (not necessarily

Q-factorial) klt pairs in dimension n.

Proof and explanation. Let us start with a projective morphism f :
X −→ Y , where X0 := X is a (not necessarily Q-factorial) normal
variety, and a Q-divisor D0 := D on X such that (X, D) is klt. The
aim is to set up a recursive procedure which creates intermediate fi :
Xi −→ Y and Di. After finitely many steps, we obtain a finial objects

f̃ : X̃ −→ Y and D̃. Assume that we already constructed fi : Xi −→ Y
and Di with the following properties:

(i) fi is projective,
(ii) Di is a Q-divisor on Xi,
(iii) (Xi, Di) is klt.

If KXi
+Di is fi-nef, then we set X̃ := Xi and D̃ := Di. Assume that

KXi
+Di is not fi-nef. Then we can take a (KXi

+Di)-negative extremal
ray R (or, more generally, a (KXi

+ Di)-negative extremal face F ) of
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NE(Xi/Y ). Thus we have a contraction morphism ϕ : Xi −→ Wi

over Y with respect to R (or, more generally, with respect to F ). If
dim Wi < dim Xi (in which case we call ϕ a Fano contraction), then

we set X̃ := Xi and D̃ := Di and stop the process. If ϕ is birational,
then we put

Xi+1 := ProjWi

⊕

m≥0

ϕ∗OXi
(m(KXi

+ Di)),

Di+1 := the strict transform of ϕ∗Di on Xi+1 and repeat this process.
We note that (Xi+1, Di+1) is the log canonical model of (Xi, Di) over Wi

and the existence of the log canonical models follows from the log MMP
for Q-factorial n-folds. If KWi

+ ϕ∗Di is Q-Cartier, then Xi+1 ' Wi.
So, this process coincides with the usual one if the varieties Xi are Q-
factorial. It is not difficult to see that Xi −→ Wi ←− Xi+1 is of type
(DS) or (SS) (for the definitions of (DS) and (SS), see Definition 2.6).
Then, this process always terminates by the same arguments as in Step
2 in the proof of Theorem 2.1 in Section 2. �

We give one example of 3-dimensional non-Q-factorial terminal flips.
The readers can find various examples of non-Q-factorial contractions
in [F1, Section 4].

Example 4.2 (3-dimensional non-Q-factorial terminal flip). Let e1, e2, e3

form the usual basis of Z3, and let e4 be given by

e1 + e3 = e2 + e4,

that is, e4 = (1,−1, 1). We put e5 = (a, 1,−r) ∈ Z3, where 0 < a < r
and gcd(r, a) = 1. We consider the following fans:

∆X = {〈e1, e2, e3, e4〉, 〈e1, e2, e5〉, and their faces},

∆W = {〈e1, e2, e3, e4, e5〉, and its faces}, and

∆X+ = {〈e1, e4, e5〉, 〈e2, e3, e5〉, 〈e3, e4, e5〉, and their faces}.

We put X := X(∆X), X+ := X(∆X+), and W := X(∆W ). Then we
have the commutative diagram of toric morphisms:

X 99K X+

↘ ↙
W

such that

(i) ϕ : X −→ W and ϕ+ : X+ −→ W are small projective toric
morphisms,

(ii) ρ(X/W ) = 1 and ρ(X+/W ) = 2,
(iii) both X and X+ have only terminal singularities,
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(iv) −KX is ϕ-ample and KX+ is ϕ+-ample, and
(v) X is not Q-factorial, but X+ is Q-factorial,

Thus, this diagram is a terminal flip. Note that the ampleness of −KX

(resp. KX+) follows from the convexity (resp. concavity) of the roofs
of the maximal cones in ∆X (resp. ∆X+). The figure below helps us to
understand this example.

�
��

@
@@

�
��

@
@@

�������@
@@

�
��

PPPPPPP

A
A
A
A
AU

�
�

�
�
��
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e4

e5X

W

X+

ϕ ϕ+

Figure 1

We can check the following properties:

(1) X has one ODP and one quotient singularity,
(2) the flipping locus is P1 and it passes through the singular points

of X, and
(3) the flipped locus is P1 ∪ P1 and these two P1s intersect each

other at the singular point of X+.

This example implies that the relative Picard number may increase
by a flip when X is not Q-factorial. So, we do not use the Picard
number directly to prove the termination of the log MMP.
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