AN EXAMPLE OF TORIC FLOPS
 (PRIVATE NOTE)

OSAMU FUJINO AND HIROSHI SATO

Abstract

We construct an example of global toric 3-dimensional terminal flops that has interesting properties.

Contents

1. Introduction 1
2. An example of toric flops 1
3. Construction 2
4. Supplement 10
References 10

1. Introduction

We explain examples of toric contraction morphisms. There are no theorems in this paper. The main purpose is to construct an example of 3 -dimensional (global) toric terminal flops that has interesting properties. We describe it in details. We treat non- \mathbb{Q}-factorial toric varieties. So, various new phenomena happen even in the toric category. For the toric Mori theory for non- \mathbb{Q}-factorial varieties, see $[\mathrm{Fj}]$. We use the same notation as in [Fj] and [FS].

2. An example of toric flops

Example 2.1 (Global toric 3-dimensional terminal flop). We have the following toric flopping diagram;

[^0]such that
(1) X, X^{+}and W are all projective toric 3 -folds,
(2) $\rho(X / W)=\rho\left(X^{+} / W\right)=1, \rho(X)=4$, and $\rho(W)=3$,
(3) K_{X} (resp. $K_{X^{+}}$) is Cartier and φ-numerically trivial (resp. φ^{+}numerically trivial), where $\varphi: X \longrightarrow W$ (resp. $\varphi^{+}: X^{+} \longrightarrow$ $W)$ is a small toric morphism,
(4) X, X^{+}and W have only terminal singularities, and
(5) $\operatorname{Exc}(\varphi)=\mathbb{P}^{1} \amalg \mathbb{P}^{1}$ and $\operatorname{Exc}\left(\varphi^{+}\right)=\mathbb{P}^{1} \amalg \mathbb{P}^{1}$.

More precisely,
(6) both $\operatorname{Sing} X$ and $\operatorname{Sing} X^{+}$are only one ordinary double point, where $\operatorname{Sing} X\left(\right.$ resp. $\left.\operatorname{Sing} X^{+}\right)$is the singular locus of $X\left(\right.$ resp. $\left.X^{+}\right)$. In particular, X and X^{+}are not \mathbb{Q}-factorial,
(7) the flop $X \rightarrow X^{+}$is the union of two simplest flops, where the simplest flop means the flop described in [Fl, p.49-p.50]. So, W has three ordinary double points,
(8) let P be the ordinary double point on X. Then $P \cap \operatorname{Exc}(\varphi)=\emptyset$. Thus φ is an isomorphism around P. We put $X^{0}:=X \backslash P$ and $W^{0}:=W \backslash \varphi(P)$. Then X^{0} is non-singular and $\rho\left(X^{0} / W^{0}\right)=2$.
(9) the flop $X \rightarrow X^{+}$factors as follows:

Each step is the simplest flop. Every morphism is over W. We note that V_{1}, V_{2} and Z are not projective over W. However, every variety is projective over W^{0}.

Note that the flopping locus is irreducible by Reid's description when X is \mathbb{Q}-factorial (see [R, (2.5) Corollary]). This example shows that it is difficult to study the behaviors of the toric contraction morphisms without \mathbb{Q}-factoriality. In this example, the flopping locus is contained in a non-singular open subset.

3. Construction

3.1. We fix $N \simeq \mathbb{Z}^{3}$. Let e_{1}, e_{2} and e_{3} be the standard basis of \mathbb{Z}^{3}. We put

$$
\begin{gathered}
e_{4}=e_{1}+e_{2}+e_{3}=(1,1,1), \\
e_{5}=e_{3}+e_{4}=(1,1,2), \\
e_{6}=e_{1}+e_{4}=(2,1,1), \\
e_{7}=e_{2}+e_{4}=(1,2,1) .
\end{gathered}
$$

3.2. We consider the fan Δ_{1} :
$\Delta_{1}=\left\{\left\langle e_{1}, e_{2}, e_{6}\right\rangle,\left\langle e_{2}, e_{3}, e_{5}\right\rangle,\left\langle e_{2}, e_{5}, e_{6}\right\rangle,\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle\right.$, and their faces $\}$.
The picture is as follows (see Figure 1):

Figure 1
We put $\Delta_{Y}=\left\{\left\langle e_{1}, e_{2}, e_{3}\right\rangle\right.$, and its faces $\}$ and $Y:=X\left(\Delta_{Y}\right)$ (see Figure 2).

Figure 2
Then $f_{1}: X_{1}:=X\left(\Delta_{1}\right) \longrightarrow Y$ has the following properties:
(1-i) X_{1} is projective over Y,
(1-ii) X_{1} has only canonical (not terminal) singularities,
(1-iii) $-K_{X_{1}}$ is ample over Y,
(1-iv) $\rho\left(X_{1} / Y\right)=1$, and
(1-v) f_{1} contracts a reducible divisor to a point.
The ampleness of $-K_{X_{1}}$ follows from the convexity of the roof of the shed of Δ_{1} (see [R, (4.5) Proposition]). So, this is also an example of non- \mathbb{Q}-factorial divisorial contraction (see [Fj, Example 4.1]).
3.3. We consider

$$
\Delta_{2}=\left\{\begin{array}{ccc}
\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle, & \left\langle e_{2}, e_{3}, e_{5}\right\rangle, & \left\langle e_{1}, e_{2}, e_{6}\right\rangle,
\end{array}\left\langle e_{2}, e_{6}, e_{7}\right\rangle,\right\},
$$

and

$$
\Delta_{3}=\left\{\begin{array}{ccc}
\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle, & \left\langle e_{2}, e_{3}, e_{5}\right\rangle, & \left\langle e_{1}, e_{2}, e_{6}\right\rangle, \\
\left\langle e_{2}, e_{6}, e_{7}\right\rangle, & \left\langle e_{2}, e_{5}, e_{7}\right\rangle, & \left\langle e_{4}, e_{5}, e_{6}\right\rangle, \\
\left\langle e_{4}, e_{6}, e_{7}\right\rangle, & \left\langle e_{4}, e_{5}, e_{7}\right\rangle, & \text { and their faces }
\end{array}\right\} .
$$

Then $f_{2}: X_{2}:=X\left(\Delta_{2}\right) \longrightarrow X_{1}$ is a divisorial contraction such that
(2-i) $-K_{X_{2}}$ is f_{2}-ample,
(2-ii) $\rho\left(X_{2} / X_{1}\right)=1$,
(2-iii) X_{2} has log-terminal (not canonical) singularities.
See Figure 3 below.

Figure 3
The morphism $f_{3}: X_{3}:=X\left(\Delta_{3}\right) \longrightarrow X_{2}$ is also a divisorial contraction. It has the following properties:
(3-i) $\operatorname{Sing} X_{3}$ is only one ordinary double point. In particular, X_{3} has non- \mathbb{Q}-factorial terminal singularities,
(3-ii) $K_{X_{3}}$ is f_{3}-ample, and
(3-iii) $\rho\left(X_{3} / X_{2}\right)=1$.
We note that $\rho\left(X_{3} / Y\right)=3$.
3.4. We consider the following fans:

$$
\Delta_{4}=\left\{\begin{array}{cc}
\left\langle e_{1}, e_{2}, e_{6}, e_{7}\right\rangle, & \left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle, \\
\left\langle e_{5}, e_{6}, e_{7}\right\rangle, & \text { and their faces }
\end{array}\right.
$$

and
$\Delta_{5}=\left\{\begin{array}{cccc}\left\langle e_{1}, e_{2}, e_{6}, e_{7}\right\rangle, & \left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle, & \left\langle e_{2}, e_{3}, e_{5}, e_{7}\right\rangle, & \left\langle e_{4}, e_{5}, e_{6}\right\rangle, \\ \left\langle e_{4}, e_{6}, e_{7}\right\rangle, & \left\langle e_{4}, e_{5}, e_{7}\right\rangle, & \text { and their faces }\end{array}\right\}$.
We put $f_{5}: X_{5}:=X\left(\Delta_{5}\right) \longrightarrow X_{4}:=X\left(\Delta_{4}\right)$ and $\varphi: X_{3} \longrightarrow X_{5}$. The pictures are as follows (see Figure 4):

Figure 4
Then $f_{4}: X_{4} \longrightarrow Y$ is a divisorial contraction such that
(4-i) X_{4} has log-terminal (not canonical) singularities,
(4-ii) $-K_{X_{4}}$ is f_{4}-ample, and
(4-iii) $\rho\left(X_{4} / Y\right)=1$.
The morphism $f_{5}: X_{5} \longrightarrow X_{4}$ is a divisorial contraction with the following properties:
(5-i) $K_{X_{5}}$ is f_{5}-ample,
(5-ii) $\rho\left(X_{5} / X_{4}\right)=1$, and
(5-iii) X_{5} has three ordinary double points.
Note that X_{5} is projective over Y and $\rho\left(X_{5} / Y\right)=2$.
3.5. We consider $\varphi: X:=X_{3} \longrightarrow W:=X_{5}$. It is easy to check that $\operatorname{Exc}(\varphi)=\mathbb{P}^{1} \amalg \mathbb{P}^{1}$. So, $1 \leq \rho(X / W) \leq 2$. If $\rho(X / W)=2$, then we obtain an extremal contraction that contracts only one \mathbb{P}^{1}. We put

$$
\Delta_{6}=\left\{\begin{array}{cccc}
\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle, & \left\langle e_{2}, e_{3}, e_{5}, e_{7}\right\rangle, & \left\langle e_{4}, e_{5}, e_{6}\right\rangle, & \left\langle e_{4}, e_{6}, e_{7}\right\rangle, \\
\left\langle e_{4}, e_{5}, e_{7}\right\rangle, & \left\langle e_{1}, e_{2}, e_{6}\right\rangle, & \left\langle e_{2}, e_{6}, e_{7}\right\rangle, & \text { and their faces }
\end{array}\right\} .
$$

See the picture below (Figure 5).

Figure 5

We can easily check that $X_{6}:=X\left(\Delta_{6}\right)$ is not quasi-projective. We assume that it is quasi-projective. Then there exists a strict upper convex support function h. We note that

$$
\begin{aligned}
& e_{1}+e_{5}=e_{3}+e_{6}, \\
& e_{2}+e_{6}=e_{1}+e_{7}, \\
& e_{3}+e_{7}=e_{2}+e_{5} .
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
& h\left(e_{1}\right)+h\left(e_{5}\right)=h\left(e_{3}\right)+h\left(e_{6}\right), \\
& h\left(e_{2}\right)+h\left(e_{6}\right)>h\left(e_{1}\right)+h\left(e_{7}\right), \\
& h\left(e_{3}\right)+h\left(e_{7}\right)=h\left(e_{2}\right)+h\left(e_{5}\right) .
\end{aligned}
$$

This implies that

$$
\sum_{i \neq 4} h\left(e_{i}\right)>\sum_{i \neq 4} h\left(e_{i}\right) .
$$

It is a contradiction. We checked that X_{6} is not quasi-projective.
So, we do not obtain X_{6} by an extremal contraction from X_{3} over X_{5}. This is the key point of this example. Thus $\rho\left(X_{3} / X_{5}\right)=1$.
3.6. The above arguments work without any changes if we add $-e_{4}$ and compactify everything. In this case, $Y=\mathbb{P}^{3}, \rho\left(X_{3}\right)=4$ and $\rho\left(X_{5}\right)=3$. Every variety given above becomes complete. From now on, we denote the compactified varieties with the same symbols.
3.7. We put $X=X_{3}$ and $W=X_{5}$. this flopping contraction is locally the simplest flopping contraction. We add the wall $\left\langle e_{1}, e_{3}\right\rangle$ to Δ_{3} and define it as Δ_{7}. More precisely, we remove the cone $\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle$ from Δ_{3} and add the new cones $\left\langle e_{1}, e_{3}, e_{5}\right\rangle,\left\langle e_{1}, e_{5}, e_{6}\right\rangle$. Then $X_{7}:=X\left(\Delta_{7}\right)$ is a non-singular projective variety with $\rho\left(X_{7}\right)=5$. We note that X_{7} is also obtained from Y by 4 -times blowing-ups with smooth centers: $X_{7} \longrightarrow X_{13} \longrightarrow X_{12} \longrightarrow X_{11} \longrightarrow Y$. The next picture (Figure 6) helps us to check it.

Figure 6
3.8. By replacing the wall $\left\langle e_{2}, e_{5}\right\rangle$ in Δ_{7} with $\left\langle e_{3}, e_{7}\right\rangle$, we obtain $X_{8}=$ $X\left(\Delta_{8}\right)$ (see Figure 7). More precisely, we remove the cones $\left\langle e_{2}, e_{3}, e_{5}\right\rangle$ and $\left\langle e_{2}, e_{5}, e_{7}\right\rangle$ from Δ_{7} and add the new cones $\left\langle e_{2}, e_{3}, e_{7}\right\rangle$ and $\left\langle e_{3}, e_{5}, e_{7}\right\rangle$.

Figure 7
It is easy to check that X_{8} is not projective (see the proof of the non-projectivity of X_{6}). Note that X_{8} is non-singular. So, X_{8} is an example of non-singular non-projective complete varieties. It is very similar to Oda's example of non-singular non-projective 3 -folds (see [O, p. 93 Example]).

We remove the wall $\left\langle e_{3}, e_{7}\right\rangle$ from Δ_{8}. This means that the cones $\left\langle e_{2}, e_{3}, e_{7}\right\rangle$ and $\left\langle e_{3}, e_{5}, e_{7}\right\rangle$ from Δ_{8} and add a new cone $\left\langle e_{2}, e_{3}, e_{5}, e_{7}\right\rangle$. We put it as Δ_{9} (see Figure 8).

Figure 8
Then

is the simplest flop. Note that X_{8} is projective over X_{9}. However, X_{8} and X_{9} are not projective. This example shows that the torus invariant curve $\mathbb{P}^{1} \simeq V\left(\left\langle e_{2}, e_{5}\right\rangle\right)$ on X_{7} does not span any extremal rays of $N E\left(X_{7}\right)$ but $N E\left(X_{7} / X_{9}\right)=\mathbb{R}_{\geq 0}\left[V\left(\left\langle e_{2}, e_{5}\right\rangle\right)\right]$.
3.9. We remove the 3 -dimensional cone $\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle$ from Δ_{3} and Δ_{5}. Note that we do not remove the proper faces of $\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle$. Then we obtain $X \backslash P$ and $W \backslash \varphi(P)$, where P is the only one ordinary double point of X. We put $\varphi^{0}: X^{0}:=X \backslash P \longrightarrow W^{0}:=W \backslash \varphi(P)$. Note that X^{0} is a non-singular quasi-projective toric variety.

We claim that $\rho\left(X^{0} / W^{0}\right)=2$. If $\rho\left(X^{0} / W^{0}\right)=1$, then the flopping locus is $\mathbb{P}^{1} \amalg \mathbb{P}^{1}$. It is a contradiction since the flopping locus must be irreducible when the variety is \mathbb{Q}-factorial (see [Fj, Theorem 3.2]). So, we obtain $\rho\left(X^{0} / W^{0}\right)=2$. We remove the cones $\left\langle e_{1}, e_{3}, e_{5}\right\rangle$ and $\left\langle e_{1}, e_{5}, e_{6}\right\rangle$ from Δ_{8} and add a new cone $\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle$. We define this new fan as Δ_{10} (see Figure 9).

Figure 9
By flopping one \mathbb{P}^{1} on X^{0} over W^{0}, we obtain $X_{10}^{0}:=X\left(\Delta_{10}^{0}\right)$, where Δ_{10}^{0} is $\Delta_{10} \backslash\left\langle e_{1}, e_{3}, e_{5}, e_{6}\right\rangle$. Thus, X_{10}^{0} is quasi-projective. It is easy to check that X_{10} is not projective. We put $V_{1}:=X_{6}$ and $Z:=X_{10}$. So, $X_{3} \rightarrow X_{10}$ is the desired flop in (9) in Example 2.1. It is obvious what X^{+}and V_{2} are. Thus, we finish the construction.
3.10. Finally, we draw a big diagram (see Figure 10).

Figure 10

We have the following properties:
(a) $Y \simeq \mathbb{P}^{3}$,
(b) X_{6}, X_{8}, X_{9}, and X_{10} are non-projective and all the others are projective,
(c) $X_{11}, X_{12}, X_{13}, X_{7}$ and X_{8} are non-singular,
(d) $X_{3} \rightarrow X_{10}$ and $X_{7} \rightarrow X_{8}$ are the simplest flops,
(e) $\rho(Y)=1, \rho\left(X_{1}\right)=\rho\left(X_{4}\right)=\rho\left(X_{11}\right)=2, \rho\left(X_{2}\right)=\rho\left(X_{5}\right)=$ $\rho\left(X_{12}\right)=3, \rho\left(X_{3}\right)=\rho\left(X_{13}\right)=4$, and $\rho\left(X_{7}\right)=5$.

4. Supplement

The following is a supplementary remark.
Remark 4.1. Let $f: X \longrightarrow Y$ be a toric extremal contraction, that is, f is a projective surjective toric morphism with connected fibers and $\rho(X / Y)=1$. To investigate f, we can assume that X and Y are complete without loss of generality by [Fj, Theorems 2.10 and 2.11]. Let V be an open toric subvariety of Y and $U:=f^{-1}(V)$. Assume that $\varphi:=\left.f\right|_{U}: U \longrightarrow V$ is nontrivial. If X is \mathbb{Q}-factorial, then $\operatorname{Pic}(X) \otimes \mathbb{Q} \longrightarrow \operatorname{Pic}(U) \otimes \mathbb{Q}$ is surjective. So, by taking the dual, we obtain that $\rho(U / V)=\rho(X / Y)=1$. However, if X is not \mathbb{Q}-factorial, then $\rho(U / V)$ is not necessarily one. See Example 2.1 (8). This simple observation implies that \mathbb{Q}-factoriality is a very strong condition and it is difficult to describe f without \mathbb{Q}-factoriality.

References

[Fj] O. Fujino, Equivariant completions of toric contraction morphisms, preprint (2003), the latest version is available at my homepage.
[FS] O. Fujino and H. Sato, Introduction to the toric Mori theory, preprint, October 2003, a revised version of math.AG/0307180.
[Fl] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.
[O] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Translated from the Japanese. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15. Springer-Verlag, Berlin, 1988.
[R] M. Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol.II, 395-418, Progr. Math., 36, Birkhäuser Boston, MA, 1983.

Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp
Current address: Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 USA

E-mail address: fujino@math.ias.edu
Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Оh-Okayama, Meguro-ku, Tokyo 152-8551, Japan

E-mail address: hirosato@math.titech.ac.jp

[^0]: Date: 2003/11/27.
 1991 Mathematics Subject Classification. Primary 14M25; Secondary 14E30.
 Key words and phrases. toric Mori theory, flop, \mathbb{Q}-factorial, non-projective.
 This paper grew out of the second author's handwritten pictures.

