AN EXAMPLE OF TORIC FLOPS (PRIVATE NOTE)

OSAMU FUJINO AND HIROSHI SATO

ABSTRACT. We construct an example of global toric 3-dimensional terminal flops that has interesting properties.

CONTENTS

1.	Introduction	1
2.	An example of toric flops	1
3.	Construction	2
4.	Supplement	10
References		10

1. INTRODUCTION

We explain examples of toric contraction morphisms. There are no theorems in this paper. The main purpose is to construct an example of 3-dimensional (global) toric terminal flops that has interesting properties. We describe it in details. We treat non-Q-factorial toric varieties. So, various new phenomena happen even in the toric category. For the toric Mori theory for non-Q-factorial varieties, see [Fj]. We use the same notation as in [Fj] and [FS].

2. An example of toric flops

Example 2.1 (Global toric 3-dimensional terminal flop). We have the following toric flopping diagram;

Date: 2003/11/27.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14M25; Secondary 14E30. Key words and phrases. toric Mori theory, flop, Q-factorial, non-projective. This paper grew out of the second author's handwritten pictures.

such that

- (1) X, X^+ and W are all projective toric 3-folds,
- (2) $\rho(X/W) = \rho(X^+/W) = 1$, $\rho(X) = 4$, and $\rho(W) = 3$,
- (3) K_X (resp. K_{X^+}) is Cartier and φ -numerically trivial (resp. φ^+ numerically trivial), where $\varphi : X \longrightarrow W$ (resp. $\varphi^+ : X^+ \longrightarrow W$) is a small toric morphism,
- (4) X, X^+ and W have only terminal singularities, and
- (5) $\operatorname{Exc}(\varphi) = \mathbb{P}^1 \amalg \mathbb{P}^1$ and $\operatorname{Exc}(\varphi^+) = \mathbb{P}^1 \amalg \mathbb{P}^1$.

More precisely,

- (6) both SingX and SingX⁺ are only one ordinary double point, where SingX (resp. SingX⁺) is the singular locus of X (resp. X⁺). In particular, X and X⁺ are not Q-factorial,
- (7) the flop $X \rightarrow X^+$ is the union of two *simplest flops*, where the simplest flop means the flop described in [Fl, p.49–p.50]. So, W has three ordinary double points,
- (8) let P be the ordinary double point on X. Then $P \cap \text{Exc}(\varphi) = \emptyset$. Thus φ is an isomorphism around P. We put $X^0 := X \setminus P$ and $W^0 := W \setminus \varphi(P)$. Then X^0 is non-singular and $\rho(X^0/W^0) = 2$.
- (9) the flop $X \dashrightarrow X^+$ factors as follows:

Each step is the simplest flop. Every morphism is over W. We note that V_1 , V_2 and Z are not projective over W. However, every variety is projective over W^0 .

Note that the flopping locus is irreducible by Reid's description when X is \mathbb{Q} -factorial (see [R, (2.5) Corollary]). This example shows that it is difficult to study the behaviors of the toric contraction morphisms without \mathbb{Q} -factoriality. In this example, the flopping locus is contained in a non-singular open subset.

3. Construction

3.1. We fix $N \simeq \mathbb{Z}^3$. Let e_1 , e_2 and e_3 be the standard basis of \mathbb{Z}^3 . We put

$$e_4 = e_1 + e_2 + e_3 = (1, 1, 1),$$

$$e_5 = e_3 + e_4 = (1, 1, 2),$$

$$e_6 = e_1 + e_4 = (2, 1, 1),$$

$$e_7 = e_2 + e_4 = (1, 2, 1).$$

 $\mathbf{2}$

3.2. We consider the fan Δ_1 :

 $\Delta_1 = \{ \langle e_1, e_2, e_6 \rangle, \langle e_2, e_3, e_5 \rangle, \langle e_2, e_5, e_6 \rangle, \langle e_1, e_3, e_5, e_6 \rangle, \text{and their faces} \}.$ The picture is as follows (see Figure 1):

FIGURE 1

We put $\Delta_Y = \{ \langle e_1, e_2, e_3 \rangle$, and its faces $\}$ and $Y := X(\Delta_Y)$ (see Figure 2).

FIGURE 2

Then $f_1: X_1 := X(\Delta_1) \longrightarrow Y$ has the following properties:

- (1-i) X_1 is projective over Y,
- (1-ii) X_1 has only canonical (not terminal) singularities,
- (1-iii) $-K_{X_1}$ is ample over Y,

(1-iv) $\rho(X_1/Y) = 1$, and

(1-v) f_1 contracts a reducible divisor to a point.

The ampleness of $-K_{X_1}$ follows from the convexity of the roof of the shed of Δ_1 (see [R, (4.5) Proposition]). So, this is also an example of non-Q-factorial divisorial contraction (see [Fj, Example 4.1]).

3.3. We consider

$$\Delta_2 = \left\{ \begin{array}{cc} \langle e_1, e_3, e_5, e_6 \rangle, & \langle e_2, e_3, e_5 \rangle, & \langle e_1, e_2, e_6 \rangle, & \langle e_2, e_6, e_7 \rangle, \\ \langle e_2, e_5, e_7 \rangle, & \langle e_5, e_6, e_7 \rangle, & \text{and their faces} \end{array} \right\},$$

and

$$\Delta_{3} = \left\{ \begin{array}{l} \langle e_{1}, e_{3}, e_{5}, e_{6} \rangle, & \langle e_{2}, e_{3}, e_{5} \rangle, & \langle e_{1}, e_{2}, e_{6} \rangle, \\ \langle e_{2}, e_{6}, e_{7} \rangle, & \langle e_{2}, e_{5}, e_{7} \rangle, & \langle e_{4}, e_{5}, e_{6} \rangle, \\ \langle e_{4}, e_{6}, e_{7} \rangle, & \langle e_{4}, e_{5}, e_{7} \rangle, & \text{and their faces} \end{array} \right\}$$

Then $f_2: X_2 := X(\Delta_2) \longrightarrow X_1$ is a divisorial contraction such that (2-i) $-K_{X_2}$ is f_2 -ample,

(2-ii) $\rho(X_2/X_1) = 1$,

(2-iii) X_2 has log-terminal (not canonical) singularities.

See Figure 3 below.

FIGURE 3

The morphism $f_3: X_3 := X(\Delta_3) \longrightarrow X_2$ is also a divisorial contraction. It has the following properties:

- (3-i) $\operatorname{Sing} X_3$ is only one ordinary double point. In particular, X_3 has non- \mathbb{Q} -factorial terminal singularities,
- (3-ii) K_{X_3} is f_3 -ample, and

(3-iii)
$$\rho(X_3/X_2) = 1.$$

We note that $\rho(X_3/Y) = 3$.

3.4. We consider the following fans:

$$\Delta_4 = \left\{ \begin{array}{cc} \langle e_1, e_2, e_6, e_7 \rangle, & \langle e_1, e_3, e_5, e_6 \rangle, & \langle e_2, e_3, e_5, e_7 \rangle, \\ \langle e_5, e_6, e_7 \rangle, & \text{and their faces} \end{array} \right\},$$

and

$$\Delta_5 = \left\{ \begin{array}{cc} \langle e_1, e_2, e_6, e_7 \rangle, & \langle e_1, e_3, e_5, e_6 \rangle, & \langle e_2, e_3, e_5, e_7 \rangle, & \langle e_4, e_5, e_6 \rangle, \\ \langle e_4, e_6, e_7 \rangle, & \langle e_4, e_5, e_7 \rangle, & \text{and their faces} \end{array} \right\}$$

We put $f_5 : X_5 := X(\Delta_5) \longrightarrow X_4 := X(\Delta_4)$ and $\varphi : X_3 \longrightarrow X_5$. The pictures are as follows (see Figure 4):

4

FIGURE 4

Then $f_4: X_4 \longrightarrow Y$ is a divisorial contraction such that

(4-i) X_4 has log-terminal (not canonical) singularities,

(4-ii) $-K_{X_4}$ is f_4 -ample, and

(4-iii) $\rho(X_4/Y) = 1.$

The morphism $f_5 : X_5 \longrightarrow X_4$ is a divisorial contraction with the following properties:

- (5-i) K_{X_5} is f_5 -ample,
- (5-ii) $\rho(X_5/X_4) = 1$, and

(5-iii) X_5 has three ordinary double points.

Note that X_5 is projective over Y and $\rho(X_5/Y) = 2$.

3.5. We consider $\varphi : X := X_3 \longrightarrow W := X_5$. It is easy to check that $\operatorname{Exc}(\varphi) = \mathbb{P}^1 \amalg \mathbb{P}^1$. So, $1 \leq \rho(X/W) \leq 2$. If $\rho(X/W) = 2$, then we obtain an extremal contraction that contracts only one \mathbb{P}^1 . We put

$$\Delta_6 = \left\{ \begin{array}{cc} \langle e_1, e_3, e_5, e_6 \rangle, & \langle e_2, e_3, e_5, e_7 \rangle, & \langle e_4, e_5, e_6 \rangle, & \langle e_4, e_6, e_7 \rangle, \\ \langle e_4, e_5, e_7 \rangle, & \langle e_1, e_2, e_6 \rangle, & \langle e_2, e_6, e_7 \rangle, \\ \end{array} \right\}.$$

See the picture below (Figure 5).

FIGURE 5

We can easily check that $X_6 := X(\Delta_6)$ is not quasi-projective. We assume that it is quasi-projective. Then there exists a strict upper convex support function h. We note that

$$e_1 + e_5 = e_3 + e_6,$$

 $e_2 + e_6 = e_1 + e_7,$
 $e_3 + e_7 = e_2 + e_5.$

Thus, we obtain

$$h(e_1) + h(e_5) = h(e_3) + h(e_6),$$

$$h(e_2) + h(e_6) > h(e_1) + h(e_7),$$

$$h(e_3) + h(e_7) = h(e_2) + h(e_5).$$

This implies that

$$\sum_{i \neq 4} h(e_i) > \sum_{i \neq 4} h(e_i).$$

It is a contradiction. We checked that X_6 is not quasi-projective.

So, we do not obtain X_6 by an extremal contraction from X_3 over X_5 . This is the key point of this example. Thus $\rho(X_3/X_5) = 1$.

3.6. The above arguments work without any changes if we add $-e_4$ and compactify everything. In this case, $Y = \mathbb{P}^3$, $\rho(X_3) = 4$ and $\rho(X_5) = 3$. Every variety given above becomes complete. From now on, we denote the compactified varieties with the same symbols.

3.7. We put $X = X_3$ and $W = X_5$. this flopping contraction is locally the simplest flopping contraction. We add the wall $\langle e_1, e_3 \rangle$ to Δ_3 and define it as Δ_7 . More precisely, we remove the cone $\langle e_1, e_3, e_5, e_6 \rangle$ from Δ_3 and add the new cones $\langle e_1, e_3, e_5 \rangle$, $\langle e_1, e_5, e_6 \rangle$. Then $X_7 := X(\Delta_7)$ is a non-singular projective variety with $\rho(X_7) = 5$. We note that X_7 is also obtained from Y by 4-times blowing-ups with smooth centers: $X_7 \longrightarrow X_{13} \longrightarrow X_{12} \longrightarrow X_{11} \longrightarrow Y$. The next picture (Figure 6) helps us to check it.

FIGURE 6

3.8. By replacing the wall $\langle e_2, e_5 \rangle$ in Δ_7 with $\langle e_3, e_7 \rangle$, we obtain $X_8 = X(\Delta_8)$ (see Figure 7). More precisely, we remove the cones $\langle e_2, e_3, e_5 \rangle$ and $\langle e_2, e_5, e_7 \rangle$ from Δ_7 and add the new cones $\langle e_2, e_3, e_7 \rangle$ and $\langle e_3, e_5, e_7 \rangle$.

Figure 7

It is easy to check that X_8 is not projective (see the proof of the non-projectivity of X_6). Note that X_8 is non-singular. So, X_8 is an example of non-singular non-projective complete varieties. It is very similar to Oda's example of non-singular non-projective 3-folds (see [O, p.93 Example]).

We remove the wall $\langle e_3, e_7 \rangle$ from Δ_8 . This means that the cones $\langle e_2, e_3, e_7 \rangle$ and $\langle e_3, e_5, e_7 \rangle$ from Δ_8 and add a new cone $\langle e_2, e_3, e_5, e_7 \rangle$. We put it as Δ_9 (see Figure 8).

FIGURE 8

Then

$$\begin{array}{cccc} X_7 & -- \bullet & X_8 \\ \searrow & \swarrow \\ & X_9 \end{array}$$

is the simplest flop. Note that X_8 is projective over X_9 . However, X_8 and X_9 are not projective. This example shows that the torus invariant curve $\mathbb{P}^1 \simeq V(\langle e_2, e_5 \rangle)$ on X_7 does not span any extremal rays of $NE(X_7)$ but $NE(X_7/X_9) = \mathbb{R}_{>0}[V(\langle e_2, e_5 \rangle)]$.

3.9. We remove the 3-dimensional cone $\langle e_1, e_3, e_5, e_6 \rangle$ from Δ_3 and Δ_5 . Note that we do not remove the proper faces of $\langle e_1, e_3, e_5, e_6 \rangle$. Then we obtain $X \setminus P$ and $W \setminus \varphi(P)$, where P is the only one ordinary double point of X. We put $\varphi^0 : X^0 := X \setminus P \longrightarrow W^0 := W \setminus \varphi(P)$. Note that X^0 is a non-singular quasi-projective toric variety.

We claim that $\rho(X^0/W^0) = 2$. If $\rho(X^0/W^0) = 1$, then the flopping locus is $\mathbb{P}^1 \amalg \mathbb{P}^1$. It is a contradiction since the flopping locus must be irreducible when the variety is Q-factorial (see [Fj, Theorem 3.2]). So, we obtain $\rho(X^0/W^0) = 2$. We remove the cones $\langle e_1, e_3, e_5 \rangle$ and $\langle e_1, e_5, e_6 \rangle$ from Δ_8 and add a new cone $\langle e_1, e_3, e_5, e_6 \rangle$. We define this new fan as Δ_{10} (see Figure 9).

FIGURE 9

By flopping one \mathbb{P}^1 on X^0 over W^0 , we obtain $X_{10}^0 := X(\Delta_{10}^0)$, where Δ_{10}^0 is $\Delta_{10} \setminus \langle e_1, e_3, e_5, e_6 \rangle$. Thus, X_{10}^0 is quasi-projective. It is easy to check that X_{10} is not projective. We put $V_1 := X_6$ and $Z := X_{10}$. So, $X_3 \dashrightarrow X_{10}$ is the desired flop in (9) in Example 2.1. It is obvious what X^+ and V_2 are. Thus, we finish the construction.

3.10. Finally, we draw a big diagram (see Figure 10).

FIGURE 10

We have the following properties:

- (a) $Y \simeq \mathbb{P}^3$,
- (b) X_6, X_8, X_9 , and X_{10} are non-projective and all the others are projective,
- (c) $X_{11}, X_{12}, X_{13}, X_7$ and X_8 are non-singular,
- (d) $X_3 \dashrightarrow X_{10}$ and $X_7 \dashrightarrow X_8$ are the simplest flops,
- (e) $\rho(Y) = 1$, $\rho(X_1) = \rho(X_4) = \rho(X_{11}) = 2$, $\rho(X_2) = \rho(X_5) = \rho(X_{12}) = 3$, $\rho(X_3) = \rho(X_{13}) = 4$, and $\rho(X_7) = 5$.

4. Supplement

The following is a supplementary remark.

Remark 4.1. Let $f: X \longrightarrow Y$ be a toric extremal contraction, that is, f is a projective surjective toric morphism with connected fibers and $\rho(X/Y) = 1$. To investigate f, we can assume that X and Y are complete without loss of generality by [Fj, Theorems 2.10 and 2.11]. Let V be an open toric subvariety of Y and $U := f^{-1}(V)$. Assume that $\varphi := f|_U : U \longrightarrow V$ is nontrivial. If X is Q-factorial, then $\operatorname{Pic}(X) \otimes \mathbb{Q} \longrightarrow \operatorname{Pic}(U) \otimes \mathbb{Q}$ is surjective. So, by taking the dual, we obtain that $\rho(U/V) = \rho(X/Y) = 1$. However, if X is not Q-factorial, then $\rho(U/V)$ is not necessarily one. See Example 2.1 (8). This simple observation implies that Q-factoriality is a very strong condition and it is difficult to describe f without Q-factoriality.

References

- [Fj] O. Fujino, Equivariant completions of toric contraction morphisms, preprint (2003), the latest version is available at my homepage.
- [FS] O. Fujino and H. Sato, Introduction to the toric Mori theory, preprint, October 2003, a revised version of math.AG/0307180.
- [F1] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.
- [O] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Translated from the Japanese. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15. Springer-Verlag, Berlin, 1988.
- [R] M. Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol.II, 395–418, Progr. Math., 36, Birkhäuser Boston, MA, 1983.

Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp

CURRENT ADDRESS: INSTITUTE FOR ADVANCED STUDY, EINSTEIN DRIVE, PRINCETON, NJ 08540 USA

E-mail address: fujino@math.ias.edu

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, 2-12-1 OH-OKAYAMA, MEGURO-KU, TOKYO 152-8551, JAPAN *E-mail address*: hirosato@math.titech.ac.jp