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ABSTRACT. We construct an example of global toric 3-dimensional
terminal flops that has interesting properties.
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1. INTRODUCTION

We explain examples of toric contraction morphisms. There are no
theorems in this paper. The main purpose is to construct an exam-
ple of 3-dimensional (global) toric terminal flops that has interesting
properties. We describe it in details. We treat non-Q-factorial toric
varieties. So, various new phenomena happen even in the toric cate-
gory. For the toric Mori theory for non-Q-factorial varieties, see [Fjl.
We use the same notation as in [Fj] and [FS].

2. AN EXAMPLE OF TORIC FLOPS

Example 2.1 (Global toric 3-dimensional terminal flop). We have the
following toric flopping diagram;

X - Xt

N /
W
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such that

(1) X, X and W are all projective toric 3-folds,

(2) p(X/W) = p(XT/W) =1, p(X) =4, and p(W) =3,

(3) Kx (resp. Kx+) is Cartier and p-numerically trivial (resp. p*-
numerically trivial), where ¢ : X — W (resp. p* : XT —
W) is a small toric morphism,

(4) X, X and W have only terminal singularities, and

(5) Exc(p) =P I P! and Exc(o™) = P TP

More precisely,

(6) both SingX and SingX ™ are only one ordinary double point,
where Sing X (resp. SingX ™) is the singular locus of X (resp. X ™).
In particular, X and X' are not Q-factorial,

(7) the flop X --» X is the union of two simplest flops, where the
simplest flop means the flop described in [F1, p.49—p.50]. So, W
has three ordinary double points,

(8) let P be the ordinary double point on X. Then PNExc(p) = 0.
Thus ¢ is an isomorphism around P. We put X := X \ P and
WO := W\ ¢(P). Then X" is non-singular and p(X°/W°) = 2.

(9) the flop X --» X factors as follows:

X - Z - Xt
N\ 7 N\ /
Vi Va

Each step is the simplest flop. Every morphism is over W. We
note that Vi, V5 and Z are not projective over W. However,
every variety is projective over W,

Note that the flopping locus is irreducible by Reid’s description when
X is Q-factorial (see [R, (2.5) Corollary]). This example shows that it
is difficult to study the behaviors of the toric contraction morphisms
without Q-factoriality. In this example, the flopping locus is contained
in a non-singular open subset.

3. CONSTRUCTION

3.1. We fix N ~ Z3. Let e, e and e; be the standard basis of Z3. We
put
es =€ +es+e3=(1,1,1),
es =es+es=(1,1,2),
eg =e1+es=(2,1,1),
er =e9+e4=(1,2,1).
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3.2. We consider the fan Ay:
Al = {<€1, €2, 66>, <€2, €3, €5>, <€2, €5, 66)7 <€1, €3, €5, €6>, and their faces}.

The picture is as follows (see Figure 1):

€3

€5

€6

€1 Al €9

FIGURE 1

We put Ay = {{ey, 2, e3), and its faces} and Y := X (Ay) (see Fig-
ure 2).

€3

€1 AY ()]

FIGURE 2

Then f; : X; := X(A;) — Y has the following properties:

(1-1) X; is projective over Y,

(1-ii) X3 has only canonical (not terminal) singularities,

(1-iii) — K, is ample over Y,

(1-iv) p(X;/Y) =1, and

(1-v) fi contracts a reducible divisor to a point.
The ampleness of —Ky, follows from the convexity of the roof of the
shed of A; (see [R, (4.5) Proposition]). So, this is also an example of
non-Q-factorial divisorial contraction (see [Fj, Example 4.1]).

3.3. We consider

Ay :{ (e1,e3,€5,€6), (e2,e€3,€5), (€1, €2, €q6), (€a, €6, €7), }

(e9,e5,e7),  (es,eq,€7), and their faces ’
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and
<61763a65)66>7 <€27€3765>7 <61762766>7
Az = (62, €6, €7>, <€27 €5, €7>, (64, €5, €6>,
(e4,€6,€7), (eq,e5,e7), and their faces

Then fy : X5 := X(Ay) — X is a divisorial contraction such that
(2-1) —Kx, is fo-ample,
(241) p(Xa/ X)) = 1,

(2-iii) X5 has log-terminal (not canonical) singularities.

See Figure 3 below.

€3
e
€6 er €4
€1 A, €2 A

FIGURE 3

The morphism f3 : X3 := X(A3) — X3 is also a divisorial contrac-
tion. It has the following properties:
(3-1) SingX3 is only one ordinary double point. In particular, X3 has
non-Q-factorial terminal singularities,
(3-ii) Kx, is fs-ample, and
(3-iil) p(X3/X2) = 1.
We note that p(X3/Y) = 3.

3.4. We consider the following fans:
A4:{ (e1,€2,¢€6,€7), (e1,€3,€5,¢€6), (€2,€3,€5¢€7), }

(es5,€e6,e7), and their faces ’
and
Ar — <€1a62766767>a <€1763765a66>7 <627637€5767>7 <e4a65766>7
5 (€4, €6, €7), (e4,€5,€e7), and their faces ’

We put f5 @ X5 := X(A;) — Xy = X(Ay) and ¢ : X3 — X;.
The pictures are as follows (see Figure 4):
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As Ay
FIGURE 4

Then f, : X, — Y is a divisorial contraction such that
(4-1) X, has log-terminal (not canonical) singularities,
(4-ii)) —K, is fy-ample, and
(4-iii) p(X4/Y) = 1.
The morphism f5; : X5 — X, is a divisorial contraction with the
following properties:
(5-1) Kx, is fs-ample,
(5-ii) p(X5/X4) =1, and
(5-iii) X35 has three ordinary double points.
Note that X5 is projective over Y and p(X5/Y) = 2.

3.5. We consider ¢ : X := X3 — W = X;. It is easy to check that
Exc(p) = PPIIPL So, 1 < p(X/W) < 2. If p(X/W) = 2, then we
obtain an extremal contraction that contracts only one P*. We put

A — <61763765766>7 <€2763765767>7 <64,€5,€6>, <€4766767>7
6 (e4,€5,€7), (e1,ea,e6), (ea,eq,€7), and their faces

See the picture below (Figure 5).

Ag

FIGURE 5
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We can easily check that X4 := X (Ag) is not quasi-projective. We
assume that it is quasi-projective. Then there exists a strict upper
convex support function h. We note that

€1 + €5 = €3 + ¢,

€s +eg = e; + ey,

€3 + ey = e9 + es.
Thus, we obtain

This implies that
> hle) > hie).
i#4 i#4
It is a contradiction. We checked that Xjg is not quasi-projective.

So, we do not obtain X4 by an extremal contraction from X3 over
X5. This is the key point of this example. Thus p(X3/X5) = 1.

3.6. The above arguments work without any changes if we add —e, and
compactify everything. In this case, Y = P3, p(X3) = 4 and p(X;) = 3.
Every variety given above becomes complete. From now on, we denote
the compactified varieties with the same symbols.

3.7. We put X = X3 and W = Xj5. this flopping contraction is locally
the simplest flopping contraction. We add the wall (e1, e3) to Az and
define it as A;. More precisely, we remove the cone (eq, e3, €5, eg) from
Asz and add the new cones (ey, €3, e5), (e1,es5,€6). Then X7 := X (A7)
is a non-singular projective variety with p(X7) = 5. We note that X;
is also obtained from Y by 4-times blowing-ups with smooth centers:
X7 — X3 — X192 — X33 — Y. The next picture (Figure 6)
helps us to check it.
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Aq Aqz
FIGURE 6
3.8. By replacing the wall (e, e5) in A7 with (es, e7), we obtain Xg =

X (Ag) (see Figure 7). More precisely, we remove the cones (e, €3, e5)
and (es, e5, e7) from A7 and add the new cones (es, e3, e7) and (e, e5, e7).

Asg

FIGURE 7

It is easy to check that Xg is not projective (see the proof of the
non-projectivity of Xg). Note that Xg is non-singular. So, Xy is an
example of non-singular non-projective complete varieties. It is very
similar to Oda’s example of non-singular non-projective 3-folds (see [O,
p.93 Example]).
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We remove the wall (es,e7) from Ag. This means that the cones
(€9, e3,e7) and (es, 5, e7) from Ag and add a new cone (eq, €3, €5, 7).
We put it as Ag (see Figure 8).

Ay
FIGURE &8
Then
X7 - Xg
N /
Xy

is the simplest flop. Note that Xg is projective over X4. However,
Xg and Xy are not projective. This example shows that the torus

invariant curve P! ~ V({es,e5)) on X; does not span any extremal
rays of NE(X7) but NE(X7/X9) = Rzo[v<<€2,€5>)].

3.9. We remove the 3-dimensional cone (eq, e3, es5, €g) from Az and As.
Note that we do not remove the proper faces of {(e1, e3, es5, eg). Then we
obtain X \ P and W \ ¢(P), where P is the only one ordinary double
point of X. We put ¢ : X0 := X\ P — W := W\ ¢(P). Note that
XY is a non-singular quasi-projective toric variety.

We claim that p(X°/W?) = 2. If p(X°/W°) = 1, then the flopping
locus is P! II P!, It is a contradiction since the flopping locus must
be irreducible when the variety is Q-factorial (see [Fj, Theorem 3.2]).
So, we obtain p(X°/W°) = 2. We remove the cones (ey,e3,e5) and
(e1,es5,¢e6) from Ag and add a new cone (e, e3,e5,¢e5). We define this
new fan as Ay (see Figure 9).
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A10
FIGURE 9

By flopping one P! on X over W°, we obtain X}, := X (AY,), where
AY5 is Ajg \ {e1, e3, €5, ¢6). Thus, X}, is quasi-projective. It is easy to
check that Xig is not projective. We put V; := X and Z := X;q. So,
X3 --+ X is the desired flop in (9) in Example 2.1. Tt is obvious what
X' and V, are. Thus, we finish the construction.

3.10. Finally, we draw a big diagram (see Figure 10).

/Xll = X12 = X13 \

Y~ X1 - X2 X3:X<7X7 Xg
\ / S
X
X4% X5 :W

X6 DE— XlO

FIGURE 10

We have the following properties:

(a) Y ~ P3,

(b) Xs, X3, Xo, and Xjo are non-projective and all the others are
projective,

(¢) Xi1, X12, X13, X7 and Xg are non-singular,

(d) X3 --+ Xjp and X7 --» Xg are the simplest flops,

(e) p(Y) = 1, p(X1) = p(Xy4) = p(Xn) = 2, p(X3) = p(X5) =
p(Xi2) = 3, p(X3) = p(Xi3) = 4, and p(X7) = 5.
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4. SUPPLEMENT
The following is a supplementary remark.

Remark 4.1. Let f : X — Y be a toric extremal contraction, that
is, f is a projective surjective toric morphism with connected fibers
and p(X/Y) = 1. To investigate f, we can assume that X and Y are
complete without loss of generality by [Fj, Theorems 2.10 and 2.11].
Let V be an open toric subvariety of Y and U := f~1(V). Assume
that ¢ := fly : U — V is nontrivial. If X is Q-factorial, then
Pic(X) ® Q — Pic(U) ® Q is surjective. So, by taking the dual, we
obtain that p(U/V) = p(X/Y) = 1. However, if X is not Q-factorial,
then p(U/V') is not necessarily one. See Example 2.1 (8). This simple
observation implies that Q-factoriality is a very strong condition and
it is difficult to describe f without Q-factoriality.
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