ERRATA AND ADDENDA
 2004/5/11

OSAMU FUJINO

This is a supplement to $[\mathrm{ST}]$ and $[\mathrm{W}]$. I may sometimes update this note.
(1) In [W, Example 2.4],

$$
X:=\left\{(x, y, z, w) \in \mathbb{C}^{4} \mid x y+z w+z^{3}+w^{3}=0\right\}
$$

Add $"=0$ ".
(2) In page 6, line 9 in [ST], we add the following new lemma after "... the index i ".

Lemma 1. By Remark 2.9, we have $a\left(E, S_{i}, B_{S_{i}}\right) \leq a\left(E, S_{i+1}, B_{S_{i+1}}\right)$ for every valuation E. By [FA, 7.4.4 Lemma] and shifting the index i, we can assume that $a\left(E, S_{i}, B_{S_{i}}\right)=a\left(E, S_{i+1}, B_{S_{i+1}}\right)$ for every i if E is a divisor on both S_{i} and S_{i+1}.
(3) It is better to replace Remark 2.9 in [ST] with the following lemma.

Lemma 2. By adjunction, we have

$$
a\left(E, S_{i}, B_{S_{i}}\right) \leq a\left(E, S_{i+1}, B_{S_{i+1}}\right),
$$

for every valuation E. In particular,
totaldiscrep $\left(S_{i}, B_{S_{i}}\right) \leq \operatorname{totaldiscrep}\left(S_{i+1}, B_{S_{i+1}}\right)$
for every i.
Sketch of the proof. We can take a common log resolution

such that $Y \longrightarrow X_{i}$ and $Y \longrightarrow X_{i+1}$ are isomorphisms over the generic points of all CLC's by the resolution lemma (see [W, Section 5]). We note that $X_{i} \rightarrow X_{i+1}$ is an isomorphism at every generic point of CLC's. Apply the negativity lemma to

This note may create new errors.
the flipping diagram $X_{i} \longrightarrow Z_{i} \longleftarrow X_{i+1}$ and compare discrepancies. Then, by restricting them to S_{i} and S_{i+1}, we obtain the desired inequalities of discrepancies.
(4) Remark 1.1 in [W] should be replaced by the following remark.

Remark 3. In [Ma, Chapter 4], Matsuki explains various kinds of singularities in details. Unfortunately he made a mistake of using Theorem 5.1 with normal crossing divisors where it is only valid with simple normal crossing divisors. Accordingly, when we read [Ma] we have to replace normal crossings with simple normal crossings in the definition of dlt and so forth. See Definitions 2.8, 7.1, Remarks 7.6, 10.4, and [Ma, Definition 4-3-2 (2")].
(5) Alexeev pointed out that [FA, (4.12.2.1)] is wrong. The following example contradicts [FA, (4.12.1.3), (4.12.2.1)].

Example 4. Let $X=\mathbb{P}^{2}, B=\frac{2}{3} L$, where L is a line on X. Let P be any point on L. First, blow up X at P. Then we obtain an exceptional divisor E_{P} such that $a\left(E_{P}, X, B\right)=\frac{1}{3}$. Let L^{\prime} be the strict transform of L. Next, take a blow-up at $L^{\prime} \cap E_{P}$. Then we obtain an exceptional divisor F_{P} whose discrepancy $a\left(F_{P}, X, B\right)=\frac{2}{3}$. On the other hand, it is easy to see that $\operatorname{discrep}(X, B)=\frac{1}{3}$. Thus, $\min \{1,1+\operatorname{discrep}(X, B)\}=1$.

Remark 5. By this example, Lemma 2.1, which is the same as [FA, (4.12.2.1)], in my paper: "Termination of 4 -fold canonical flips" is incorrect. So, the arguments in my paper become nonsense. Note that [FA, 4.12.1 Lemma] originates from Corollary 3.2 in Kollár's paper: Flops. Lemma 2.2 in Matsuki's paper (Termination of flops for 4 -folds) is a copy of Corollary 3.2 in Flops. We think that a right formulation is [KM, Proposition 2.36 (2)].
(6) It is better to mention log discrepancies in [W].

Remark 6. We put $a_{\ell}(E, X, D)=1+a(E, X, D)$ and call it a log discrepancy. We define

$$
\operatorname{logdiscrep}(X, D)=1+\operatorname{discrep}(X, D)
$$

In some formulas, log discrepancies behave much better than discrepancies.
(7) We add one remark on $[\mathrm{KMM}]$.

Remark 7. We note the following Matsuki's comment in [Ma, Remark 14-2-7]. In [KMM] at the end of Example 5-2-5 there is a slightly misleading statement: "The morphisms given in Example 5-2-4 and 5-2-5 are the only contractions of flipping type from \mathbb{Q}-factorial terminal toric varieties of dimension 3 by the theorem of White-Frumkin." This is, however, true only under the assumption that the extremal rational curve passes only one singular point.
(8) We add one remark on [KMM] and [Ma, Chapter 14].

Remark 8. In [KMM, §5-2] and [Ma, Chapter 14], toric varieties are investigated from the Mori theoretic viewpoint. The toric Mori theory originates from Reid's beautiful paper [R]. Chapter 14 in [Ma] corrects some minor errors in $[\mathrm{R}]$. In $[\mathrm{KMM}]$ and [Ma], the toric Mori theory is formulated for toric projective morphism $f: X \longrightarrow S$. We note that X is always assumed to be complete. So, the statement at the end of [Ma, Proposition 14-1-5] is nonsense. Matuski wrote: "In the relative setting for statement (ii), such a vector v_{i}^{\prime} may not exist at all. If that is the case, then the two ($n-1$)-dimensional cones $w_{i, n}$ and $w_{i, n+1}$ are on the boundary of Δ." However, Δ has no boundary since Δ is a complete fan in [Ma]. For the details of the toric Mori theory for the case when X is not complete, see [FS] (Introduction to the toric Mori theory), [F1] (Equivariant completions of toric contraction morphisms), and Sato's paper: Combinatorial descriptions of toric extremal contractions.
(9) One more remark on $[\mathrm{KMM}]$.

Remark 9. Theorem 6-1-6 in [KMM] is [Kawatama, Theorem 4.3] (Pluricanonical systems on minimal algebraic varieties). We use the same notation as in the proof of Theorem 4.3. By Theorem 3.2, ${ }^{\prime} E_{1}^{p, q} \longrightarrow{ }^{\prime \prime} E_{1}^{p, q}$ are zero for all p and q. This just implies that

$$
\operatorname{Gr}^{p} H^{p+q}\left(X, \mathcal{O}_{X}(-\ulcorner L\urcorner)\right) \longrightarrow \operatorname{Gr}^{p} H^{p+q}\left(D, \mathcal{O}_{D}(-\ulcorner L\urcorner)\right)
$$

are zero for all p and q. Kawamata said that we need one more Hodge theoretic argument to prove

$$
H^{i}\left(X, \mathcal{O}_{X}(-\ulcorner L\urcorner)\right) \longrightarrow H^{i}\left(D, \mathcal{O}_{D}(-\ulcorner L\urcorner)\right)
$$

are zero for all i.

References

[ST] O. Fujino, Special termination and reduction theorem, 2004/4/21.
[W] O. Fujino, What is log terminal ?, 2004/4/23.
Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp

