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Abstract. We classify three-dimensional terminal toric flips.

1. Introduction

This paper is a supplement to [M, Example-Claim 14-2-5]. We clas-
sify three-dimensional terminal toric flips. The proof is a consequence
of the well-known terminal lemma (cf. [O, §1.6]). The classification of
three-dimensional flipping contractions from Q-factorial terminal toric
threefolds was stated in [KMM]. However, there is no available proof
in the literature. It was claimed in [M, Example-Claim 14-2-5] that the
classification was only complete with the extra assumption of the ex-
tremal rational curve passing through only one singular point. K. Mat-
suki (cf. [M, Remark 14-2-7 (ii)]) also stated an example, which would
not fit into the classification, with the extremal rational curve passing
through two singular points. Recently Y. Kawamata pointed out that
Matsuki’s example is not correct, having a canonical singularity which
is not terminal. In this paper, we prove that the original classification is
indeed complete without any extra assumption. Moreover, we classify
three-dimensional flipping contractions from non-Q-factorial terminal
toric threefolds.

Acknowledgments. I would like to thank Professor Kenji Matsuki,
who informed me that Professor Yujiro Kawamata pointed out an error
in [M, Remark 14-2-7]. I also like to thank Doctor Hiroshi Sato for
comments.

Notation. Let vi ∈ N ' Z3 for 1 ≤ i ≤ k. Then the symbol
〈v1, v2, · · · , vk〉 denotes the cone R≥0v1 + R≥0v2 + · · · + R≥0vk in NR.
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2. Classification of three-dimensional terminal toric

flips

First, we classify three-dimensional flipping contractions from Q-
factorial terminal toric threefolds. The next theorem was stated in
[KMM] without proof at the end of Example 5-2-5.

Theorem 2.1 (Three-dimensional Q-factorial terminal toric flips). Let

ϕR : X(∆) −→ Y (∆Y ) be the contraction morphism of an extremal ray

R with KX · R < 0 of flipping type from a toric threefold with only

Q-factorial and terminal singularities. Assume that Y is affine. Then

we have the following description of the flipping contraction:
There exist two three-dimensional cones

τ4 = 〈v1, v2, v3〉 ∈ ∆,

τ3 = 〈v1, v2, v4〉 ∈ ∆,

sharing the two-dimensional wall

w = 〈v1, v2〉

such that [V (w)] ∈ R and such that for some Z-coordinate of N ' Z3,

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1),

v4 = (a, r − a,−r),

or

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1),

v4 = (a, 1,−r),

where 0 < a < r and gcd(r, a) = 1. Therefore,

∆ = {τ3, τ4, and their faces},

and

∆Y = {〈v1, v2, v3, v4〉, and its faces}.

Proof. By [M, Example-Claim 14-2-5], it is sufficient to prove that the
(unique) rational curve that is contracted passes through only one sin-
gular point of X. Without loss of generality, we may assume that
v1 = (1, 0, 0) and v2 = (0, 1, 0) since 〈v1, v2〉 is a two-dimensional non-
singular cone.

Seeking a contradiction, we assume that both 〈v1, v2, v3〉 and 〈v1, v2, v4〉
are singular. By the terminal lemma ([O, §1.6]), we may assume that
v3 = (1, p, q) or v3 = (p, q − p, q), where 0 < p < q and gcd(p, q) = 1.
We note that p 6= 0, q since 〈v1, v2, v3〉 is singular. We can write
v4 = av1 + bv2 + c(k, l,−1) with 0 < a < c, 0 < b < c, gcd(a, c) = 1,
gcd(b, c) = 1, and k, l ∈ Z. We note that we assumed that 〈v1, v2, v4〉
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is singular. By the terminal lemma again, at least one of a − 1, b − 1
and a + b is divisible by c. Therefore, a = 1, b = 1, or a + b = c.

Case 1. From now on, we assume that v3 = (1, p, q). In this case,
v1, v2, v3 are on the plane

x + y −
p

q
z = 1.

Subcase 1 (a = 1). In this case, v4 = (1 + ck, b + cl,−c). We have
c

q
v3 + v4 = (1 + ck +

c

q
, b + cl +

p

q
c, 0).

Thus, we obtain the following three inequalities:

(1) 1 + ck +
c

q
> 0,

(2) b + cl +
p

q
c > 0,

and

(3) 1 + ck + b + cl +
p

q
c < 1.

The inequalities (1) and (2) follow from the condition that ϕR is small.
The condition KX · R < 0 implies the inequality (3). By (2) and (3),
we have k ≤ −1. Thus

0 < 1 + ck +
c

q
≤ 1 − c +

c

q
≤ 1 −

1

2
c ≤ 0

by (1). It is a contradiction.

Remark 2.2. If the reader understand Subcase 1, then he does not
have to read the other subcases since the arguments are very similar.

Subcase 2 (b = 1). In this case, v4 = (a + ck, 1 + cl,−c). We have
c

q
v3 + v4 = (a + ck +

c

q
, 1 + cl +

p

q
c, 0).

Thus, we obtain the following three inequalities:

(4) a + ck +
c

q
> 0,

(5) 1 + cl +
p

q
c > 0,

and

(6) a + ck + 1 + cl +
p

q
c < 1.
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By (5) and (6), k ≤ −1. So, k = −1 by (4). By (5), we know that
l ≥ −1. Therefore, l = 0 or −1 by (6).

First, we assume that l = 0. Then we get

a − c +
p

q
c < 0

by (6) and

a − c +
c

q
> 0

by (4). It is a contradiction.
Next, we assume that l = −1. Then we obtain

a − c +
c

q
> 0

by (4) and

1 − c +
p

q
c > 0

by (5). These two inequalities imply that

1 + a − 2c +
p + 1

q
c > 0.

It is a contradiction.

Subcase 3 (a + b = c). In this case, v4 = (a + ck, c − a + cl,−c). We
have

c

q
v3 + v4 = (a + ck +

c

q
, c − a + cl +

p

q
c, 0).

Thus, we obtain the following three inequalities:

(7) a + ck +
c

q
> 0,

(8) c − a + cl +
p

q
c > 0,

and

(9) a + ck + c − a + cl +
p

q
c < 1.

By (8) and (9), k ≤ −1. So, k = −1 by (7). By (8), we have l ≥ −1.
Therefore, l = 0 or −1 by (9).

First, we assume that l = 0. Then we have
p

q
c < 1

by (9) and

a − c +
c

q
> 0
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by (7). Thus,

1 >
p

q
c ≥

c

q
> c − a ≥ 1.

It is a contradiction.
Next, we assume that l = −1. Then we obtain

a − c +
c

q
> 0

by (7) and

−a +
p

q
c > 0

by (8). By adding these two inequalities, we have

−c +
p + 1

q
c > 0.

It is a contradiction.

Case 2. From now on, we assume that v3 = (p, q − p, q). In this case,
v1, v2, v3 are on the plane

x + y −
q − 1

q
z = 1.

Subcase 4 (a = 1). In this case, v4 = (1 + ck, b + cl,−c). We have

c

q
v3 + v4 = (1 + ck +

p

q
c, b + cl +

q − p

q
c, 0).

Thus, we obtain the following three inequalities:

(10) 1 + ck +
p

q
c > 0,

(11) b + cl +
q − p

q
c > 0,

and

(12) 1 + ck + b + cl +
q − 1

q
c < 1.

By (11) and (12), k ≤ −1. So, k = −1 by (10). By (11) and (12),we
know that l = 0 or −1.

First, we assume that l = 0. Then we get

b − c +
q − 1

q
c < 0

by (12) and

1 − c +
p

q
c > 0

by (10). It is a contradiction.
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Next, we assume that l = −1. Then we have

1 − c +
p

q
c > 0

by (10) and

b − c +
q − p

q
c > 0

by (11). By adding these two inequalities, we obtain

1 + b − c > 0.

It is a contradiction.

Subcase 5 (b = 1). If we replace v1 (resp. v2) with v2 (resp. v1), then
the same proof as in Subcase 4 works.

Subcase 6 (a + b = c). In this case, v4 = (a + ck, c − a + cl,−c). We
have

c

q
v3 + v4 = (a + ck +

p

q
c, c − a + cl +

q − p

q
c, 0).

Thus, we obtain the following three inequalities:

(13) a + ck +
p

q
c > 0,

(14) c − a + cl +
q − p

q
c > 0,

and

(15) a + ck + c − a + cl +
q − 1

q
c < 1.

By (14) and (15), k ≤ −1. So, k = −1 by (13). By (14), we have that
l ≥ −1. Thus, l = 0 or −1 by (15).

First, we assume that l = 0. Then we have

a − c +
p

q
c > 0

by (13) and
q − 1

q
c < 1

by (15). It is a contradiction since c − a ≥ 1 and p ≤ q − 1.
Next, we assume that l = −1. Then we get

a − c +
p

q
c > 0

by (13) and

−a +
q − p

q
c > 0
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by (14). By adding these two inequalities, we obtain

0 = a − c +
p

q
c − a +

q − p

q
c > 0.

It is a contradiction.

Therefore, we prove that at least one of 〈v1, v2, v3〉 and 〈v1, v2, v4〉 is
non-singular. Thus, we have the desired description of ϕR : X −→ Y
by [M, Example-Claim 14-2-5]. �

Remark 2.3. The example in [M, Remark 14-2-7 (ii)] is not true.
The cone 〈v1, v2, v3〉 is not terminal. The cone 〈v1, v2, v3〉 has canonical
singularities.

Remark 2.4. The source space X in Theorem 2.1 is always singular.

Remark 2.5. In [M, Example-Claim 14-2-5], X is assumed to be com-

plete. It is because contraction morphisms of extremal rays are con-
structed only for complete varieties in [R] and [M, Chapter 14]. For the
details of non-complete toric varieties, see [FS1], [F], and [S].

Next, we classify three-dimensional flipping contractions from non-
Q-factorial terminal toric threefolds.

Theorem 2.6 (Three-dimensional non-Q-factorial terminal toric flips).
Let ϕR : X(∆) −→ Y (∆Y ) be the contraction morphism of an extremal

ray R with KX · R < 0 of flipping type from a toric threefold with

only terminal singularities. Assume that X is not Q-factorial and Y is

affine. Then we have the following description of the flipping contrac-

tion for some Z-coordinate of N ' Z3:
We put

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1),

v5 = (−1, 1, 1), v6 = (1,−1, 1).

Then, we have

∆ = {〈v1, v2, v3, v5〉, 〈v1, v2, v4〉, and their faces},

and

∆Y = {〈v1, v2, v3, v4, v5〉, and its faces},

or

∆ = {〈v1, v2, v3, v6〉, 〈v1, v2, v4〉, and their faces},

and

∆Y = {〈v1, v2, v3, v4, v6〉, and its faces},

where v4 = (a, r−a,−r) or (a, 1,−r) with 0 < a < r and gcd(a, r) = 1.
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Sketch of the proof. First, we note that a non-Q-factorial terminal toric
three-dimensional singularity is an ODP.

Next, let X ′ −→ X be a small resolution of an ODP on X. Then
ρ(X ′/Y ) = 2. So, there exists another contraction f : X ′ −→ Z over Y .
It is easy to see that f is a flipping contraction such that the (unique)
flipping curve passes through at most one singular point. By repeating
the above argument, this singularity is not an ODP (cf. Remark 2.4).
So, it is a quotient singularity. Thus, we know that the (unique) flipping
curve has to pass through a quotient singularity.

Finally, we obtain the desired description from [M, Example-Claim
14-2-5] (cf. Theorem 2.1). �

Remark 2.7. In this case, it is easy to check that the flipped variety
X+ is always singular and ρ(X+/Y ) = 2.

Remark 2.8. In general, contraction morphisms from non-Q-factorial
toric varieties do not behave well. See examples in [F, Section 4] and
[FS2].
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