Complex Analysis - Mid-term exam - Answers

Exercise 1 (10\%): Compute $\operatorname{Arg}(-5+5 \sqrt{3} i)$.
Answer:
We have:

$$
|z|=\sqrt{5^{2}+(5 \sqrt{3})^{2}}=\sqrt{25+25 \times 3}=\sqrt{100}=10
$$

so

$$
\frac{z}{|z|}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i=e^{\frac{2 \pi}{3} i}
$$

and finally

$$
\operatorname{Arg}(-5+5 \sqrt{3} i)=\frac{2 \pi}{3}
$$

Exercise $2(10 \%)$: See other sheet.
Exercise 3 (20\%): Solve the equations or system of equations (in \mathbb{C}):

1. $x^{3}=2 i$.

Answer:
We wants to compute the cube roots of $2 i$. It is easy to compute the polar form of $2 i$. Indeed, $|2 i|=2$ and $\operatorname{Arg}(i)=\pi / 2$:

$$
2 i=2 e^{\frac{\pi}{2} i} .
$$

We know that a nonzero complex number admits exactly three cube roots. These cube roots are

$$
\begin{gathered}
z_{0}=\sqrt[3]{2} e^{\frac{\pi}{3} i}=\sqrt[3]{2} e^{\frac{\pi}{6} i}=\sqrt[3]{2} \cos \frac{\pi}{6}+\sqrt[3]{2}\left(\sin \frac{\pi}{6}\right) i=\frac{\sqrt[3]{2} \times \sqrt{3}}{2}+\frac{\sqrt[3]{2}}{2} i ; \\
z_{1}=\sqrt[3]{2} e^{\frac{\pi}{2}+2 \pi} 3 \\
z_{2}=\sqrt[3]{2} e^{\frac{5 \pi}{6} i}=\sqrt[3]{2} \cos \frac{5 \pi}{6}+\sqrt[3]{2}\left(\sin \frac{5 \pi}{6}\right) i=-\frac{\sqrt[3]{2} \times \sqrt{3}}{2}+\frac{\sqrt[3]{2}}{2} i ; \\
\sqrt[3]{2} e^{\frac{9 \pi}{6} i}=\sqrt[3]{2} e^{\frac{3 \pi}{2} i}=\sqrt[3]{2} \cos \frac{3 \pi}{2}+\sqrt[3]{2}\left(\sin \frac{3 \pi}{2}\right) i=-\sqrt[3]{2} i
\end{gathered}
$$

The equation $x^{3}=2 i$ has three solutions:

$$
\frac{\sqrt[3]{2} \times \sqrt{3}}{2}+\frac{\sqrt[3]{2}}{2} i \quad ; \quad \frac{-\sqrt[3]{2} \times \sqrt{3}}{2}+\frac{\sqrt[3]{2}}{2} i \quad ; \quad-\sqrt[3]{2} i
$$

2. $\left\{\begin{array}{l}z_{1}+z_{2}=3+i \\ z_{1} z_{2}=2 . \\ \text { Answer: }\end{array}\right.$

We know from the course that z_{1} and z_{2} are solutions of this system if and only if they are the two roots of the quadratic polynomial

$$
z^{2}-(3+i) z+2
$$

To compute its roots, let us compute its discriminant:

$$
\Delta=(3+i)^{2}-4 \times 1 \times 2=3^{2}+i^{2}+2 \times 3 \times i-8=9-1+6 i-8=6 i .
$$

Then the polar form of Δ is

$$
\Delta=6 e^{\frac{\pi}{2} i}
$$

and once again from the course it admits two square roots

$$
\delta_{0}=\sqrt{6} e^{\frac{\pi}{2} i}=\sqrt{6} e^{\frac{\pi}{4} i}=\sqrt{6} \cos \frac{\pi}{4}+\sqrt{6}\left(\sin \frac{\pi}{4}\right) i=\sqrt{3}+\sqrt{3} i
$$

and

$$
\delta_{1}=\sqrt{6} e^{\frac{\pi}{2}+2 \pi} 2=\sqrt{6} e^{\frac{5 \pi}{4} i}=\sqrt{6} \cos \frac{5 \pi}{4}+\sqrt{6}\left(\sin \frac{5 \pi}{4}\right) i=-\sqrt{3}-\sqrt{3} i .
$$

So the roots of the polynomial are

$$
\begin{aligned}
\quad z & =\frac{3+i+\delta_{0}}{2}=\frac{(3+\sqrt{3})+(1+\sqrt{3}) i}{2} \\
\text { and } \quad z^{\prime} & =\frac{3+i+\delta_{1}}{2}=\frac{(3-\sqrt{3})+(1-\sqrt{3}) i}{2} .
\end{aligned}
$$

Finally, the original system of equations has two solutions:

$$
\left\{\begin{array} { l }
{ z _ { 1 } = \frac { (3 + \sqrt { 3 }) + (1 + \sqrt { 3 }) i } { 2 } } \\
{ z _ { 2 } = \frac { (3 - \sqrt { 3 }) + (1 - \sqrt { 3 }) i } { 2 } }
\end{array} \text { and } \quad \left\{\begin{array}{l}
z_{1}=\frac{(3-\sqrt{3})+(1-\sqrt{3}) i}{2} \\
z_{2}=\frac{(3+\sqrt{3})+(1+\sqrt{3}) i}{2}
\end{array}\right.\right.
$$

Exercise 4 (20\%) : Compute:

1. $\lim _{z \rightarrow i} \frac{z-i}{z^{2}+(1-2 i) z-1-i}$.

Answer:
First of all, remark that

$$
\lim _{z \rightarrow i} z-i=0 \quad \text { and } \quad \lim _{z \rightarrow i} z^{2}+(1-2 i) z-1-i=0
$$

so we can not compute the limit directly. But because of that, it is easy to factorize the denominator:

$$
z^{2}+(1-2 i) z-1-i=(z-i)(z+1-i)
$$

so

$$
\lim _{z \rightarrow i} \frac{z-i}{z^{2}+(1-2 i) z-1-i}=\lim _{z \rightarrow i} \frac{z-i}{(z-i)(z+1-i)}=\lim _{z \rightarrow i} \frac{1}{z+1-i}=1 .
$$

2. $\sum_{n=0}^{+\infty} \frac{1}{(2 i)^{n}}$.

Answer:
Remark that

$$
\left|\frac{1}{2 i}\right|=\frac{1}{|2 i|}=\frac{1}{2}<1
$$

so from the course, we know that the series of term $(1 / 2 i)^{n}$ converges to

$$
\frac{1}{1-\frac{1}{2 i}}=\frac{1}{\frac{2 i-1}{2 i}}=\frac{2 i}{-1+2 i}=\frac{2 i(-1-2 i)}{(-1+2 i)(-1-2 i)}=\frac{4-2 i}{5} .
$$

Finally,

$$
\sum_{n=0}^{+\infty} \frac{1}{(2 i)^{n}}=\frac{4-2 i}{5} .
$$

Exercise $5(40 \%)$: The aim of this exercise is to find a new formula for the square roots of a complex number $z_{0} \in \mathbb{C}$. Let $z=a+b i \in \mathbb{C}$ (with $a, b \in \mathbb{R}$)

1. Give (and justify) a condition (system of equations) relating $a, b, \operatorname{Re} z_{0}$ and $\operatorname{Im} z_{0}$ which is equivalent to $z^{2}=z_{0}$.
Answer:
As $z=a+b i$,

$$
z^{2}=(a+b i)^{2}=\left(a^{2}-b^{2}\right)+2 a b i
$$

where $a^{2}-b^{2}$ and $2 a b$ are real numbers. So we get

$$
z^{2}=z_{0} \Leftrightarrow\left\{\begin{array}{l}
a^{2}-b^{2}=\operatorname{Re} z_{0} \\
2 a b=\operatorname{Im} z_{0}
\end{array}\right.
$$

2. We set $A=2 a^{2}$ and $B=-2 b^{2}$. Prove that the previous condition implies that

$$
\left\{\begin{array}{l}
A+B=2 \operatorname{Re} z_{0} \\
A B=-\left(\operatorname{Im} z_{0}\right)^{2} \\
A \geqslant 0 \\
B \leqslant 0
\end{array}\right.
$$

Answer:

If the condition of question 1 is satisfied, we get

$$
A+B=2 a^{2}-2 b^{2}=2 \operatorname{Re} z_{0} .
$$

We also get

$$
A B=2 a^{2} \times\left(-2 b^{2}\right)=-4 a^{2} b^{2}=-(2 a b)^{2}=-\left(\operatorname{Im} z_{0}\right)^{2}
$$

Moreover, as $a, b \in \mathbb{R}$, we have

$$
A=2 a^{2} \geqslant 0 \quad \text { and } \quad B=-2 b^{2} \leqslant 0
$$

3. Find all the possible pairs (A, B) satisfying the previous condition in function of $\operatorname{Re} z_{0}$ and $\left|z_{0}\right|$ (justify).
Answer:
To find all these solutions, we start by solving the system of equations

$$
\left\{\begin{array}{l}
A+B=2 \operatorname{Re} z_{0} \\
A B=-\left(\operatorname{Im} z_{0}\right)^{2} .
\end{array}\right.
$$

We know that A and B satisfy this system if and only if they are the roots of the polynomial

$$
x^{2}-2\left(\operatorname{Re} z_{0}\right) x-\left(\operatorname{Im} z_{0}\right)^{2} .
$$

To find the roots of this polynomial, we compute first its discriminant:

$$
\Delta=\left(2 \operatorname{Re} z_{0}\right)^{2}-4 \times 1 \times\left(-\left(\operatorname{Im} z_{0}\right)^{2}\right)=4\left(\operatorname{Re} z_{0}\right)^{2}+4\left(\operatorname{Im} z_{0}\right)^{2}=4\left|z_{0}\right|^{2}
$$

which is real and non negative. So we get that the two square roots of Δ are

$$
\delta_{1}=2\left|z_{0}\right| \quad \text { and } \quad \delta_{2}=-2\left|z_{0}\right| .
$$

Finally, the roots of the polynomial are

$$
x_{1}=\frac{2 \operatorname{Re} z_{0}+2\left|z_{0}\right|}{2}=\operatorname{Re} z_{0}+\left|z_{0}\right| \quad \text { and } \quad x_{2}=\frac{2 \operatorname{Re} z_{0}-2\left|z_{0}\right|}{2}=\operatorname{Re} z_{0}-\left|z_{0}\right| .
$$

From that, we deduce that the solutions of

$$
\left\{\begin{array}{l}
A+B=2 \operatorname{Re} z_{0} \\
A B=-\left(\operatorname{Im} z_{0}\right)^{2}
\end{array}\right.
$$

are

$$
\left\{\begin{array} { l }
{ A = \operatorname { R e } z _ { 0 } + | z _ { 0 } | } \\
{ B = \operatorname { R e } z _ { 0 } - | z _ { 0 } | }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
A=\operatorname{Re} z_{0}-\left|z_{0}\right| \\
B=\operatorname{Re} z_{0}+\left|z_{0}\right|
\end{array}\right.\right.
$$

Remark that $\left|z_{0}\right|^{2}=\left(\operatorname{Re} z_{0}\right)^{2}+\left(\operatorname{Im} z_{0}\right)^{2} \geqslant\left(\operatorname{Re} z_{0}\right)^{2}$ so, taking the positive square roots, $\left|z_{0}\right| \geqslant\left|\operatorname{Re} z_{0}\right|$. Thus,

- if $\operatorname{Re} z_{0} \leqslant 0, \operatorname{Re} z_{0}-\left|z_{0}\right| \leqslant 0$ and $\operatorname{Re} z_{0}+\left|z_{0}\right|=\left|z_{0}\right|-\left|\operatorname{Re} z_{0}\right| \geqslant 0 ;$
- if $\operatorname{Re} z_{0} \geqslant 0, \operatorname{Re} z_{0}-\left|z_{0}\right|=\left|\operatorname{Re} z_{0}\right|-\left|z_{0}\right| \leqslant 0$ and $\operatorname{Re} z_{0}+\left|z_{0}\right| \geqslant 0$.

Finally, in any case, $\operatorname{Re} z_{0}-\left|z_{0}\right| \leqslant 0$ and $\operatorname{Re} z_{0}+\left|z_{0}\right| \geqslant 0$ so if we add the conditions $A \geqslant 0$ and $B \leqslant 0$, the only pair (A, B) satisfying the condition of question 2 is

$$
\left\{\begin{array}{l}
A=\operatorname{Re} z_{0}+\left|z_{0}\right| \\
B=\operatorname{Re} z_{0}-\left|z_{0}\right|
\end{array}\right.
$$

4. Deduce a formula giving the square roots of z_{0} (different from the one in the course).

Note: the formula can be defined by cases, depending on the sign of $\operatorname{Im} z_{0}$. Answer:
From the definition of A and B, we have

$$
a^{2}=\frac{A}{2}=\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2} \quad \text { and } \quad b^{2}=\frac{-B}{2}=\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}
$$

As these two numbers are positive, it permits to find four possibilities for a and b :

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ a _ { 1 } = \sqrt { \frac { | z _ { 0 } | + \operatorname { R e } z _ { 0 } } { 2 } } } \\
{ b _ { 1 } = \sqrt { \frac { | z _ { 0 } | - \operatorname { R e } z _ { 0 } } { 2 } } }
\end{array} \text { and } \left\{\begin{array}{l}
a_{2}=\sqrt{\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2}} \\
b_{2}=-\sqrt{\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}}
\end{array}\right.\right. \\
& \text { and }\left\{\begin{array} { l }
{ a _ { 3 } = - \sqrt { \frac { | z _ { 0 } | + \operatorname { R e } z _ { 0 } } { 2 } } } \\
{ b _ { 3 } = \sqrt { \frac { | z _ { 0 } | - \operatorname { R e } z _ { 0 } } { 2 } } }
\end{array} \text { and } \left\{\begin{array}{l}
a_{4}=-\sqrt{\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2}} \\
b_{4}=-\sqrt{\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}} .
\end{array}\right.\right.
\end{aligned}
$$

At the second question, we only proved an implication. So it is not automatic that all these pairs gives square roots of z_{0} (it is even impossible as we know that z_{0} has one or two square roots). More precisely, the condition of the first question which is not automatically satisfied is $2 a b=\operatorname{Im} z_{0}$. Remark that

$$
\begin{aligned}
2 \sqrt{\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2}} \sqrt{\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}} & =\frac{2}{2} \sqrt{\left(\left|z_{0}\right|+\operatorname{Re} z_{0}\right)\left(\left|z_{0}\right|-\operatorname{Re} z_{0}\right)} \\
& =\sqrt{\left|z_{0}\right|^{2}-\left(\operatorname{Re} z_{0}\right)^{2}}=\sqrt{\left(\operatorname{Im} z_{0}\right)^{2}}=\left|\operatorname{Im} z_{0}\right|
\end{aligned}
$$

and as a consequence $2 a_{1} b_{1}=\left|\operatorname{Im} z_{0}\right|, 2 a_{2} b_{2}=-\left|\operatorname{Im} z_{0}\right|, 2 a_{3} b_{3}=-\left|\operatorname{Im} z_{0}\right|$ and $2 a_{4} b_{4}=\left|\operatorname{Im} z_{0}\right|$. So

- If $\operatorname{Im} z_{0} \geqslant 0$, the first and the fourth possibilities work and we get the two square roots of z_{0}

$$
\sqrt{\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2}}+\sqrt{\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}} i \text { and } \quad-\sqrt{\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2}}-\sqrt{\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}} i .
$$

- If $\operatorname{Im} z_{0} \leqslant 0$, the second and the third possibilities work and we get the two square roots of z_{0}

$$
\sqrt{\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2}}-\sqrt{\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}} i \text { and } \quad-\sqrt{\frac{\left|z_{0}\right|+\operatorname{Re} z_{0}}{2}}+\sqrt{\frac{\left|z_{0}\right|-\operatorname{Re} z_{0}}{2}} i
$$

Notice that if $\operatorname{Im} z_{0}=0$, then $\left|z_{0}\right|=\left|\operatorname{Re} z_{0}\right|$ and the two cases coincide.
5. Compute the square roots of $3+4 i$.

Answer:
First of all, $|3+4 i|=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5$. As $\operatorname{Im}(3+4 i)=4 \geqslant 0$, we apply the first formula of the previous question and the square roots of $3+4 i$ are

$$
\sqrt{\frac{|3+4 i|+\operatorname{Re}(3+4 i)}{2}}+\sqrt{\frac{|3+4 i|-\operatorname{Re}(3+4 i)}{2}} i=\sqrt{\frac{5+3}{2}}+\sqrt{\frac{5-3}{2}} i=2+i
$$

and

$$
-\sqrt{\frac{|3+4 i|+\operatorname{Re}(3+4 i)}{2}}-\sqrt{\frac{|3+4 i|-\operatorname{Re}(3+4 i)}{2}} i=-2-i .
$$

Complex Analysis - Mid-term exam - Answers Exercise 2

The number $z \in \mathbb{C}$ is represented in the following diagram. Construct the point representing

$$
2 e^{-\frac{2 \pi}{3} i} \times \bar{z}+i
$$

on the diagram. Justify the construction geometrically by drawing some other points and marking clearly the steps of the construction.

