Complex Analysis - Midterm examination Solutions

Problem 1: (8) Let $z_{0}=3-\sqrt{3} i$.

1. Express z_{0} in polar form (in the form $r \exp (\theta i)$).

First of all $\left|z_{0}\right|=\sqrt{3^{2}+(-\sqrt{3})^{2}}=\sqrt{12}=2 \sqrt{3}$. Then, we have

$$
\frac{z_{0}}{\left|z_{0}\right|}=\frac{\sqrt{3}}{2}-\frac{1}{2} i=\exp (11 \pi i / 6)
$$

so the polar form of z_{0} is $z_{0}=2 \sqrt{3} \exp (11 \pi i / 6)$.
2. Solve the equation $z^{3}=z_{0}$.

For $z^{3}=z_{0}$, we have $|z|^{3}=\left|z_{0}\right|$ hence $|z|=\sqrt[3]{2 \sqrt{3}}=\sqrt[6]{12}$. Moreover, we should have $3 \operatorname{Arg}(z)=\operatorname{Arg}\left(z_{0}\right)$ up to a multiple of 2π hence $\operatorname{Arg}(z)=\operatorname{Arg}\left(z_{0}\right) / 3=11 \pi / 18$ up to a multiple of $2 \pi / 3$. Hence, solutions of $z^{3}=z_{0}$ are of the form

$$
z_{k}=\sqrt[6]{12} \exp ((11+12 k) \pi i / 18)
$$

for $k \in \mathbb{Z}$. As $z_{k+3}=z_{k}$, the solutions are actually z_{0}, z_{1} and z_{2} (which are clearly distinct).

Problem 2: (8) See other page.
Problem 3: (8) Solve the equations (find all solutions in \mathbb{C}):

1. $z^{2}-3 z+(3-i)=0$.

We rewrite the equation as $(z-3 / 2)^{2}-9 / 4+(3-i)=0$ hence $(z-3 / 2)^{2}=-3 / 4+i$. Let us find a square root of $-3 / 4+i$. Such a solution can be written $\delta=\alpha+\beta i$ with $\alpha, \beta \in \mathbb{R}$ and we get

$$
\begin{align*}
\alpha^{2}-\beta^{2} & =-3 / 4 \tag{1}\\
2 \alpha \beta & =1 \tag{2}
\end{align*}
$$

then the sum of the squares of (1) and (2) gives

$$
\left(-\frac{3}{4}\right)^{2}+1^{2}=\left(\alpha^{2}-\beta^{2}\right)^{2}+(2 \alpha \beta)^{2}=\alpha^{4}+2 \alpha^{2} \beta^{2}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}
$$

hence, as $\alpha^{2}+\beta^{2} \geqslant 0$,

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=\sqrt{\frac{9+16}{16}}=\frac{5}{4} \tag{3}
\end{equation*}
$$

so, by summing and computing the difference of (1) and (3): $\alpha^{2}=1 / 4$ and $\beta^{2}=1$. As $2 \alpha \beta>0, \alpha$ and β have the same sign. Hence, we get the two square roots
$\delta=1 / 2+i$ and $-\delta=-1 / 2-i$. Notice that it is easy to check that actually $\delta^{2}=-3 / 4+i$, but we do not really need it as we know that there are exactly two square roots.
Finally, we get $z-3 / 2= \pm(1 / 2+i)$ hence the two solutions of our equation are $z_{1}=2+i$ and $z_{2}=1-i$.
2. $\exp (-2 z)=-1+i$.

To solve this equation, we write in polar coordinates $-1+i$. We have $|-1+i|=\sqrt{2}$ and $\operatorname{Arg}(-1+i)=\operatorname{Arg}(-1 / \sqrt{2}+i / \sqrt{2})=3 \pi / 4$ up to a multiple of 2π. Hence, the logarithms of $-1+i$ are $\log (\sqrt{2})+(3+8 k) \pi i / 4=\log (2) / 2+(3+8 k) \pi i / 4$ for $k \in \mathbb{Z}$. So the initial equation is equivalent to $-2 z=\log (2) / 2+(3+8 k) \pi i / 4$ so the solutions are $z_{k}=-\log (2) / 4-(3+8 k) \pi i / 8$ for $k \in \mathbb{Z}$ (they are all distinct).

Problem 4: (8) For each of the following functions, tell where it is analytic and, on this set, compute its derivative. In both cases justify precisely your answer.

1. $f(z)=\frac{\exp (3 z-2)}{z-1}$ for $z \in \mathbb{C} \backslash\{1\}$;

The numerator is entire as it is the composition of exp with a polynomial. The denominator is entire as it is a polynomial. Hence f is differentiable whenever the denominator does not vanish, that is when $z \neq 1$. We compute using the usual rules:

$$
f^{\prime}(z)=\frac{\frac{\mathrm{dexp}(3 z-2)}{\mathrm{d} z}(z-1)-\exp (3 z-2) \frac{\mathrm{d} z-1}{\mathrm{~d} z}}{(z-1)^{2}}=\frac{(3 z-4) \exp (3 z-2)}{(z-1)^{2}} .
$$

2. $g(z)=\operatorname{Im}(z)+|\operatorname{Re}(z)| i$ for $z \in \mathbb{C}$.

We have $g^{\mathbb{R}}(x, y)=(y,|x|)$. In particular, at $x_{0}=0, \partial g_{2}^{\mathbb{R}} / \partial x$ is not define, hence the function is not differentiable for $\operatorname{Re} z=0$. For other values of (x, y), we have the following Jacobian matrix:

$$
D_{g^{\mathbb{R}}}(x, y)=\left[\begin{array}{cc}
0 & 1 \\
\operatorname{sgn}(x) & 0
\end{array}\right]
$$

where $\operatorname{sgn}(x)$ is 1 for $x>0$ and -1 for $x<0$. For $x \neq 0$, the coefficients are continuous, hence $g^{\mathbb{R}}$ is differentiable. For g to be differentiable, we need the Cauchy-Riemann equations to be satisfied, hence $0=0$ and $1=-\operatorname{sgn}(x)$. So g is differentiable whenever $x<0$ i.e. whenever $\operatorname{Re}(z)<0$ and, again by CauchyRiemann theorem, $g^{\prime}(x)=-i$ in this case. Notice that actually $g(z)=-i z$ if $\operatorname{Re}(z)<0$ and $g(z)=i \bar{z}$ if $\operatorname{Re}(z)>0$.

Problem 5: (8) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function that is infinitely many times differentiable. We say that f is harmonic if

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

on whole of \mathbb{R}^{2}. The aim of this exercise is to prove that harmonic functions are exactly functions that are real parts of entire functions from \mathbb{C} to \mathbb{C} (here, entire means functions that are infinitely many times differentiable on whole of \mathbb{C}).

1. We suppose that $h: \mathbb{C} \rightarrow \mathbb{C}$ is infinitely many times differentiable on whole of \mathbb{C}. We write $h^{\mathbb{R}}=\left(h_{1}, h_{2}\right)$ where $h_{1}, h_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Prove that h_{1} is harmonic.
Hint: Use Cauchy-Riemann equations and $\partial^{2} h_{1} / \partial x \partial y=\partial^{2} h_{1} / \partial y \partial x$ (Calculus 2). If h is infinitely many times differentiable on whole of \mathbb{C}, we have that h_{1} and h_{2} are infinitely many times differentiable and, by Cauchy-Riemann theorem,

$$
\frac{\partial h_{1}}{\partial x}=\frac{\partial h_{2}}{\partial y} \quad \text { and } \quad \frac{\partial h_{1}}{\partial y}=-\frac{\partial h_{2}}{\partial x} .
$$

If we differentiate the first one with respect to x and the second one with respect to y, we obtain

$$
\frac{\partial^{2} h_{1}}{\partial x^{2}}=\frac{\partial^{2} h_{2}}{\partial x \partial y} \quad \text { and } \quad \frac{\partial^{2} h_{1}}{\partial y^{2}}=-\frac{\partial^{2} h_{2}}{\partial y \partial x}=-\frac{\partial^{2} h_{2}}{\partial x \partial y}
$$

(the last equality is true because these partial derivatives are continuous) hence by adding up:

$$
\frac{\partial^{2} h_{1}}{\partial x^{2}}+\frac{\partial^{2} h_{1}}{\partial y^{2}}=0
$$

so h_{1} is harmonic.
2. We fix a harmonic function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Write the two differential equations

$$
\text { (E1) } \frac{\partial g}{\partial y}=\ldots \quad \text { (E2) } \frac{\partial g}{\partial x}=\ldots
$$

that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ must satisfy for $h(x+y i)=f(x, y)+g(x, y) i$ to be analytic on \mathbb{C}. If h is analytic, f and g satisfy the Cauchy-Riemann equations:

$$
\text { (E1) } \frac{\partial g}{\partial y}=\frac{\partial f}{\partial x} \quad \text { (E2) } \frac{\partial g}{\partial x}=-\frac{\partial f}{\partial y} \text {. }
$$

3. Prove that (E1) has a least a solution g_{0}.

Let us write $G(x, y)=(\partial f / \partial x)(x, y)$. Then we can for example get a solution of (E1) by putting

$$
g_{0}(x, y)=\int_{0}^{y} G(x, t) \mathrm{d} t,
$$

using the fundamental theorem of Calculus (over \mathbb{R} as y is a real variable). It is infinitely times differentiable.
4. Prove that

$$
\frac{\partial g_{0}}{\partial x}+\frac{\partial f}{\partial y}
$$

has the form $u(x)$ (does not depend on y).
Let us differentiate this sum with respect to y :

$$
\begin{array}{rlr}
\frac{\partial}{\partial y}\left(\frac{\partial g_{0}}{\partial x}+\frac{\partial f}{\partial y}\right) & =\frac{\partial^{2} g_{0}}{\partial y \partial x}+\frac{\partial^{2} f}{\partial y^{2}} & \\
& =\frac{\partial}{\partial x} \frac{\partial g_{0}}{\partial y}+\frac{\partial^{2} f}{\partial y^{2}} & \text { because } g_{0} \text { is twice differentiable } \\
& =\frac{\partial}{\partial x} \frac{\partial f}{\partial x}+\frac{\partial^{2} f}{\partial y^{2}} & \text { by (E1) } \\
& =0 & \text { because } f \text { is harmonic }
\end{array}
$$

so the sum does not depend on y. It is a function u of x.
Let $U: \mathbb{R} \rightarrow \mathbb{R}$ be an anti-derivative of u and fix $g(x, y)=g_{0}(x, y)-U(x)$.
5. Prove that $h(x+y i)=f(x, y)+g(x, y) i$ is analytic on \mathbb{C}.

We need to check (E1) and (E2). For (E1):

$$
\frac{\partial g}{\partial y}=\frac{\partial g_{0}}{\partial y}-\frac{\partial U}{\partial y}=\frac{\partial g_{0}}{\partial y}=\frac{\partial f}{\partial x}
$$

because U does not depend on y and g_{0} has been chosen to be a solution of (E1). For (E2):

$$
\frac{\partial g}{\partial x}=\frac{\partial g_{0}}{\partial x}-\frac{\partial U}{\partial x}=\frac{\partial g_{0}}{\partial x}-u(x)=-\frac{\partial f}{\partial y}
$$

as $u(x)=\partial g_{0} / \partial x+\partial f / \partial y$. As both Cauchy-Riemann equations are satisfied and both f and g are infinitely many times differentiable, $h(x+y i)=f(x, y)+g(x, y) i$ is analytic on \mathbb{C}.
Notice that actually, the g is unique up to an additive constant.

Complex Analysis - Mid-term exam Problem 2

The number $z \in \mathbb{C}$ is represented in the following figure. Construct the point representing

$$
\overline{z \exp (3 \pi i / 4)}+2+i
$$

on the figure. Justify the construction geometrically by drawing some other points and marking clearly the steps of the construction.

